
RADAR 2004 - International Conference on Radar Systems

The impact of High Resolution Spectral Analysis methods on the
performance and design of millimetre wave FMCW radars

D. Bonacci1, C. Mailhes1, M. Chabert1, F. Castanié1

1: ENSEEIHT/TéSA, National Polytechnic Institute, 2 Rue Camichel, BP 7122, 31071 Toulouse Cedex 7, France,
phone: +33 5 61 58 80 10, fax: +33 5 61 58 80 14,

email: david.bonacci, corinne.mailhes, marie.chabert, francis.castanie@tesa.prd.fr

Abstract: This paper addresses the problem of joint
measures of range and velocity of moving targets using
millimetre wave FMCW radar (in the 77 Ghz range)
within the field of automotive applications. The proposed
solution is to determine range and velocity using spectral
estimation of downconverted signals, theoretically
composed of multiple sine functions embedded in noise.
As a consequence, their accuracy is closely related to the
accuracy of frequency estimation. In this paper, High
Resolution spectral analysis methods (such as Auto-
Regressive or Prony modeling) are shown to strongly
impact the technological design constraints of the radars.
More precisely, for a given sampling frequency of the
downconverted signal, these methods show their ability
either to significantly reduce the bandwidth of the linear
frequency modulated radar sweeps although keeping
constant the frequency resolution, or, for a given
technological design, increase the same figure of merit.
Moreover, adequate pre-processing of the signal is
described, yielding correction of some 'nasty' non-linear
effects (VCO, mixers, …) as well as denoising received
signals. Theoretical study of the performances is given
and illustrated on simulated and real signals (provided by
the RadarNet project of the 5th Framework Program).
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1. Introduction

Within the field of an European project
(http://www.radarnet.org/), automotive vehicules are
equipped with FMCW (Frequency Modulated Continuous
Wave) in order to prevent from collisions. The FMCW
signals obtained after demodulation are linear
combinations of sinusoids, the number of which is linked
to the number of reflecting targets. Frequencies of these
sinusoids carry both information of range and Doppler
shift. Thus, accuracy and resolution on speed and range
measurements are directly linked to those of frequency
estimation.
Most widely used frequency estimation techniques in
radar-data processing techniques are based on the (Fast)
Fourier Transform and more particularly on the
periodogram. This paper proposes the use of more
sophisticated spectral estimation procedures (high
resolution methods) as a way to improve frequency

estimation and consequently range and velocity
estimation. These procedures come from recent signal
processing investigations and include parametric
modeling [1] (as Autoregressive predictive methods) and
subband decomposition [2-3]. In section 2, FFT-based and
High-Resolution (HR) methods are discussed. Section 3 is
devoted to subband decomposition and its interesting
properties, especially for parametric spectral estimation.
In section 4, simulation results are presented and
commented. The last section gives conclusions.

2. Frequency estimation methods

Downconverted FMCW signals can be written as a sum of
sinusoids with given amplitudes, phases and frequencies
embedded in some additive noise. For range and velocity
estimation, the main concern is the estimation of
frequencies.

2.1 FFT-based methods

The main interest of classical periodogram-based methods
is their low computational cost, since they use FFT (Fast
Fourier Transform) algorithms. But these methods suffer
from two important problems referred in [4] as short-
range and long-range spectral leakage.
The first problem is the bias induced by the computation
of FFT in a grid of discrete frequencies. Zero-padding is a
way to mitigate this problem but it can be computationally
expensive if high accuracy is needed. More adapted
methods dealing with the granularity of the FFT have
been developed, like the Interpolated FFT (IFTT) in [5-6],
or the Weighted Phase Averager (WPA) method [7-8]. In
these methods, a first coarse estimate of the frequency is
corrected using phase information of the periodogram.
WPA methods achieve, in general, better results than
IFFT methods.

The second problem is long-range leakage. It denotes
interference between sinusoidal components. It occurs
even when using weighting windows. In [4], Santamar?a
proposes an iterative version of WPA methods (IWPA)
which is able to tackle both the short-range and long-
range leakage problems. The basic idea is to subtract from
the original signal all previously estimated components
(once their frequencies, phases and amplitudes have been
determined) before estimating a new component (with a
new frequency). As a consequence, interferences are
widely reduced and for each iteration, the use of a WPA
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method eliminates short-range leakage. The main
difficulty of this method is that it requires very accurate
initial frequency estimates because a small error in the
frequency estimates could cause large errors in both the
amplitude and phase estimates.

2.2 High resolution methods

These kinds of signals, i.e. a sum of complex exponentials
or sinusoids embedded in a white additive noise, are
particularly well-suited to parametric modeling. Among
all existing parametric modeling methods [9-11], Auto-
Regressive (AR) modeling is the most commonly used in
parametric spectral analysis. This model assumes the
signal under study u(n) to be a linear combination of its
past samples plus an unexpected part e(n)  :

The ak’s are referred to as autoregressive parameters, p is
the model order and e(n) is a white noise, corresponding
to the Linear Prediction Error (LPE). AR modeling
corresponds also to Linear Prediction as the above
equation leads to consider that the signal u(n) is the output
of a linear filter excited by a white noise. Thus, given
u(n) , an AR model can be identified. Once the
corresponding AR parameters are estimated, a spectral
estimator of the signal u(n) can be proposed :

The choice of the model order p is of great importance.
Too low a guess for model order results in a highly
smoothed spectral estimate. Too high an order introduces
spurious details into the spectrum. Several criteria have
been introduced as objective bases for selection of AR
model order [9],[12].
Frequency estimation is done through the estimation of
the AR polynomial roots – polynomial coefficients are the
AR parameters. This estimation method leads to better
results than applying a “peak-detection” algorithm on the
AR spectrum (2). Indeed, the main drawback of peak-
detection algorithms is the necessary choice of a threshold
in order to distinguish signal components from noise ones.
Moreover, the estimation of AR polynomial roots can be
done in real-time. For example, in the Bairstow technique
[13], the complex roots of a real polynomial are calculated
by finding real quadratic factors. Other algorithms, as in
[14] are based on a continued fraction representation of
the rational transfer function. As a consequence, the
application of a peak-detection algorithm, and the
sensitive choice of a threshold is no more necessary when
using HR methods.

3. Subband Decomposition

Subband decomposition is an operation consisting in
filtering an analyzed discrete signal u(n) through an
adapted filterbank and then decimating (i.e. keeping only
one sample out of several samples) the obtained filtered
signals. This can be schematized by the following figure,

showing the case of an uniform filterbank (same
decimation factor on each branch):

Figure 1 : Uniform Analysis Filterbank

The main idea is that, when using an ideal filterbank
(infinitely sharp bandpass filters), it is possible to easily
reconstruct the fullband spectrum Su(f), subband after
subband, as a function of the spectra of the subband
signals xj(n). Obviously, this algorithm can be written in
a parallel way, allowing the spectrum estimation on M
simultaneous frequency subbands, using the spectral
estimation procedure on each branch of the filterbank.
For further details about subband decomposition, the
reader can to refer to [2].
From a spectral analysis point of view, subband
decomposition has several advantages and drawbacks.
The main benefits provided by subband decomposition
can be expressed as follows in the case of parametric
spectral estimation: model order reduction and
consequently condition number decreasing for
autocorrelation matrices [15], spectral density whiteness
and also linear prediction error power reduction for
autoregressive (AR) estimation [16]. In the case of a
peaked spectrum signal (case of FMCW radar signals),
another very interesting property can be pointed out:
frequency spacing and local Signal to Noise Ratio (SNR)
increase by the decimation ratio [17]. Another great
feature of subband decomposition is the ability to save
computational time for most parametric spectral
estimation procedures: applying M times an algorithm in
the subbands with order p/M is often more efficient than
applying the same algorithm once on the fullband signal,
with order p.
Unfortunately, there are also drawbacks when doing
parametric spectral estimation on subbands. The first one
is spectral overlapping: when using non-ideal filterbanks,
the same harmonic component may appear in two
contiguous subbands at two different frequencies. The
second one is the relative variance increase for
autocorrelation estimators, due to sample number
decrease after decimation. The first drawback has already
been addressed in two recent papers [18] and [19] where
(non real-time) procedures were proposed to perform
subband spectral estimation without discontinuities or
aliasing, even at subbands borders. Within the RadarNet
context, these procedures were not used as they are not
real-time. As aliasing occurs at subband borders,
frequencies lying in these areas are actually estimated by
modulating the input signal prior to its subband
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decomposition. The second drawback is mitigated
because of the use of an order p/M in the subbands while
using an M-fold decimator.

4. Simulation results

In the RadarNet’s signal processing chain, main concern
is to estimate as precisely as possible range and speed of
multiple moving targets. This is done using two radar
FMCW consecutive sweeps (rising then falling edges) as
in figure 2.

Figure 2 : Instantaneous frequency for a sample
pattern of 2 chirps

Considering a single target, we denote by f1 its
corresponding detected frequency for chirp 1 and f2 for
chirp 2. Then range R and velocity v are given by the
following relationships:

where each linear FMCW sweep begins at frequency f0,
with bandwidth fhub. Tchirp is the duration of a single
measurement and C=3.108 m/s. Two different
specifications are usually imposed on both range and
speed: accuracy δR, δv and resolution ∆R, ∆v. Eq. (5) and
(6) show that these constraints are directly linked to
frequency accuracy δf and resolution ∆f.

In the two preceding equations, δ holds for accuracy and
∆ for resolution. In the rest of this section, High
Resolution (HR) methods are compared to FFT-based
methods for frequency estimation taking into account both
accuracy and resolution. Accuracy will be measured via
the Mean Square Error (MSE) (this figure of merit takes
into account both bias and variance) and resolution will be
given by the ability to separate two closed frequencies.
Note that a good theoretical figure of merit for frequency
resolution is the bandwidth of the peak at –3 dB. Except
for simulation on a real signal (provided by the RadarNet
research project), the analyzed signal is a sum of K
sinusoids corrupted by an additive gaussian white noise
b(n) :

where K denotes the number of sinusoids, the amplitudes
Am and phases φm are not to be determined (except if using
the IWPA method) and fm are the normalized frequencies
under interest. Signal to Noise Ratio (SNR) is defined as
follows:

For the following simulations, the IWPA method
presented in section 2 is used as a FFT-based method. For
HR method, a Fast Least Square Algorithm [20] is applied
on signals at the output of an uniform filterbank with
J=M=20 subbands. The computational complexity of this
algorithm is ( )ppN −10  operations. Then using subband

decomposition and an order p/M in each subband, this
complexity is reduced to
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computational power can be saved if not all subbands
have to be analyzed. For instance, in the RadarNet project,
all normalized frequencies under interest lie in the interval
[0, 0.1] and only the first 5 subbands are used. Filters
corresponding to these are depicted on figure 3.

Figure 3 : Uniform filterbank with M=20 subbands

As can be seen, non-overlapping filters are used. By the
way, there is no problem of spectral overlapping but
frequencies lying at subbands borders have to be
previously modulated by a frequency shift corresponding
to half a subband width.

4.1 Frequency accuracy

Simulations are done with 500 independent trials on
signals of the form (7). Used parameters were N=1024
samples, K=2 sinusoids with A1= A2=1 and SNR=3
(corresponding to 4.77 dB). Chosen modeling order for
subband AR estimation was p=7. In order to measure
accuracy, relatively well-separated frequencies were
chosen: f1=0.04 and f2=0.08. The phases φ1 and φ2 are
uniformly distributed on [0, 2p [.
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Figure 4 : MSE on f1 estimation using HR methods
and FFT-based methods (well-separated frequencies)

Both frequency estimator (HR and FFT-based) are
unbiased. Theoretically speaking, it can be found in [11],

p. 106, the demonstration that the frequency estimator f̂
obtained by finding the roots of the AR polynomial is

such that )ˆ( ffN −  has an asymptotic zero-mean
Gaussian distribution. Moreover, figure 4 shows that their
variances reach the Cramer-Rao lower bound. It follows
that HR methods and FFT-based methods are quasi-
equivalent for accuracy δf of frequency estimation (at first
and second orders).

4.2 Frequency resolution

AR spectral estimator has to be compared to those
obtained based on FFT-techniques from a spectral
resolution point of view. The maximum frequency
resolution using FFT-based methods is of the form:

N corresponding to the length of the observed signal given
in (7) and ∆fFFT corresponding to the width of the spectral
peak at –3dB level. Dealing with AR modeling, it can be
shown that in the case of a sinusoidal signal embedded in
a white noise, the spectral resolution can be written [20]:

where SNR represents the Signal to Noise Ratio of the
signal under study. The model order can be considered as
being a fraction of the signal length, i.e., proportional to
N. Based on this remark, it is obvious that AR modeling
can bring better spectral resolution since ∆fAR is inversely
proportional to N² while ∆fFFT is inversely proportional to
N. However, it can be worse also, due to the SNR term.
Simulations are done with the same parameters as above,
with 500 independent trials. The only difference is that
frequencies are now chosen to be more closed than the
maximum FFT resolution 1/N: f1=0.04 and f2=
0.04+0.7/1024 . The obtained results are depicted on
figure 5.
Theoretical considerations and simulations show the
interest of HR methods for frequency resolution ∆f. At

SNR=4.77 dB (which is realistic with respect to real radar
sensors signals), the use of HR methods allows a gain by a
factor of more than 3. Hence, for a given range and
velocity resolution ∆R and ∆v, equations (5) and (6) show
that the initial frequency f0 and excursion frequency fhub

could be reduced by the same factor, which can strongly
impact the technological design constraints of the radars.

Figure 5 : MSE on f1 estimation using HR methods
and FFT-based methods (closed frequencies)

4.3 Real signal

Real downconverted signals suffer from non linear effects
resulting in time-ramps on the collected time data. As a
consequence, the signal model (7) is no more theoretically
valid. Figure 6 shows the case of 2 real records provided
by the RadarNet team (two above plots).

Figure 6 : Order 1 de-ramping

As HR methods are highly sensible to this kind of non-
stationarity, a pre-processing step was proposed,
consisting in fitting an order 1 polynomial in a least-
square sense to the raw data. The result of this de-ramping
procedure is shown on figure 6.
Using this pre-processing step, figure 7 shows the FFT
and AR spectra versus normalized frequencies,
reconstructed from subband spectral estimation, for a
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particular radar record of length N=1024  samples. An
order p=30 was used with a M=20 uniform filterbank.

Figure 7 : HR and FFT-based spectra for a real radar
signal

It can be seen on the last figure that HR methods used
conjointly with an appropriate subband decomposition
and pre-processing of the time signal leads to a very
important resolution improvement with respect to the
periodogram.

5. Conclusion

High Resolution Analysis Techniques and Fast Fourier
Transform algorithm have been compared in the context
of automotive radar signal processing, taking into account
both range and speed accuracy and resolution. An auto-
regressive model has been proposed, preceded by a de-
ramping stage and subband decomposition. The frequency
resolution improvement has been demonstrated through
simulations and theoretical considerations for a parametric
method based on a least square resolution. This results on
a technological design ease as the initial frequency f0 and
excursion frequency fhub of the radar sweeps can be
reduced while keeping same speed and range resolution.
Moreover, it has been stated that computational cost could
be reduced thanks to the use of subband decomposition.
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