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Robust semiparametric efficient estimator for time
delay and Doppler estimation

Member, IEEE, Lorenzo Ortega, Member, IEEE, Stefano Fortunati.

Abstract—This paper explores time-delay and Doppler esti-
mation in the presence of unknown heavy-tailed disturbance.
Conventional methods for achieving optimal mean squared error
performance rely on the maximum likelihood estimator (MLE),
which is consistent and asymptotically efficient under the unreal-
istic assumption of a perfect a-priori knowledge of the noise dis-
tribution. However, in practical situations, the noise distribution
is often unknown, and classical parametric estimation procedures
are no longer able to guarantee the statistical efficiency. In this
work, by relying on the semiparametric theory, we present an
original rank-based and distribution-free R-estimator which have
the remarkable property to be parametrically efficient, i.e. it
attains the “classical” Cramér-Rao Bound, irrespective of the
unknown noise distribution, provided that the latter belongs to
the family of Complex Elliptically Simmetric (CES) distributions.

Index Terms—Semiparametric models, Robust time-delay and
Doppler estimation, band-limited signals.

I. INTRODUCTION

Time-delay and Doppler estimation are fundamental opera-
tions across numerous engineering domains, including com-
munications, radar or navigation systems [1]–[10], as they
form the initial task of the receiver [5], [8], [9]. Given
its significance, it is highly valuable to establish the best
achievable estimation performance in terms of mean squared
error (MSE). Under the standard parametric assumption, the
Cramér-Rao bound (CRB) [11], [12] serves this purpose.
Moreover, it is well known that the CRB is asymptotically
achieved by the MLE (at least under some regularity condition
on the data pdf) [13]. Therefore, several CRB formulations
for time-delay and Doppler estimation have been derived over
the years, for narrow-band and wide-band signals [2], [14]–
[23]. Additionally, recent studies have examined scenarios
where the actual signal model differs from the assumed one
at the receiver. In [24]–[28], it is assumed that the signal
model differs from the true one due to phenomena such
as multipath, interference or high receiver dynamics. Also,
in [29], [30], the authors consider the case in which the
true signal model is characterized by a non-Gaussian, heavy-
tailed CES distribution while the assumed one is the standard
complex normal distribution. In both types of studies, the
theory of model misspecification is adopted [31], [32], that
is the estimation performance are characterized in terms of
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pseudo-true parameters and the Misspecified CRB (MCRB).
Specifically, the MCRB yields the error covariance matrix
for the MLE when the model is misspecified, known as the
Misspecified MLE (MMLE) [31, Theo. 2], [32, Sec. 4.4.3].
Using this approach, one can show that, when the noise CES
distribution is misspecified, the MMLE for time-delay and
Doppler estimation is

√
N -consistent with respect to the true

parameters as the number N of observations goes to infinity.
This is a key finding, indicating that the MMLE, originally
developed under the assumption of Gaussian data, can still be
applied when the noise follows a non-Gaussian, heavy-tailed
CES distribution. Nevertheless, along with the consistency, we
would like to have estimators achieving asymptotic efficiency
with respect to the true and unknown noise distribution. To
address this, one must consider the theory of semiparametric
estimation, recently revisited in [33]–[36] for the family of
CES distributions. The semiparametric framework allows us
to derive a lower bound, known as the Semiparametric CRB
(SCRB), representing the lowest MSE achievable by any
consistent estimator in the presence of an unspecified CES
distribution. Furthermore, for our time-delay and Doppler
estimation problem, from the results in [34], it can be readily
shown that the SCRB equates the CRB of the true distribu-
tion. Remarkably, this means that a semiparametric efficient
estimator will be automatically parametrically efficient as well.
The aim of this letter is then to derive such a semiparametric,
distribution-free estimator, able to achieve the classical CRB
for the time-delay and Doppler estimation problem regardless
of the unknown CES noise distribution.

II. SIGNAL MODEL

A. CES-based signal model with unspecified density
We consider a system which transmits a band-limited signal

s(t), with bandwidth B over a carrier frequency fc (λc = c/fc,
ωc = 2πfc) from a transmitter T at position pT (t) to a
receiver R at position pR(t). Assuming a first order approx-
imation, the distance transmitted is pTR ≈ c(τ̄ + b̄t), with
τ̄ = ∥pT (0)−pR(0)∥

c and b̄ = ±∥v∥
c with v the relative velocity

vector between the transmitter and the receiver. Under the
narrowband assumption, the received signal after the baseband
demodulation can be expressed as [14], [20], [37]

x (t; η̄) = ᾱs (t− τ̄) e−j2πfc(b̄(t−τ̄)) + n (t) , (1)

with η̄ =
(
τ̄ , b̄
)T

and ᾱ a complex gain. The discrete vector
signal model is built from N = N1 − N2 + 1 samples at
Ts = 1/Fs = 1/B,

x = ᾱµ(η̄) + n, (2)
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where each entry of the vectors x, µ(η̄) and n are given
by xk = x(kTs), µk(η̄) = s(kTs − τ̄)e−j2πfc(b̄(kTs−τ̄) and
nk = n(kTs), for N1 ≤ k ≤ N2. The i.i.d. noise samples
n(kTs) ∼ CES(0, σ̄2

n, ḡ) are assumed to be CES-distributed
with unknown noise power σ̄2

n and unspecified density gen-
erator ḡ [38]. The unknown deterministic parameters can be
gathered in vector ϵ̄⊤ = (σ̄2

n, ρ̄, Φ̄, η̄
⊤) = (σ̄2

n, θ̄
⊤
), with ᾱ =

ρ̄ejΦ̄ and ρ̄ ∈ R+, 0 ≤ Φ̄ ≤ 2π. The underling data generating
model is then characterized by the following pdf pϵ̄(x; ϵ̄) =
ΠN2

k=N1
pϵ̄(xk, ϵ̄), with pϵ̄(xk, ϵ̄) = CES(ᾱµ(η̄), σ̄2

n, ḡ). Note
that, since ḡ is left unspecified, pϵ̄(x; ϵ̄) cannot be used to
derive a MLE for ϵ̄ since the functional form of the likelihood
is unknown. For further reference, we recall that, according to
the Stochastic Representation Theorem [38, Theo. 3], we have:

xk =d ᾱµk(η̄) +
√
Qkσ̄nuk =d fk(θ̄) +

√
Qσ̄nuk, (3)

where uk is a complex uni-variate random variable uniformly
distributed on CS ≜ {u ∈ C||u| = 1}, i.e. uk ∼ U(CS).
Moreover Qk ≜ |xk − fk(θ̄)|2/σ̄2

n =d Q is a positive random
variable, independent from uk with pdf pQ(q) = δ−1

g ḡ(q),
where δg ≜

∫∞
0
ḡ(q)dq serves as a normalization constant (see

[38, Eq. (19)]). To resolve the known scale ambiguity between
σ̄n and ḡ, we impose that E{Q} = 1. This constraint allows
us to interpret σ̄n as the statistical power P of the data xk
(as discussed in [38, Sec. III.C]).

The underlying semiparametric estimation problem can be
cast as follow: Is it possible to derive a semiparametric
efficient estimator of θ̄ in the presence of an unspecified
density generator ḡ? This question contains two inner aspects:

1) Definition of an efficiency bound for θ̄. To this end,
we will use the Semiparametric Slepian-Bangs formula
derived in [34, eq.(47)].

2) Derivation of an efficient estimator able to achieve this
bound. We provide an original rank-based (R-) estimator
able to satisfy this property.

An important remark is in order here: in the derivation of
the bound for θ̄, the noise power σ̄2

n is assumed to be a-priori
known. Nevertheless, to overcome this unrealistic requirement,
in the derivation of the R-estimator, the true (and unavailable)
noise power is substituted with a consistent estimator.

III. CLOSED-FORM EXPRESSION OF THE SCRB FOR θ̄

According to the semiparametric theory [39], the lack of
a-priori knowledge about the density generator ḡ can be
taken into account in the derivation of the semiparametric
version of the CRB, i.e. the SCRB, on θ̄ by considering ḡ
as a functional nuisance term. Specifically, the SCRB can
be defined as the inverse of the so called Semiparametric
Efficient Fisher Information Matrix (SFIM). Without any claim
of completeness (we refer the reader to [36] for all the details),
the SFIM is defined as Ī(θ̄|ḡ) ≜ E{s̄θ̄(x)s̄θ̄(x)H} where the
semiparametric efficient score vector s̄θ̄ is given by:

s̄θ̄(x) ≜ sθ̄(x)−Π(sθ̄(x)|Tḡ), (4)

where sθ̄(x) ≜ ∇θ ln pϵ̄(x; σ̄
2, θ̄) is the score vector evaluated

at the true parameter vector θ̄ and Π(sθ̄(x)|Tḡ) is the orthog-
onal projection of sθ̄ on the semiparametric nuisance tangent

space Tḡ [34], [36] evaluated at the true density generator
ḡ. The explicit calculation of the SFIM for CES-distributed
can be obtained through the Semiparametric Slepian-Bangs
formula that has been obtained under very general conditions
in [34, eq.(47)]. For the case under consideration, we can get
a quite surprisingly simplification of this general formula. In
fact, since, according to (3), θ̄ parametrizes only the mean of
the CES-distributed data, [34, eq. (42)] shows that the projec-
tion operator Π(sθ̄(x)|Tḡ) is null for any possible unspecified
density generator. In words, this means that knowing or not
knowing the density generator ḡ does not have any impact
of the asymptotic lower bound for the estimation of θ̄! As
a consequence, the efficient score vector s̄θ̄(x) equate the
“parametric” score vector sθ̄(x) and the SFIM equates the
the “parametric” FIM I(θ̄) ≜ E{sθ̄(x)sHθ̄ (x)}. Moreover, the
score vector sθ̄(x) and the related FIM are obtained from [34,
eq. (41)] and [34, eq.(47)] respectively as:

sθ̄(xk) =d −2σ̄−1
n

√
Qψ̄(Q)ℜ

{
u∗k∇θfk(θ̄)

}
, (5)

I(θ̄) =
2E{Qψ̄(Q)2}

σ̄2
n

ℜ

{(
∂ᾱµ(η̄)

∂θ

)H (
∂ᾱµ(η̄)

∂θ

)}
,

(6)
where ψ̄(t) ≜ d ln ḡ(t)/dt and Q is defined in (3) and the
expectation is taken with respect to its pdf pQ. Since the SFIM
equates the FIM, as direct consequence, we have that

SCRB(θ̄|ḡ) = I(θ̄)−1 = CRB(θ̄) ∀ḡ. (7)

We conclude this section by noticing that a closed-form
expression of I(θ̄|ḡ) can then be obtained as follows [20]:

I(θ̄) = E{Qψ̄(Q)2}K(θ̄), K(θ̄) ≜
2Fs

σ̄2
n

ℜ
{
QWQH

}
(8)

with W =

w1 w∗
2 w∗

3

w2 w2,2 w∗
4

w3 w4 w3,3

 where the matrix elements

can be expressed w.r.t. the baseband signal vector s as: w1 =
1
Fs

sHs, w2 = 1
F 2

s
sHDs, w3 = sHΛs, w4 = 1

Fs
sHDΛs,

w2,2 = 1
F 3

s
sHD2s, w3,3 = Fss

HVs and

Q =


1 0 0
jρ̄ 0 0

jρ̄2πfcb̄ 0 −ρ̄
0 −jρ̄2πfc 0

 , (9)

sk = s(kTs), N1 ≤ k ≤ N2 are the entries of s, D =
diag (. . . , k, . . .)N1≤k≤N2

and the matrices Λ and V are de-

fined, element by element, as [Λ]k,k′ =

∣∣∣∣∣ k′ ̸= k : (−1)|k−k′|
k−k′

k′ = k : 0

and [V]k,k′ =

∣∣∣∣∣ k′ ̸= k : 2(−1)|k−k′|

(k−k′)2

k′ = k : π2/3
.

IV. A (SEMI)PARAMETRIC EFFICIENT R-ESTIMATOR FOR θ̄

In the previous section, we showed that, for the partic-
ular signal model given in (3), the SCRB is equal to the
classical CRB. This means that, if we find an estimator that
is (asymptotically) efficient w.r.t. the SCRB, it will also be
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efficient wrt the CRB. In other words, for the signal model in
(3), semiparametric efficiency implies classical parametric
efficiency. This means that the semiparametric estimator, i.e.
an estimator that does not rely on the a-priori knowledge of the
density generator ḡ, may achieve the same asymptotic perfor-
mance of a classical parametric estimator derived under the
assumption of a perfect knowledge of ḡ. Let us now focus on
the derivation of such a semiparametric estimator. We would
like to stress that our aim here is not to give an exhaustive
review on the derivation of semiparametric estimators. Instead,
we will use known results to derive a specific estimator for
the signal model in (3). As discussed in [40], a semiparametric
efficient estimator can be obtained in two steps: 1) Evaluate
a One-Step (OS) estimator under the assumption of known ḡ.
2) Use rank-based procedures to approximate the previously
derived OS estimator when ḡ is unknown. It is important to
emphasise that the main purpose of the subsections below
is to provide all the information needed to implement the
R-estimator for the specific application at hand. The reader
wishing to understand all the theoretical details can find them
in [40]–[42] while an intuitive introduction to R-estimators can
be found in the supporting material of [35]. Moreover, in the
supporting material of this letter [43], the calculations leading
to the explicit form of the R-estimator are clearly detailed.

A. A One-Step estimator for the signal model (3)

Introduced by LeCam (see e.g. [44]), an OS estimator is
a parametric estimator able to achieve the same asymptotic
optimality properties of the Maximum likelihood estimator
[36, Sect. 2.3.1]. For the signal model (3), and under the
unrealistic assumption of a perfect a-priori knowledge of ḡ,
the OS estimator can be cast as follows:

θ̂OS = θ⋆ +N−1/2[I(θ⋆)]−1∆N (θ⋆) where (10)

1) θ⋆ is the preliminary estimator, i.e. a
√
N−consistent,

but not necessarily efficient, estimator of θ̄.
2) I(θ⋆) is the FIM in (6) evaluated in θ⋆,
3) ∆N (θ⋆) is the central sequence evaluated in θ⋆ s.t.:

∆N (θ) ≜ N−1/2
∑N

k=1
sθ(xk), (11)

where sθ(xk) is given in (5).
Since the terms I(θ⋆) and ∆N (θ⋆) depend on the true (but
unknown) density generator ḡ, the OS estimator in (10)
cannot be applied in a semiparametric scenario in which ḡ
is unknown. For this reason, we have to rely on a rank-based,
“ḡ-free” approximation of I(θ⋆) and ∆N (θ⋆).

B. Rank-based, “ḡ-free” estimator for θ̄

Ranks owe their importance in robust statistics to the prop-
erty of being “distribution-free”. In particular, rank measurable
functions can be used to derive non-parametric estimators,
when the data distribution is unknown as in our case. From
eqs. (5) and (6), it is immediate to note that I(θ⋆) and ∆N (θ⋆)
depend on the unavailable ḡ through the function ψ̄ and the
expectation E{Qψ̄(Q)2} since it depends on the pdf of Q

that, in turn, depends on ḡ. Following the general procedure
discussed in [35], [40], we can introduce:

Q⋆
k ≜ |xk − fk(θ

⋆)|2/(σ⋆
n)

2, (12)

u⋆k ≜ (xk − fk(θ
⋆)) /(σ⋆

n

√
Q⋆

k). (13)

We can now introduce the ranks {rk}N2

k=N1
of the (continuous)

real random variables {Q⋆
k}

N2

k=N1
in the usual sense mutated

form the ordered statistics [45, Ch. 13]. We are now ready to
provide a rank-based approximation of I(θ⋆) and ∆N (θ⋆). In
fact, it can be shown that [45, Ch. 13], [35], for a given “score
function” M(·), 1 we have2:

M

(
rk

N + 1

)
=

√
Qψ̄(Q) + oP (1). (14)

Consequently, an approximated version of the efficient
central sequence ∆N (θ⋆) in (11) can be obtained as:

∆̃N (θ⋆) ≜
−2√
Nσ⋆

n

N2∑
k=N1

M

(
rk

N + 1

)
ℜ [(u⋆k)

∗∇θfk(θ
⋆)] .

(15)
Moreover, it can be shown that [41], [42] that a consistent

estimator of the term E{Qψ̄(Q)2} can be obtained as:

E{Qψ̄(Q)2} = α̂N + oP (1), where (16)

α̂N =
(σ⋆

n)
2

N

||∆̃N (θ⋆ +N−1/2v0)− ∆̃N (θ⋆)||
||K(θ⋆)v0||

, (17)

where we introduced the “small perturbation” vector v0 ∼
N (0, ϱI). As a consequence, an approximation of the FIM in
(8) can be obtained as Ĩ(θ⋆) = α̂K(θ⋆). We are now ready to
provide the main result of this letter. In fact, a rank-based, “ḡ-
free” estimator for θ̄, say θ̂R, can be obtained by substituting
in the OS estimator of eq. (10) the approximated versions of
∆N (θ⋆) and I(θ⋆), given in eqs. (15) and (17) respectively

θ̂R = θ⋆ + (
√
Nα̂N )−1[K(θ⋆)]−1∆̃N (θ⋆

n). (18)

It is important to stress that θ̂R does not depend on the
density generator ḡ that is left unspecified and depends on
the collected data only through the ranks of the real random
variables {Q⋆

k}
N2

k=N1
defined in (12). Remarkably, θ̂R satisfies:

√
N
(
θ̂R − θ̄

)
d→ N (0, [ζ(M, ḡ)K(θ̄)]−1), ∀ḡ,

where ζ(M, ḡ) is defined in [42]. We underline that the
estimator in (17) is consistent but not efficient. Therefore,
a more efficient estimator of α̂ can improve the asymptotic
performance of the proposed R-estimator in (18).

1The family of score functions is defined in [46, Sect. 2.2], [45, Ch. 13]
2We write: xl = oP (1) if liml→∞ Pr {|xl| ≥ ϵ} = 0,∀ϵ > 0

(convergence in probability to 0)
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C. Choice of θ⋆, (σ⋆
n)

2, and M(·)
As previously stated, the preliminary estimator (θ⋆)⊤ =

[ρ⋆,Φ⋆, (η⋆)⊤] needs to be a
√
N -consistent (but not neces-

sarily efficient) estimator of θ̄. So, a perfect candidate would
be the MMLE derived in [24], [27]. Similarly, as preliminary
estimator of the noise variance, we can use:

(σ⋆
n)

2 = ∥x− ρ⋆ejΦ
⋆

µ(η⋆)∥2/N. (19)

Regarding the “score function” M(·) many choices are
possible (see e.g. [35]). However, the one that provide a
good trade of between semiparametric efficiency and ro-
bustness is the complex van der Waerden score function
MvdW (t) ≜

√
Φ−1

G (t),t ∈ (0, 1) where Φ−1
G indicates the

inverse function of the cdf of a Gamma-distributed random
variable with parameters (1, 1).

D. Explicit calculation of K(θ⋆) and ∆̃N (θ⋆)

K(θ⋆) can be simply calculated directly by substituting
the estimates of the MMLE θ⋆ in equation (8). To calculate
∆̃N (θ⋆), we first derive:

∇θfk(θ
⋆) = Q⋆ϑ(kTs;θ

⋆)ejΦ
⋆

e−jωcb
⋆(kTs−τ⋆), (20)

with Q⋆ computed by substituting the estimates of the MMLE

in (9) and ϑ(kTs;θ
⋆) =

 s(kTs − τ⋆)
(t− τ⋆)s(kTs − τ⋆)
s(1)(kTs − τ⋆)

 . Let us

define the entries of the vector U⋆ as U⋆
k =M

(
rk

N+1

)
(u⋆k)

∗.
Then, assuming a band-limited signal, Shannon-Nyquist’s the-
orem can be used to compute ∆̃N (θ⋆) since

lim
(N1,N2)→(−∞,∞)

Ts

(
N2∑

k=N1

U∗
kϑ(kTs;θ

⋆)e−jωcb
⋆(kTs−τ⋆)

)
=∫ ∞

−∞
U∗(t)ϑ(t;θ⋆)e−jωcb

⋆(t−τ⋆)dt = (we1 , we2 , we3)
⊤.

where the integral solutions can be found in [47],

we1 =
1

Fs
(U⋆)HV ∆,0

(
τ⋆

Ts

)
U

(
fcb

⋆

Fs

)
s,

we2 =
1

F 2
s

(U⋆)HV ∆,0

(
τ⋆

Ts

)
U

(
fcb

⋆

Fs

)
Ds,

we3 = (U⋆)HV ∆,1

(
τ⋆

Ts

)
U

(
fcb

⋆

Fs

)
s + jwcb

⋆we1 ,

with U(p) = diag(· · · , e−j2πpk, · · · )N1≤k≤N2
,

[V∆,1(q)]k,l = 1
k−l−q (cos(π(k − l − q)) − sinc(k − l − q))

and [V∆,0(q)]k,l = sinc(k − l − q). Then,

∆̃N (θ⋆) = (2Fs)/(
√
Nσ⋆)ℜ

{
ejΦ

⋆

Q⋆we

}
. (21)

V. SIMULATION AND DISCUSSION

We consider a scenario where a GPS L1 C/A signal [10] is
received by a GNSS receiver. We set a true signal model where
the noise is sampled from a complex centered t-distribution
[32, Sec. 4.6.1.1] with υ = 1.5 degrees of freedom (or shape
parameter) that control the level of non-Gaussianity and a
scale parameter µ. The second-order modular variate Q of a
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Fig. 1. RMSE of the MMLE and R-estimator in (18) of the time-delay.
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Fig. 2. RMSE of the MMLE and R-estimator in (18) of the Doppler.

t-distribution is an F -distributed random variable with parame-
ter 2 and 2υ, i.e., Q ∼ µ−1F2,2υ [38, Sec. IV.A]. Then, to meet
the constraint E{Q} = 1 , the scale must be set as µ = υ

(υ−1) .

Moreover, for the t-distribution E{Qψ̄(Q)2} = µ(υ+1)
(υ+2) as it

has been shown in [34] and SNRout = |ᾱ|2sHs/σ̄2
n. Figures 1

and 2 present the root mean square error (RMSE) results of the
MMLE and the R-estimator derived in (18) for the parameters
of interest η̄T = [τ̄ , b̄], as a function of the SNRout. This
analysis considers a setup with a GNSS receiver operating at
a sampling frequency Fs = 4MHz and an integration time of
1 ms. The results are based on 1000 Monte Carlo iterations.
The results show that the RMSE (

√
MSE) of the MMLE

asymptotically converge to the MCRB, which matches with
the Complex-Gaussian CRB. This results was already shown
in [30]. Moreover, we show the RMSE of the estimator derived
in (18) asymptotically converge to the SCRB/CRB in (6). The
reader can find additional numerical results on the estimator’s
performance with other parameters and distributions in [43].

VI. CONCLUSION

The purpose of this letter was to introduce new insights
into the theory of time-delay and Doppler estimation. In
particular, we derived an original rank-based, distribution free,
R-estimator which is asymptotically parametrically efficient
regardless the unspecified noise CES distribution. To validate
the efficiency of the derived R-estimator, we compared its
MSE with the relevant semiparametric bound, which is proven
to equate (in the case of time-delay and Doppler estimation)
the classical CRB evaluated for the true noise distribution.
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