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Abstract

Low power ultrasonics are used for testing high
density polyethylene pipe material. Attenuation
and velocity give valuable information on the ma-
terial in situ and without damages. In this paper
we revisit recent data in the frequency band (4,10)
megahertz. We prove that propagation is equiv-
alent to random delays following stable probabil-
ity laws. Moreover, the emergence of a companion
noise non-detectable by devices is compliant with
the law of conservation of energy.

Keywords: polyethylene, ultrasonics, linear fil-
tering, stable probability law, random propagation
times.

1 Introduction

Effects of ultrasonics on polyethylene have been
studied for a long time [1], [2], [3], [4]. Utilization of
high density pipe material in nuclear industry has
renewed the interest for this topic [5], [6]. In par-
ticular, paper [5] provides interesting results about
attenuation α (f) and phase velocity v(f) of ultra-
sounds in the frequency band (4, 10) megahertz.

Investigations derive from the time causal the-
ory deduced from Kramers-Krönig relations [1], [7],
[8]. We are in the case where attenuation follows
a power law, i.e

α (f) = α1f
y. (1)

f is the frequency in MHz, v (f) in m.µs−1 and
α (f) in m−1. Parameters verify the conditions
α1 > 0, 0 < y < 2. α1 depends on the system of

units but not y. The velocity v (f) is linked to α (f)
through the approximate relation

v (f) ≈ v0 +
(v0
π

)2 α1

y − 1
fy−1 (2)

when y > 1, with (theoretically) v0 = v (0) [1].
In [5], a sample is studied at three different tem-
peratures (42

◦
5, 20◦ and 8◦1). Attenuation and

velocity of monochromatic waves in the frequency
band (4, 10) MHz are reported and the paper fo-
cuses mainly on uncertainties and regression inter-
vals of measurements. Two figures summarize mea-
surements, the first one shows attenuations and the
second one provides velocities. The first one is ac-
curate and relation (1) is well verified. Figure 1 here
transforms data coming from figure 4 in [5] in log-
arithmic coordinates, which leads to a set of three
lines of equation (f in MHz, α in m−1)

42◦5 lnα = 1.16 ln f + 3.29
20◦ lnα = 1.185 ln f + 3.02
8◦1 lnα = 1.262 ln f + 2.81

(3)

and equivalently

y α1

42◦5 1.16 26.9
20◦ 1.185 20.5
8◦1 1.262 16.6

(4)

We retrieve similar values in other papers [4], [6]
(y around or equal to 1). Data on velocity are
more difficult to translate. Paper [5] groups the
three curves of interest in figure 5. Because they
are very well separated, their usable set of values is
very small with respect to the full scale (some 10
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Figure 1: Attenuation α(f) as a power function.

to 20 units with respect to 450). Each curve can be
viewed as a line (in the frequency set of interest). A
thin curvature can be detected but not quantified
because of uncertainties in measurements. We can
approximate velocities by lines of equation (v (f) is
in m.µs−1)

42◦5 106v (f) = 3f + 2256
20◦ 106v (f) = 2.6f + 2419
8◦1 106v (f) = 2.3f + 2509

(5)

Szabo predicted the shape (2) for v (f) [1], [9],
[10]. When we choose the linearity for v (f) with
respect to f in (5) , we will not have the same
property with respect to fy−1. Nevertheless, the
gap is not very large. Figure 2 shows points of
the curve

(
f0.16, 3f + 2256

)
. The curvature is no

longer viewable in the scale chosen in [5] (the gap
between both lines on figure 2 is equal to 2.5, com-
pared with 2600-2150=450 in figure 5 of [5]). Any
line between D1 and D2 is a good approximation of
v (f). Consequently, v (f) can be viewed as linearly
linked to f as well as fy−1 in the frequency band
(6, 10) MHz (and also to f1−y, see below).

In the section below, we show that data in [5]
can be explained in the frame of random propaga-
tion times with stable probability laws. We discuss
the causality problem in section 3 and appendices
give supplementary material on random propaga-
tion times.

Figure 2: ν′(f) = 3f + 2256 as function of f0.16.

2 Random propagation times
and stable probability laws

2.1 Random propagation times

We assume that the random process
A={A (t) , t ∈ R} is stationary with characteristic
functions (in the probability sense) [11]

ψ (f) = E
[
e−2iπfA(t)

]
, φ (f, τ) = E

[
e−2iπf(A(t)−A(t−τ))

]
which do not depend on t (E[..] is for the mathe-
matical expectation or ensemble mean). The pro-
cess U={U (t) , t ∈ R} is defined as

U (t) = e2iπf0(t−A(t)) (6)

for some f0. U results from the monochromatic
wave e2iπf0t received at some place after some tra-
jectory of random duration A (t) . We have

U (t) = ψ (f0) e2iπf0t + V (t) (7)

where the zero-mean process V is stationary with
[12]:

E [V (t)V ∗ (t− τ)] = e2iπf0τ
[
φ (f0, τ)− |ψ (f0)|2

]
.

(8)
If this quantity converges to 0 with 1/τ quickly
enough, V will be a ”noise” with continuous spec-
trum. In the case of sonics or ultrasonics, A (t)
models the molecular agitation which induces spec-
tra beyond ultrasonics. Devices which treat U are
matched to neighboors of f0 and then will not be
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affected by the noise V (see [13], [14], [15] and ap-
pendices).

We do not accurately know properties of the
noise V, and this part of U is not measured. Never-
theless, this component meets a fundamental prop-
erty: e2iπf0t (the transmitted process) and U (the
received process) have the same power. The power

measured by devices is |ψ (f0)|2 , and the power of
losses is

E
[
|V (t)|2

]
= 1− |ψ (f0)|2 .

Fast variations of A (t) (the changes in propagation
times) are sufficient to explain arbitrary losses (see
appendices).

2.2 Stable probability laws

The (real) random variable A follows a stable prob-
ability law when its characteristic function verifies
[16], [17], [18]

ψ (f) = E
[
e−2iπfA

]
= exp

[
−im (2πf)− c (2πf)

b
(1 + iβθ (f))

]
(9)

where f > 0, m ∈ R, c > 0, 0 < b ≤ 2,−1 ≤ β ≤ 1,
ψ (f) = ψ∗ (−f) and

θ (f) = tan
πb

2
, b 6= 1 and θ (f) =

2

π
ln (2πf) , b = 1.

Roughly, r.v An, n ∈ N are stable when linear com-
binations are stable (with the same b). It is a gen-
eralization of Gaussian laws and central limit theo-
rems. Physicists are reluctant to use them because
only three stable laws have a reduced shape, the
Gaussian (b = 2), Cauchy (b = 1, β = 0) and Levy
(b = 1/2, β = ±1) laws.

2.3 Application to ultrasonics

We return to the data in [5]. The propagation
on the unit length (1m) is a linear time- invariant
(LTI) filter H of complex gain H (f) defined by

H (f) = exp

[
−α1f

y − i 2πf

v (f)

]
. (10)

The output of the filter H (f0) e2iπf0t corresponds
to the input e2iπf0t.

The purpose of this paper is to prove that ran-
dom propagation times with stable probability laws

are able to explain H (f) . Equivalently, the output
of the filter H can be written as (6) , knowing that
the term V in (7) is neglected, . From (7) , (9) and
disregarding the ”noise” V, we have (using (9) and
(10) with y > 1)

b = y

c (2π)
b

= α1

m+ c (2πf)
b−1

β tan πb
2 = 2πf

v(f)

(11)

Furthermore, we have seen that curves(
fy−1, v (f)

)
are close to lines, in accordance

with the Szabo’s theory. Figures 3 to 5 show that
the same property is true for

(
fy−1, v−1 (f)

)
. It

is not a paradox, considering that, in (2) , the

term v0 is large with respect to
(
v0
π

)2 α1

y−1 . So, the
following equivalence is legitime

v−1 (f) ' 1

v0
− α1

π2 (y − 1)
fy−1. (12)

In figures 3, 4 and 5 parallel lines D1 and D2 bound
good interpolations for the curve

(
fy−1, v−1 (f)

)
which is represented by points on the frequency in-
terval (4, 10) . They are deduced from data through
(5). D1 and D2 define a region for a good linear
interpolation of v−1 (f) with respect to fy−1. We
have to determine m and β. It suffices to calcu-
late β so that the slope of the line (in parametric
coordinates)

∆m :
(
fy−1,m+ c (2πf)

y−1
β tan

πy

2

)
is the same as the slope of D1 and D2. m is de-
termined when ∆m is between D1 and D2. Uncer-
tainty is measured by the distance between both
lines (below the meter). Figures 3 to 5 illustrate
the method. In all cases β is close to 1 (see the
following section for links with causality).

Finally, we obtain the parameters of equivalent
stable probability laws

b = y c m θ
42◦5 1.16 3.19 465 −3.9
20◦ 1.185 2.32 425 −3.34
8◦1 1.262 1.63 397 −2.29

β
0.95
0.98
0.91

(13)

Reciprocally, we deduce the missing parameter
v0 of Szabo’s formula from (12) :

v0 =
1

m
=

 2150 (42◦)
2353 (20◦)
2519 (8◦1)
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Figure 3: ν−1(f) = (3f + 2256)−1 as function of
f0.16.

Figure 4: ν−1(f) = (2.6f + 2419)−1 as function of
f0.185.

Figure 5: ν−1(f) = (2.3f + 2509)−1 as function of
f0.262.

in m.s−1 (in (13) m is in µs.m−1). Finally, ran-
dom propagation times with stable probability laws
are able to model effects of ultrasonics through
polyethylene studied in [5], if the ”noise” part de-
fined in section 2.2 is disregarded (see appendices
1 and 2).

3 Causality

Causality derives from the fact that ”an effect does
not preceed a cause”. In physics, this property
leads to Kramers-Krönig relations which link at-
tenuation and velocity of waves. They are at the
basis of Szabo’s theory, though it is proved that
causality is not available for attenuations as (1) for
y ≥ 1 but approached [19].

Causality is explained through notions of com-
plex gains and impulse responses of linear time-
invariant filters (LTI) which model the mecha-
nism of some transformation. Computations are
achieved from convolution products or Fourier
transforms. Actually, the notion of LTI is based
on the linearity and only on the additional prop-
erty:

a LTI transforms inputs e2iπft

in outputs H (f) e2iπft .

The complex gain is H (f), its modulus is the
”attenuation” and the argument provides the ”ve-
locity” of the monochromatic wave (at the fre-
quency f). The property in bold is an alternative
definition of a LTI, and is never discussed.

The ”attenuation” contredicts the first principle
of thermodynamics, and a good model has to ex-
plain losses. When outputs show a non monochro-
matic term, it is generally attributed to internal
noise of the measuring apparatus or to external
sources and not at all to the medium. When we
have to solve some physical equation, we first look
for monochromatic solutions and generalized by lin-
earity. However, it is not proved that the random
character of the medium does not hold changes of
the shape of the wave e2iπft. About ”velocity”,
small gaps from a mean value are difficult to mea-
sure, but small values may have big consequences.
Admitting the existence of a value which does not
vary and independent from microscopic states of
the medium, is a gamble.
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Random propagation times A explain both at-
tenuations and velocities. Unfortunately, expla-
nations are limited by the lack of knowledge of
internal links of A (the functions φ (f, τ)). The
process V contains losses. V is stationary, it
derives from linearity, but not from a LTI (a
continuous power spectrum cannot come from a
monochromatic wave). In other situations, for in-
stance in electromagnetic propagation, monochro-
matic waves are broadened. The part V appears
and it is the preponderant part, and the propaga-
tion cannot be modelled only by LTI [20], [21].

In the random propagation framework, the prop-
agation results in a sum of two processes. The first
one is a LTI which explains measurements and the
second one explains losses, but qualitatively (it is
not viewed by devices). The complex gain of the
LTI is the characteristic function ψ (f) of a stable
probability law and the impulse response is the re-
lated probability density C (t) :

C (t) =

∫ ∞
−∞

ψ (f) e2iπftdf

Causality is: C (t) = 0 for t < 0. The property is
verified only when [16], [17], [18], [19]

b < 1, β = ±1.

In [5], we have b = y > 1. The causality property is
not met. Nevertheless, the parameter β rules the
asymmetry of the probability function C (t) . The
larger is |β| and the more asymmetric is C (t) . The
values β = 1 (for b 6= 1) and β = −1 (for b = 1)
minimize the weight of probability in R−. They are
the best values for a near causality. Values of β
deduced from data in [5] and given in (13) are close
to 1 and they provide a strong argument in favor
of the model.

Figure 6 illustrates this assertion when b = y =
1.16 (other cases are very similar). They show C (t)
for values in (13) , and for different β. The value β =
1 is the most favourable, and, for β > 1, C (t) takes
negative values, and then is no longer a probability
law. The value of m (m ≈ 465µs) is very large in
front of the support of C (t) (theoretically infinite
but practically in the order of 40µs).

Figure 6: Probability densities of stable laws, b =
1.16, c = 3.2,m = 0.

4 Conclusion

Data in article [5] relate to attenuation and veloc-
ity of ultrasonics crossing polyethylene in the fre-
quency band (4, 10) MHz, at three temperatures.
The attenuation follows a power law which places
the problem in the Szabo’s (causal) theory. Ve-
locity measurements do not have the same accu-
racy and can be approached by different interpola-
tion formulas. It is a situation often encountered
[22], [23]. Velocity is a gently sloping line, where
a small curvature is masked by inaccuracy of mea-
surements.

In this paper, we explain data through random
propagation times following stable probability laws.
We give the values of probability laws parameters
from the data of [5] and we explain why results are
closely linked to causality.

5 Appendices

5.1 Appendix 1

In many situations (for instance propagation in at-
mosphere or water) a reasonable model for Ax, the
time spent on a length x, is a Gaussian process with
mean mx, variance σ2x and autocorrelation func-
tion σ2xρ (τ) (ρ (0) = 1) linear with x, taking into
account the independence of delays on successive
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pieces of the medium:{
ψ (f) = e−imfx−σ

2f2x/2

φ (f, τ) = e−σ
2f2x(1−ρ(τ)).

(14)

Such hypothesis leads to Gaussian attenuation and
constant velocity with respect to the frequency. If
we are interested in the sound propagation in air at
normal conditions, the values (in meters and sec-
onds) in normal conditions

m = 0, 003, σ2 = 4.10−11

correspond to weakenings of an acoustic wave (at
least for frequencies beyond 105Hz). The equivalent
probability density at x is defined by the Gaussian

C (t) =
1

σ
√

2πx
exp
− (t−mx)

2

2σ2x
.

ρ (τ) in (14) measures the celerity of time variations
of A1, which is linked to molecular motion. For a
molecule of air (O2 or N2) , the number of shocks
by second is in the order of 4.1010, the time between
two shocks in the order of 3.10−10s and the distance
spent 10−7m. Obviously, these values have to lead
to very high frequencies for Vx. Furthermore, when
x increases, it is the same for the power of Vx, but
it is likely that its spectral density flattens out, such
that Vx becomes less and less visible by devices
matched to particular frequential windows.

5.2 Appendix 2: an example of ran-
dom propagation time

Let the wave e2iπf0t be crossing a 1 meter of or-
dinary air. The crossing time is about 3.10−3s.
We ask the following question: if we assume that
transit times are subject to small variations (for in-
stance in the order of 10−8s.), is it possible to ignore
them? Obviously, these small variations are not
viewed by apparatus. Potential deformations will
be attributed to noises due to receivers or exter-
nal sources. Obviously, the question may be asked
in reverse for a motionless medium and mobile re-
ceivers.

We consider a homogeneous Poisson process
{tn, n ∈ Z} with parameter λ [11]. If N (t, τ) is the
number of tn in (t, t+ τ) ,we have the probabitities

P [N (t, τ) = n] =
(λτ)

n

n!
e−λτ .

where λ is the mean number of ”times” tn by time
unit. Independently, we assume that the Bn are
real, i.i.d (independent identically distributed) with
c.f

E
[
e−2iπfBn

]
= ψ0 (f)

and we define the random propagation time A by

A (t) = a+Bn, tn ≤ t < tn+1.

where a is some positive quantity. Bn is a random
gap added to the mean a. We firstly obtain (τ > 0)

E
[
e−2iπfA(t)

]
= ψ0 (f) e−2iπfa = ψ (f)

φ (f, τ) = E
[
e−2iπf(A(t)−A(t−τ)]

= e−λτ + |ψ (f)|2
(
1− e−λτ

)
.

In the decomposition (7)

e2iπf0(t−A(t)) = ψ (f0) e2iπf0t + V (t)

the left hand term is the result of the monochro-
matic wave e2iπf0t propagation. ψ (f0) e2iπf0t is the
frequency line f0 after attenuation and delay de-
fined by ψ (f0). V (t) is zero mean and verifies,
from (8)

sV (f) =
2λ
(

1− |ψ (f0)|2
)

4π2 (f − f0)
2

+ λ2

sV (f) is a power spectral density which is maxi-
mum at f = f0 with

sV (f0) =
2

λ

(
1− |ψ (f0)|2

)
.

When λ is large enough, the ”noise” V will be in-
visible whatever the frequency window defined by
the devices, though its total power is constant and
equal to

PV =

∫ ∞
−∞

sV (f) df = 1− |ψ (f0)|2 .

The choice of ψ (f) rules the value PV (equivalently
the attenuation), and the weight of V in any fre-
quency band can be adjusted by λ. As an example,
A is a Gaussian N

(
3.10−3, 10−12

)
, in s. and s2,

f0 = 103s−1. We find PV = 0.36 and we have
λ ∼ 109 with sV (f) < 10−8.

We can accept that it is this kind of model which
represents the propagation in a medium made of a
quasi infinite number of elements which interact.
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