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Abstract—High sampling rate Analog-to-Digital Converters
(ADCs) can be obtained by time-interleaving low rate (and thus
low cost) ADCs into so-called Time-Interleaved ADCs (TI-ADCs).
Nevertheless increasing the sampling frequency involves an in-
creasing sensibility of the system to desynchronization between
the different ADCs that leads to time-skew errors, impacting the
system with non linear distortions. The estimation and compen-
sation of these errors are considered as one of the main challenge
to deal with in TI-ADCs. Some methods have been previously
proposed, mainly in the field of circuits and systems, to estimate
the time-skew error but they mainly involve hardware correction
and they lack of flexibility, using an inflexible uniform sampling
reference. In this paper, we propose to model the output of L
interleaved and desynchronized ADCs with a sampling scheme
called Periodic Non-uniform Sampling of order L (PNSL). This
scheme has been initially proposed as an alternative to uniform
sampling for aliasing cancellation, particularly in the case of
bandpass signals. We use its properties here to develop a flexible
on-line digital estimation and compensation method of the time
delays between the desynchronized channels. The estimated delay
is exploited in the PNSL reconstruction formula leading to an
accurate reconstruction without hardware correction and without
any need to adapt the sampling operation. Our method can be
used in a simple Built-In Self-Test (BIST) strategy with the use of
learning sequences and our model appears more flexible and less
electronically expensive, following the principles of ”Dirty Radio
Frequency” paradigm: designing imperfect analog circuits with
subsequently digital corrections of these imperfections.

I. INTRODUCTION

In many areas such as satellite communications, the trans-
mitted signals are characterized by very high frequencies,
sometimes beyond the GHz order. In this case, the conversion
of an analog signal into a digital one, performed by Analog-to-
Digital Converters (ADCs), becomes a challenging operation
related to the frequency sampling it requires [1]. In particular
applications, because of economical and technological con-
straints, alternative solutions have to be considered. The most
popular one rely on Time Interleaved ADCs (TI-ADCs) [2],
[3]. TI-ADCs are composed of several ADC operating at the
same sampling frequency fs which are time interleaved in
order to reach a higher global sampling frequency by sharing
the sampling operation between the different components, at
the prize of a strong synchronization between them.

Indeed, TI-ADCs are particularly sensitive to desynchro-
nization between the elementary ADCs. The different sam-
pling channels have to be perfectly synchronized to perform
the expected uniform sampling operation and limit the effect
of time-skew errors as investigated in [4], [5]. Some meth-
ods have already been investigated for the desynchronization
correction [6]–[11]. Most of these methods propose to further
re-synchronize the ADCs for reconstruction error reduction.
This implies a lack of flexibility through hardware corrections
of the sampling devices and generally an increase in the system
complexity and power consumption [5].

The method proposed in this paper directly operates on the
digital signal and does not require any hardware correction.
The delay between the ADCs due to desynchronization is first
estimated on-line using an adaptive method and then taken into
account by non-uniform sampling formulas that perform the
signal reconstruction. We developped a simple method suitable
for Built-In Self-Test (BIST) [12] strategies using learning
sequences to calibrate the channels. These sequences can be
injected at the input of our system by an auto-calibration
method. We follow the principles of ”Dirty Radio Frequency”
as introduced in [13], adapting to the desynchronization in-
stead of cancelling it. Nevertheless our method relies on an
appropriate model of this desynchronization.

In the case of a TI-ADC composed of L ADCs, we propose
to model the system using Periodic Non-uniform Sampling
of order L (PNSL), a well-known sampling scheme. In this
paper, the derivations are performed for two channels using
the so-called PNS2 scheme, previously investigated for its
anti-aliasing properties [14]–[16] or its efficiency for bandpass
signals [17], [18].. The results can be easily extended to
the case of L ADCs.For example a TI-ADC with L ADCs
denoted ADC0,...,L−1 can be calibrated by choosing ADC0 as
a reference line and then estimating successively the delay
between each ADC1,...,L−1 and ADC0 in a PNS2 simple
scheme and without lack of generality.

The paper is organized as follows. Section 2 presents the
signal and sampling models. Section 3 details the proposed
method. The performance analysis is conducted in section 4.
Section 5 contains the concluding remarks.978-1-4673-7353-1/15/$31.00 c©2015 IEEE



II. SIGNAL MODEL AND SAMPLING SCHEME

A. Signal model and folded spectrum definition
For generality and possible application to telecommunica-

tions, the signal is modeled as a stationary random process
X = {X(t), t ∈ R} with zero mean, finite variance and
power spectral density sX(f) defined by:

E[X(t)X∗(t− τ)] =

∫ ∞
−∞

e2iπfτsX(f) df = KX(τ) (1)

where E[·] stands for the mathematical expectation and the
superscript ∗ for the complex conjugate. Let define the folded
spectrum of X as follows. Consider the sampling sequence
Xλ = {X(n+ λ), n ∈ Z} for a normalized sampling rate and
λ ∈ [0, 1[. Xλ is a zero mean stationary random sequence with
spectral density SλX(f) defined for f ∈ (− 1

2 ,
1
2 ) by:

SλX(f) =
∑
n∈Z

sX(f + n)e2iπnλ. (2)

SλX(f) is called the generalized folded spectrum of sX(f), the
spectral density of X. Note that for λ = 0, we have a simple
expression of the folded spectrum:

S0
X(f) =

∑
n∈Z

sX(f + n) (3)

B. The PNS2 sampling scheme
The PNSL is a sampling scheme composed of L sequences

Xal , l = 1, 2, ..., L. When the sum in (2) contains at most
L non-zero terms for each frequency f , an errorless recon-
struction of X(t) can be performed under light conditions on
delay parameters al. The case of PNS2 is of particular interest
for real bandpass signals whose band is composed of two
symmetric intervals of unit length. In the following, we will
focus on PNS2 for potential application to telecommunication
bandpass signals and the signal power spectrum sX(f) support
is then included in the kth Nyquist band ∆k defined by:

∆k =

(
−(k +

1

2
),−(k − 1

2
)

)
∪
(
k − 1

2
, k +

1

2

)
(4)

In the case of PNS2, the sampling times are distributed
according to two time interleaved periodic sequences {n, n ∈
Z} and {n + a, n ∈ Z} with a ∈ [0, 1[. The resulting
mean sampling rate equals 2 and thus fits the signal effective
bandwidth. This sampling condition was developed by Landau
[19] and stipulates that a non-baseband signal with an effective
bandwidth of B can be sampled at a rate of 2B and an errorless
reconstruction can be performed.

Signal samples are then composed of the two sequences
Xλ = {X(n + λ), n ∈ Z} with λ = {0, a}. The parameter
a controls the delay between the two interleaved uniform
sequences. Under the additional condition that 2ka /∈ Z, the
exact reconstruction from an infinite number of samples is
derived using the following formula [20]:

X(t) =
A0(t) sin [2πk(a− t)] +Aa(t) sin [2πkt]

sin [2πka]
,

with: Aλ(t) =
∑
n∈Z

sin [π(t− n− λ)]

π(t− n− λ)
X(n+ λ).

(5)

Note that in previous works, the authors have also pro-
posed errorless reconstruction formulas (in terms of mean-
squared error), whose convergence rate can be increased by
the introduction of appropriate filters [21], [22] and which
can perform joint reconstruction and interference cancelation
or direct analytical signal reconstruction [23], [24].

C. Problem formulation

PNS2 reconstruction formulas (in our case Eq. 5) have been
derived under the hypothesis that the time delay a is a priori
known. However, in practical applications, this parameter
may vary across time because of changes in the physical
(mainly thermal) constraints imposed to the TI-ADC. The
online estimation of this parameter is thus of particular interest
to maintain reconstruction accuracy while avoiding expensive
calibration as developed in [9], [10].Moreover, a direct use of
this estimate in the reconstruction formulas prevent from the
also expensive hardware delay corrections.

The influence of appropriate synchronization and then the
impact of time-skew errors has been investigated in [4], [5],
[25]. In [25] the authors showed the challenge of using high
frequencies in the transmission of bandpass signals because of
the impact on synchronization:

∆f = πB

(⌊
2fc
B

⌋
+ 1

)
∆t (6)

Indeed the sampling accuracy (the time error in other words,
denoted as ∆t) becomes increasingly important when the
center frequency fc of the signal increases for given bandwidth
B and reconstruction precision ∆f . For example, considering a
signal around fc = 230 MHz with a bandwidth B = 50 MHz
and a reconstruction precision ∆f = 1%, we must have a time
error ∆t ≤ 6ps, pushing the sampling time to be known very
accurately using reliable methods.

Next section presents an adaptive strategy for the estimation
of a from the observation of the sequences X0 and Xa. The
algorithm involves a learning sequence to estimate a in an
auto-calibration purpose.

III. PROPOSED METHOD: ADAPTIVE ESTIMATION OF THE
PNS2 TIME DELAY

A. Method description

This section presents the strategy for the estimation of the
time delay between the two channels of a PNS2 sampling
scheme. This adaptive strategy is based on the use of a learning
sequence, a signal with a priori known spectrum which could
be transmitted when the signal of interest shuts down or before
a transmission to calibrate the system. This simple methods
can be embedded into a Self-Test strategy that does not require
further complexity, only few components that are able to create
and inject the learning sequence at the input of our system.

Moreover, although the PNS2 sampling scheme deals with
bandpass signals as detailed below, the learning sequence is
set as a baseband signal, allowing to take advantage of the
sampling rate used in our reconstruction system. Indeed, we
keep a normalized sampling frequency in each channel of the



PNS2 scheme, using the same sequences detailed below. Then,
two main approaches can be considered. Our method gives a
perfect estimation of a without iteration under the condition
that the learning spectrum is known or can be estimated. For
that purpose, simulations have been made with the example of
a cosine wave. Then, another approach has been studied using
a bandlimited white noise. By approximating the spectrum in
the calculation, a recursive algorithm helps to estimate a with
a very few iterations and simple operations. The simulation
results will be detailed in the next section.

B. Principle

First, let consider a linear invariant filter of complex gain
µa(f). We note µa[X0] the stationary sequence representing
the filtered version of X0 by µa(f) and defined by the
correspondence:

µa(f) =
∑
k

αke
−2iπkf ⇐⇒ µa[X0](n) =

∑
k

αkX(n− k)

(7)
We then define the complex gain of µa(f) using generalized
folded spectrum (2):

µa(f) =
SaX(f)

S0
X(f)

e2iπfa , f ∈ (−1

2
,

1

2
) (8)

and we set by periodicity µa(f) = µa(f + n), n ∈ Z.
Now let us form the random sequence D = {Dn, n ∈ Z}:

Dn = X(n+ a)− µa[X0](n) (9)

It is easy to show that D is orthogonal to X0, resulting in the
following equality:

E[DnX
∗(m)] = 0 , ∀(n,m) ∈ Z

E[(X(n+ a)− µa[X0](n))X∗(m)] = 0
(10)

This serie of equations represents the behaviour when a
is known in our system. Now, let introduce the time-skew
error that happen in the system by changing the parameter
delay from a to an unknown b ∈ [0, 1[ such as b 6= a. The
parameter value a will only remain when we refer to the
sampling sequence Xa which represents the samples taken
according to a. Other occurences of a in the equations above
will now be replace by b.

We introduce the following criterion:

σ2
b = E

[
|X(n+ a)− µb[X0](n)|2

]
(11)

which can also be expressed as followed using (1):

σ2
b =

∫ ∞
−∞

∣∣e2iπfa − µb(f)
∣∣2 sX(f) df. (12)

It is interesting to note that this criterion is minimum for b = a.
As explained in section III-A the learning remains in baseband
and then we have sX(f) = 0 for f /∈ (− 1

2 ,
1
2 ) leading to

µb(f) = e2iπfb. In this case, the equation (12) reduces to:

σ2
b =

∫ 1
2

− 1
2

∣∣∣e2iπf(b−a) − 1
∣∣∣2 sX(f) df. (13)

In parallel, as µb(f) = e2iπfb the filter reduces to a simple
delay filter leading to:

µb[X0](n) = X(n+ b) (14)

and then:

σ2
b = E

[
|X(n+ a)−X(n+ b)|2

]
(15)

From now on, σ2
b can be estimated using (15) and the classical

Shannon sampling formula for X(n+ b) derivation:

µb[X0](n) = X(n+ b) =
∑
k

sin[π(b− k)]

π(b− k)
X(n+ k) (16)

It is well-known that the series involved in Shannon formula
suffers from a poor convergence rate. This rate can be im-
proved in the case of oversampling, following previous results
[22]. For example, if sX(f) = 0 , f /∈ (− 1

2 + ε, 12 − ε) and
0 < ε < 1

2 then the reconstruction can be performed with
higher convergence rate (in 1

k2 rather than 1
k ) as follows:

µb[X0](n) = X(n+ b) =
∑
k

akX(n+ k)

ak =
2

(b− k)2
sin
[ε

2
(b− k)

]
sin
[
(π − ε

2
)(b− k)

]
.

(17)

Putting (15) into (13) gives an estimation method for a,
under the assumption that sX(f) is a priori known for a given
learning sequence. We detail now two examples of learning
sequences that leads to simple estimation methods.

C. Examples

As explained previously, σ2
b can be derived according to Eq.

(13) for a given learning sequence with known power spectral
density sX(f). In the following, we provide simple closed
form expressions of the criterion as functions of parameter a
for two particular learning sequences.

1) Cosine wave: For a learning sequence defined as a
cosine wave at the frequency f0, we have the following
spectrum: sX(f) = 1

2 (δ(f−f0)+δ(f+f0)) , − 1
2 < f0 <

1
2 .

Then, from Eq. (13):

σ2
b = 4 sin2 [πf0(b− a)] (18)

Because b is given as a parameter and σ2
b is estimated through

(15) given an estimation that we denote σ̂2
b , Eq. (18) leads to

a straightforward estimation of parameter a as follows:

â = b− 1

2πf0
arccos

[
1− σ̂2

b

2

]
. (19)

2) Bandlimited white noise: This case is a bit different.
Indeed, whereas the exact spectrum can be estimated and
computed directly through the use of Eq. (13), it appears
very simple to consider the hypothesis that sX(f) = 1 on
(− 1

2 + ε, 12 − ε) , 0 < ε < 1
2 , which is true in mean, and

sX(f) = 0 elsewhere. Under this hypothesis, the criterion can
be written as:

σ2
b ≈

∫ 1
2−ε
− 1

2+ε

∣∣e2iπf(b−a) − 1
∣∣2 df

≈ 2(1− 2ε) (1− sinc[π(b− a)(1− 2ε)])
(20)



with the convention sinc(x) = sin x
x . Using (15) it leads to:

sinc[π(b− a)(1− 2ε)] = 1− σ̂2
b

2(1− 2ε)
(21)

that can be resolved using a calculation table of the cardinal
sine function f(x) = sinc[πx(1− 2ε)].

An approximation error will be introduced by considering
this hypothesis. Nevertheless, a simple recursive algorithm
that iterates the estimation helps to estimate a. As shown by
Fig. 2, a few number of iterations are sufficient to estimate a
with a satisfying precision. Then with a reasonable number of
iterations, an estimation error below 10−5 is possible whatever
the initial error on a.

Algorithm 1: Iterative Algorithm
Initialization:

Set â0 = b.
Choose a threshold K.

Step n:
Set bn = ân−1.
Estimate σ̂2

bn
using (15).

Use (21) and the calculation table to estimate bn − ân.
Until |ân − ân−1| < K

IV. PERFORMANCE ANALYSIS

The simulation results are displayed on Fig. 1 and 2. In each
case, reconstruction of the signal is performed using sliding
windows of length Nsamp. This parameter will be of interest
in the case of the white noise iteration method.

First, Fig. 1 shows the performance of the cosinus estima-
tion, helping to correct the reconstruction errors whatever the
initial value of b. This estimation is done using Nsamp = 10
in a one-tap algorithm without iteration, leading to a very
low reconstruction error. It is important to note that the same
conditions were used for the blue and red curves, the only
difference being the use of cosine estimation on the red curve.

Concerning Fig. 2, the simulations were made choosing the
Nyquist band number as k = 3 with ε = 5

100 (5% of the
bandwidth). The performance is shown through the plot of the
2 first iterations for each point and then the final estimation
result. It is important to note that the dashed line represents
the identity line, to which all the points belong initially. Fig.
2 then shows the performance of the estimation of a, at the
first iteration, at the second iteration and then the final result,
estimated after a certain number of iterations. In the case of
Nsamp = 100 in Fig. 2b, this final result estimated after an
average of 20 iterations shows a precision below 10−5 for
almost all the points. Fig. 2a has been tested using the same
parameters, except that the reconstruction is now performed
with a sliding window of only Nsamp = 10 samples of the
learning sequence. Even with this very low number of data, the
estimation is performed quite well and leads to an estimation
with a precision of almost 10−6 for all the points. The number
of iterations however increases a bit but it must be related
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(a) Bandpass signal with k = 1
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(b) Bandpass signal with k = 7

Fig. 1: Influence of the estimation on the signal reconstruction.
(a), (b): Mean square reconstruction error as a function of
variance with cosine estimation (red dashed) comparing to the
reconstruction without estimation (blue solid)

to the low value of Nsamp = 10, leading to the use of 40 ∗
10 = 400 samples to converge which is less than the case of
Nsamp = 100 for example (20 ∗ 100 = 2000 samples).

V. CONCLUSION AND FUTURE WORKS

This article presents a method for the estimation and com-
pensation of unknown delay between the channels in a PNS2
sampling scheme, used to model desynchronization errors in
TI-ADCs. The extended case of PNSL that models a L chan-
nels TI-ADC can easily be retrieved by sucessively applying
our method to each channel along with a fixed reference one,
leading to a PNS2 scheme. The method developed here is very
simple, easily computable (it requires only a few samples to
be effective) and relies on the use of a learning sequence with
known spectrum sent before the signal of interest or when
it shuts down, by a simple signal injection as an input of
the system. It differs from previous methods mainly based
on hardware corrections of the sampling devices in order
to cancel the desynchronization and return to the unflexible
expected uniform grid. We propose here an extended and
flexible framework for TI-ADC that adapts itself to imperfect
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Fig. 2: Error estimation after algorithm running as a function
of initial error (a) For Nsamp = 10 signal samples (b) For
Nsamp = 100 signal samples

sampling devices. However, the learning sequence used must
be known, exactly - as in the case of the cosine wave -
or at least in mean as in the case of the bandlimited white
noise. This could be a drawback of the proposed method if
a learning sequence cannot be sent and/or spectrally known.
In that purpose an extension of the method can be thought
using existing sequences currently used in telecommunications
such as Pseudo-Noise Sequences or Communication Pilots. By
exploiting the known properties of these sequences (the seed
initialization for PN Sequences or the symbols sent for pilots),
a calibration method could be derived, allowing to overcome
the need of an appropriate learning sequence creation device.
Moreover, a blind calibration algorithm is a targeted upgrade
of the method, allowing to estimate the delay using directly
the samples taken from the signal of interest in bandpass. This
will be part of a future work on the method developed here.
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