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SUMMARY

This paper addresses the problem of demodulating signals transmitted in the automatic identification system
(AIS). The main characteristics of such signals consist of two points: i) they are modulated using a trellis-
coded modulation, more precisely a Gaussian minimum shift keying (GMSK) modulation; ii) they are
submitted to a bit-stuffing procedure, which makes more difficult the detection of the transmitted information
bits. This paper presents several demodulation algorithms developed in different contexts: mono-user and
multi-user transmissions, and known/unknown phase shift. The proposed receiver uses the cyclic redundancy
check (CRC) present in the AIS signals for error correction, and not for error detection only. Using this
CRC, a particular Viterbi algorithm, based on a so-called extended trellis, is developed. This trellis is
defined by extended states composed of a trellis-code state and a CRC state. Moreover, specific conditional
transitions are defined in order to take into account the possible presence of stuffing bits. The algorithms
proposed in the multi-user scenario present a small increase of computation complexity with respect to
the mono-user algorithms. Some performance results are presented for several scenarios in the context of
the automatic identification system and compared with those of existing techniques developed in similar
scenarios. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The objective of this paper is to present different demodulation algorithms for AIS signals received
by a satellite. The automatic identification system (AIS) is a self-organized time division multiple
access (TDMA) communication system, which has been primarily designed in order to avoid
collisions between large vessels [1]. This system has not been initially conceived for satellite
reception. However, for global supervision of the maritime traffic, it is interesting to investigate
the demodulation of AIS signals received by a satellite. Given the high noise and interference
levels affecting signals received by satellite, new demodulation techniques have to be developed
in order to obtain acceptable packet error rates (PER) at the lowest Eb/N0. The reception of AIS
signals by satellite was investigated in [2, 3], where an enhanced sensitivity receiver was designed.
This paper proposes new demodulation strategies based on an error correction method using the
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cyclic redundancy check (CRC) as a source of redundancy. Two different scenarios are considered:
Scenario 1 is for mono-user transmission with a perfect phase recovery. This scenario provides
a reference to which can be compared suboptimal demodulators. Scenario 2 generalizes scenario
1 and studies another demodulation algorithm for the cases where a phase shift occurs during
the transmission, or when the modulation index is unknown and possibly time-varying. The third
scenario is proposed for multi-user applications. An interference mitigation method is exploited to
mitigate the effects of multiple signals affecting the desired one.

The specificities of the AIS signals considered in this article are: i) the transmitted bit sequence
contains a CRC part, and is modulated using a trellis-coded modulation, more precisely the Gaussian
minimum shift-keying (GMSK) modulation; ii) this sequence may also contain stuffing bits, inserted
after the CRC calculation. The objective of the bit stuffing procedure is either to generate additional
transitions, which helps to re-synchronize the receiver clock, or to avoid some specific codewords.
Note that the bit stuffing mechanism is present in other systems than AIS, e.g., the universal serial
bus (USB), the high level data link control (HDLC) or X.25 systems and the integrated service
digital network (ISDN).

The demodulation algorithms proposed in this article all consist of using the CRC not as an
error detection tool, but rather as a correction method. While initially conceived for error detection
purposes, the CRCs have also been recently proposed for error correction. For instance, the
difference between the received CRC and the CRC computed from the received data is used as a
syndrome and constitutes the basis of the error correction strategy developed in [4]. This approach,
which allows the receiver to correct one single erroneous bit, has been generalized in [5] for the case
of two erroneous bits. A strategy suitable for any bit error number has been proposed in [6], where
the low confidence bits are corrected in priority. In [7], the error correction is based on the bit error
probability, by modifying the high error probability bits until the received and re-computed CRCs
are equal. Finally, a strategy using a convolutional code with the CRC has been proposed in [8].

However, these techniques are not appropriate for data containing bit stuffing. New strategies must
therefore be investigated. The objective of this paper is to propose CRC-based detection methods for
systems involving trellis coding (TC) and bit stuffing. In the mono-user scenario, the first proposed
detection method assumes a perfect phase recovery and develops a particular Viterbi algorithm,
based on an extended trellis defined by extended states. These extended states are composed of
CRC states and TC states. The possible stuffing bits are managed by considering specific conditional
transitions in the extended trellis. Note that this approach has recently resulted in the submission of
two patents [9, 10].

One next considers the case where the phase shift generated by the channel is unknown by
the receiver, and has to be estimated. Phase recovery is a very challenging problem for AIS
signals: indeed, the modulation index is subjected to large fluctuations from an AIS equipment
to another, due to the electronic of the transmitter, while residual frequency offset and phase noise
effects appears to be second order problems. The AIS system is an already operational system,
for which non coherent demodulators can be applied, keeping large margins with respect to the
link budgets between vessels: in that case, fluctuations of the modulation index is not a major
issue. However, considering satellite receptions, where the objective consists of optimizing the
received Eb/N0 using a coherent demodulator, specific methods have to be developed in order
to handle the modulation index fluctuations. The approach investigated in this article is based on
a Per-Survivor Processing technique [11]. Since the computational complexity must be controlled
(because of the large considered trellis [12]), a simple phase estimation is performed, which does
not require integration. Hence, the demodulator previously developed, based on the extended trellis
and the conditional transitions, is generalized to incorporate the phase recovery procedure. The
resulting algorithm, which jointly estimates the phase and demodulates the data, is then compared
with an alternative approach using a non data aided (NDA) phase recovery algorithm followed by
the demodulation/decoding of [12].

One next studies a multi-user transmission, by considering first perfect phase recovery. In
that case, the first mono-user algorithm could theoretically be generalized, by developing an
extended trellis involving all extended states of all users. However, this approach would result in
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an exponential increase of the computation complexity, with respect to the mono-user method.
Therefore, this generalization is not practically tractable. Instead, the proposed multi-user technique
consists of a preliminary step, whose objective is to reduce the multi-user interference. The mono-
user algorithm is then applied to the signal obtained after this interference mitigation. Hence, the
multi-user signal, after interference reduction, is processed as a mono-user signal, which barely
increases the computation complexity with respect to the mono-user scenario. Note that parts of
this study have been considered in [12] and [13] for the mono-user scenario with perfect phase
recovery, in [14] for the mono-user scenario with joint phase estimation, and in [15] for the multi-
user scenario. The present article proposes a more detailed presentation of the different algorithms,
deeper result analysis and discussions, along with extended simulation results.

The article is organized as follows. Section 2 recalls some important CRC properties useful for the
proposed algorithm, presents the bit stuffing mechanism, as well as the general signal model. Section
3 focuses on the mono-user scenario with perfect phase recovery, for which the specific Viterbi
algorithm, based on an extended trellis and conditional transitions, is developed. Section 4 addresses
the phase estimation problem, and presents the joint phase estimation/demodulation algorithm. The
case of multi-user transmission is considered in section 5, which presents the interference reduction
method and the generalization of the mono-user receiver. It also deals with the case of an unknown
phase shift for the user of interest, by applying the previous phase estimation. The proposed
algorithms are exemplified in section 6, where some simulation results obtained from a realistic
AIS simulator (developed by the CNES of Toulouse, France) are reported. The methods developed
for the mono-user and the multi-user scenarios are compared with other techniques proposed in the
literature. Discussions and conclusion are reported in section 7.

2. TRANSMITTER DESIGN AND CHANNEL MODEL

This paper considers the cases of mono and multi-user transmissions. For both cases, the AIS
transmission scheme of a single user is illustrated in Fig. 1. A CRC is computed from the 168
information bits and is concatenated to these bits, yielding a binary sequence on which the bit
stuffing mechanism is applied. The resulting bit sequence is then encoded in NRZI (no-return to
zero inverted), and modulated in GMSK. The CRC principles and the bit stuffing procedure are
described in what follows.

 
CRC Bit Stuffing NRZI GMSK Data bits s(t) 

Figure 1. Example of transmitter model used for simulations for each user.

2.1. Cyclic Redundancy Check properties

The CRC is defined as the remainder of the division (modulo 2) of the polynomial formed by the
data and a standardized so-called generator polynomial, whose degree equals the length of the CRC
plus one. In some cases, some zeros may be inserted before the remainder in order to obtain a fixed-
length CRC. At the receiver side, the errors are detected by comparing the CRC computed from
the received data with the CRC contained in the data frame. A key CRC property for all algorithms
proposed in this article is that the CRC can be computed iteratively, by initializing the CRC to
a standard value and by applying the operations to each data bit, as exemplified in Fig. 2. This
property allows us to design a specific trellis, which constitutes the basis of the proposed correction
methods, as explained in section 3.2.

Moreover, one defines a joint CRC, computed on the bit sequence composed of the information
bits and the derived CRC. The definition of this joint CRC is possible since, in the AIS system, the
CRC is included juste after the information bits on which it is computed. Given this definition, no
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13 14 15 16 9 10 11 12 

5 6 7 8 

Data bit 

Figure 2. Example of iterative CRC computation with the generator polynomial G(x) = x16 + x12 + x5 +
1. ⊕ represent XOR and are placed according to the generator polynomial. The numbered boxes contain the

derived CRC bits.

error is detected at the receiver side when the joint CRC is zero, which can be expressed as

CRC([Data,CRC(Data)]) = 0 (1)

which is obviously equivalent to compare the CRC computed from the data with the one contained
in the data. The expression (1) is also helpful for the proposed detection methods.

2.2. Bit stuffing

In the AIS system, non-informative bits referred to as stuffing bits are potentially added to the
bit sequence after the CRC computation, as illustrated in Fig. 3. A first objective is to create
additional transitions in the signal by limiting the number of consecutive identical bits, which is
useful to re-synchronize the receiver clock. Another objective of the bit stuffing is to avoid specific
code words. Note that this particular procedure occurs in various applications (AIS, HDLC data
transmission protocol) where the bit stuffing avoids that a data sequence is considered as the end
frame flag byte (composed of two bits 0 on each side of six consecutive bits 1). Since the stuffing
bits depend on the information sequence, their presence and their location are random, which creates
a supplementary issue at the receiver side: indeed, the demodulation algorithm must detect and
localize the stuffing bits in order to recover the information sequence. This issue constitutes one of
the problems addressed in this study. Since the stuffing bits are always 0 for AIS, this article focuses
on the case where only bits 0 are inserted.

 

 

0 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 

0 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 

Add bit stuffing 

5 consecutive ones 

Figure 3. Principle of bit stuffing in AIS: a bit 0 is inserted after each sequence of five consecutive bits 1.

2.3. Gaussian minimum shift keying modulation

The bit sequence obtained after the bit stuffing procedure is encoded using the NRZI coding. The
resulting sequence is modulated with GMSK modulation. In the GMSK modulation, the transmitted
signal s(t) is a constant-modulus signal defined by

s(t) = e−jϕ(t;B)

where the phase ϕ(t; B) contains the information symbols

ϕ(t; B) = 2πh

n∑
k=−∞

bkq(t− kT ), nT 6 t 6 (n+ 1)T. (2)

In (2), T is the symbol period, B = {bk} is the bit sequence, h is the modulation index (equal to 0.5
for the AIS system), and q(t) is the waveform defined by

q(t) =

∫ t

0

g(τ)dτ. (3)
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For GMSK signals, the pulse g(t) is defined by

g(t) = Q

[
2πW√

ln 2

(
t− T

2

)]
−Q

[
2πW√

ln 2

(
t+

T

2

)]
,

where W is the 3 dB cut-off bandwidth, and Q(x) = 1√
2π

∫ x
−∞ e−t

2/2dt is the complementary
Gaussian cumulative distribution function. The pulse g(t) is generally truncated in the interval
[−LT ;LT ] where L is typically equal to 3 in AIS.

2.4. Received signal model

Denote as Nu the number of users, and sj(t) the signal generated by the jth user at the output of the
encoding-plus-modulation block, as depicted in Fig. 1. One considers in this paper frequency-flat
channels. Therefore, the multi-user received signal can be expressed as

r(t) =

Nu∑
j=1

ajsj(t− τj)e−i(2πfjt+φj) + n(t) (4)

where τj is the delay, fj is the Doppler shift, φj is the phase shift, and aj is the (real positive
value) channel gain corresponding to user #j. Moreover, n(t) is a white additive Gaussian noise,
independent of the transmitted signals.

We assume in the first part of this paper that for a given user of interest (denoted by the subscript
u), parameters τu, fu, au and φu are known at the receiver side. The case of an unknown possibly
varying phase shift φu will be addressed later in Section 4. The other parameters could for instance
be estimated by correlation-based techniques using the headers as pilot symbols. Of course, since
the length of the known header (24 bits for the training sequence and 8 bits for the start flag) is quite
limited, this estimation method requires the power of the received AIS signal to be sufficient. For the
estimation of τu, a solution was investigated in [2], where the receiver is applied to all the samples
of the AIS message. However, this technique requires to have a receiver with small computational
complexity. An alternative is to use several reception antennas and beamforming techniques, at the
price of a more complex hardware receiver [16]. However, these estimation issues are beyond the
scope of this paper which mainly focuses on the error correction strategy. Note that, in the multi-user
scenario, the delays, Doppler shifts, and phase shifts of the users different from the user of interest,
need not to be known. After compensating for parameters, the received signal r(t) can be re-written

ru(t) = su(t) +
∑
j 6=u

Ajsj(t− Tj)e−i(2πFjt+Φj) + nu(t), (5)

where Aj =
aj
au

, Tj = τj − τu, Fj = fj − fu and Φj = φj − φu. The objective is to recover the
information data contained in the signal of interest su(t) from the received signal ru(t). To that end,
we propose CRC-based detection methods which jointly detect and remove the stuffing bits, and
detects the information bits.

3. THE MONO-USER SCENARIO

The mono-user scenario assumes that there is only one transmitted signal, i.e., the multi-user
interference term (the second term at the right-hand side of (5)) vanishes. Therefore, for sake of
clarity, the subscript u in (5) can be omitted.

3.1. General principle

The received analog signal (4) is first passed through a matched filter (MF) and sampled at the
output of the MF with one sample per symbol. Denote rk as the sample obtained for the kth symbol
period and K as the number of received symbols. The standard Viterbi algorithm determines the
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symbol sequence m1, . . . ,mK which minimizes the square Euclidean distance defined by

K∑
k=1

|rk −mk|2 (6)

where mk is the kth estimated symbol obtained after the MF. Given the particular structure of
the transmitted signal, the detection method proposed here consists of minimizing the distance (6)
subjected to the two following constraints:

(C1) the joint CRC must satisfy the condition (1).

(C2) the number of consecutive bits 1 is upper bounded by a maximum value denoted as P ,
specified by the application standard ∗; this constraint allows bit stuffing to be taken into
account.

In order to manage this constrained optimization problem, the proposed detection algorithm is based
on a so-called extended trellis, whose states (called extended states) are composed of a CRC state
and a TC state. In this extended trellis, all paths ending with a final state give a message whose
joint CRC is zero, (hence, paths corresponding to a non zero CRC do not appear in the trellis).
Therefore, one ensures that constrained (C1) is satisfied. On the other hand, constraint (C2) is
managed by defining specific transitions in the extended trellis. The design of the extended trellis
with its transitions is detailed in the next sections. In what follows, the term CRC will always refer
to the joint CRC, defined in section 2.1.

3.2. Extended trellis

As mentioned in section 2.1, the CRC can be computed iteratively. Hence, it can be initialized to
a particular value, depending on the considered CRC standard, and updated for each received bit.
Therefore, a CRC state corresponds to a particular intermediate CRC value. Two consecutive CRC
states are connected if the second state can be constructed from the first state by including one bit 0
or one bit 1, as shown in (7).

The proposed algorithm associates a CRC state with a TC state (a state of the trellis code). This
association constitutes a so-called extended state. The extended trellis is the trellis composed of
theses extended states. For instance, if a TC state α is followed by a TC state β (resp. TC state γ)
when the bit 0 (resp. the bit 1) is transmitted, and a CRC state A is followed by the CRC state B
(resp. C) when the bit 0 (resp. the bit 1) is transmitted, then the extended state (A;α) is followed in
the extended trellis by the extended state (B;β) in the transmission of the bit 0 (resp. the extended
state (C; γ) in the transmission of the bit 1). This operation is illustrated in (7), where the integer k
refers to as the number of the received symbol.

CRC state TC state Extended state
k k + 1

A
0−→ B

A
1−→ C

&

k k + 1

α
0−→ β

α
1−→ γ

⇒
k k + 1

(A;α)
0−→ (B;β)

(A;α)
1−→ (C; γ)

(7)

One proposes to apply the Viterbi algorithm to this extended trellis. To that end, one defines,
for the received symbol k, the variable Γ[k, (A;α)] as the squared Euclidean distance between the
received signal and the sequence of k symbols yielding the extended state (A;α) at time k, i.e.,

Γ[k, (A;α)] =

k∑
i=1

∣∣∣ri −mk,(A;α)
i

∣∣∣2 (8)

where
[
m
k,(A;α)
1 , . . . ,m

k,(A;α)
k

]
denotes the symbol sequence yielding (A;α) at time k. Moreover,

one denotes by Γtrans[k, (A;α), b] the transition variable defined as the sum of Γ[k, (A;α)] and

∗Recall that one considers here that the stuffing bits are bits 0.
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the squared distance between the received symbol at time k + 1 and the symbol coming from the
extended state (A;α) containing the bit b, denoted by mk+1,(A;α),b

k , i.e.,

Γtrans[k, (A;α), b] = Γ[k, (A;α)] + ∆[k, (A;α), b], (9)

with
∆[k, (A;α), b] =

∣∣∣rk −mk+1,(A;α),b
k

∣∣∣2 . (10)

The transition variables Γtrans[k, (A;α), b] are used to choose the best transition yielding a given
state, among the different possible transitions leading to this state. More precisely, the selected
transition will minimize Γtrans[k, (A;α), b], as detailed in section 3.5 and in appendix A.
After introducing the principles of the extended trellis, we focus on the detection of stuffing bits, as
presented below.

3.3. Bit stuffing

The extended trellis presented above allows the CRC to be used as an error correction tool. However,
it cannot account for the possible presence of stuffing bits. Thus, we propose to complete the
extended trellis by introducing specific transitions, which are only used when a stuffing bit is
received. The principle of these specific transitions consists of generating a change in the TC state
when a stuffing bit has been detected, while keeping unchanged the CRC state. Indeed, since the
CRC is computed at the transmitter side before the bit stuffing procedure, the stuffing bits should
not modify the CRC state. The different possible transitions in the extended trellis are illustrated
in (11): at a given time k, where one considers the extended state (A;α), one can receive either a
non-stuffing bit 0 or 1, or a stuffing bit (SB) 0 (recall that stuffing bits equal 0).

CRC state TC state Extended state
k k + 1

A
0−→ B

A
1−→ C

A
SB−→ A

&

k k + 1

α
0−→ β

α
1−→ γ

α
SB−→ β

⇒

k k + 1

(A;α)
0−→ (B;β)

(A;α)
1−→ (C; γ)

(A;α)
SB−→ (A;β)

(11)

Of course, the receiver has to detect whether a received bit is a stuffing bit or not. The detection of
stuffing bits requires to define, for each state (A;α), a state variable P [k, (A;α)], which represents
the number of consecutive bits 1 received before reaching the state (A;α) at time k. To respect
constraint (C2), the received bit will be declared as a stuffing bit if P [k, (A;α)] reaches a given
maximum value P specified by the application standard (P = 5 for AIS, corresponding to the
zero-bit insertion illustrated in Fig. 3). In that case, one performs the transition (A;α) SB−→ (A;β).
After this transition, P [k + 1, (A;β)] is reset to 0, since the received bit has been detected as a
stuffing bit (equal to 0). This procedure is exemplified in (12), where 6−→ is an impossible transition
corresponding to the fact that an information bit cannot be a stuffing bit, and vice-versa. These
impossible transitions are considered in the algorithm by simply assigning them an infinite distance.

Information bit Stuffing bit
k k + 1

(A;α)
P=3

0−→ (B;β)
P=0

(A;α)
P=3

1−→ (C; γ)
P=4

(A;α)
P=3

6SB−→ (A;β)

k k + 1

(A;α)
P=5

60−→ (B;β)

(A;α)
P=5

61−→ (C; γ)

(A;α)
P=5

SB−→ (A;β)
P=0

(12)

In addition to the variable P [k + 1, (A;β)], one also defines for each state (A;α) the variable
S[k, (A;α)] as the number of stuffing bits received before reaching the state. This variable allows
one to know the number of informative bits in the received frame. Similarly to the definitions
of Γtrans[k, (A;α), b] and Γ[k, (A;α)], one defines the transition variables Ptrans[k, (A;α), b] and
Strans[k, (A;α), b] representing the evolutions of P [k, (A;α)] and S[k, (A;α)] when the bit b has
been received (note that b can take the values 0, 1 or SB).
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3.4. Final state decision

Once the extended trellis has been defined, the optimal path in this trellis has to be determined.
To this purpose, the final state of the trellis has to be defined. According to (1) the final CRC
state must be 0. However, the final TC state (denoted by σfTC) and the number of actual received
symbols K in the message are unknown because of the possible presence of stuffing bits. In order
to estimate these parameters, we propose to find the estimates σ̂fTC and K̂ minimizing the global
distance Γ[K, (0;σfTC)]. This optimization problem has to be constrained in order to ensure that the
number of information bits and stuffing bits satisfy the system specifications. Denote as Nmin and
Nmax the minimum and maximum numbers of information bits including the CRC, and Smin, Smax

the minimum and maximum numbers of stuffing bits (note that Nmin = Nmax = 184, Smin = 0 and
Smax = 4 for AIS). Since S[K, (0;σfTC)] is the total number of received stuffing bits, one must have:
Smin ≤ S[K, (0;σfTC)] ≤ Smax. Moreover, since K belongs to the set {Nmin + Smin, . . . , Nmax +
Smax}, one has

Nmin + S[K, (0;σfTC)] ≤ K ≤ S[K, (0;σfTC)] +Nmax. (13)

Finally, the proposed constrained minimization problem is defined as(
K̂, σ̂fTC

)
= arg min

K,σfTC

Γ[K, (0;σfTC)] (14)

subject to the constraints

Smin ≤ S[K, (0;σfTC)] ≤ Smax

Nmin ≤ K − S[K, (0;σfTC)] ≤ Nmax.
(15)

3.5. Detection algorithm

This section summarizes the different steps of the proposed algorithm (see appendix A for more
details).

• Initialization (see A-1): Denote as (A0;α0) the initial state of the trellis. A0 is initialized
according to the standard of the considered application. For instance, since AIS uses a CRC-
16, A0 is initialized to 216 − 1. When α0 is unknown, all values of the distances Γ[0, (A0;α0)]
are set to 0. When α0 = α∗0 is known, one simply sets Γ[0, (A0;α∗0)] = 0.

• Computation of transition variables (see A-2): When a P state variable equals P , the
next transition can only be an SB transition. In order to avoid impossible transitions,
Γtrans[k, (A;α), b] is set to∞ for b = 0 and b = 1 where k is the current symbol number and
(A;α) is the considered state. Moreover, Γtrans[k, (A;α),SB ] is set to Γ[k, (A;α)] plus the
distance between the current received symbol and the symbol carrying an SB. Conversely,
when the P state variable does not equal P , Γtrans[k, (A;α), b] is defined as in the classical
Viterbi algorithm for b ∈ {0, 1} and is set to∞ for b = SB. Moreover, Ptrans[k, (A;α), b] is set
to 0 for b ∈ {0,SB}, and is set to P [k, (A;α)] + 1 for b = 1. Finally, Strans[k, (A;α), b] is set
to S[k, (A;α)] for b ∈ {0, 1}, and to S[k, (A;α)] + 1 for b = SB.

• Computation of state variables (see A-3): The selected transition leading to a given state is
the one with minimal Γtrans among those who can precede this state. Let R[k, (A;α)] denote
as the last received bit leading to the state (A;α). The state variables Γ, P and S are set to
the values of the variables Γtrans, Ptrans and Strans of the selected transition whereas the state
variable R is set to the bit carried by the selected transition.

• Path reading (see A-4): The resulting sequence is read by following the path through the
trellis starting from the final state. The previous states are selected by reading the last received
bit in the state variable R of each state.

3.6. Transmission error detection

By construction, the messages decoded by the proposed algorithm have systematically a correct
CRC. Thus the CRC can no longer be used for the detection of transmission errors and other
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detection methods need to be investigated for AIS signals. Possible solutions consist of checking
data consistency and the following constraints related to the AIS system

• The identifier of the ship in the message must be an existing identifier.
• The spare field of the message must be 0.
• The speed of the ship must be in the correct range.
• The estimated position must be consistent with the position of the receiver in the sense that

the transmitter has to be located at a reachable distance from the receiver.

3.7. Complexity

The number of states associated with the proposed extended trellis equals the product between the
number of states of the TC trellis (i.e., 4 for the AIS system) and the number of states of the CRC
trellis (i.e., 216). The total number of states per symbol is therefore 218 = 262 144. The extended
trellis has 3 transitions departing from each extended state yielding 786 432 transitions per symbol.
The extended trellis must be constructed for the 188 symbols of the AIS message. Thus, the total
numbers of extended states and transitions are 49 283 072 and 147 849 216, respectively. Even if
these numbers are quite large, the decoding of an AIS message requires about 1 second per message
for our simulator programmed in C with a 2.6-GHz processor. It is interesting to note here that the
average computation time could be reduced by applying the proposed error correction method only
when the CRC of the AIS message resulting from the conventional receiver differs from 0.

4. PHASE TRACKING

The algorithm presented in section 3 has assumed that there was no phase shift φu(t) for the user of
interest, or, equivalently, that φu(t) was known and could be compensated. This section considers
a scenario where this phase shift is unknown, and can possibly vary from one symbol to another.
This approach can also be applied when the modulation index h is significantly different from its
nominal value h = 0.5 defined in the AIS standard. Indeed, the actual modulation index can present
important variations (typically a variation of ±15% can be observed) with respect to its standard
value. In that case, a non data aided (NDA) estimation of the modulation index at the receiver seems
quite unrealistic on a very short burst with low Eb/N0. A rough data aided (DA) estimation is
possible using the known preamble of AIS signals (32 bits), but it provides inaccurate estimation.
Consequently, it appears pragmatic for the receiver design to model the effect of an inaccurate
modulation index as a simple random phase fluctuation. In this case, equation (4) can be rewritten
in the mono-user case as †

r(t) = ejφ(t)s(t) + n(t). (16)

The proposed detection algorithm consists of including the unknown phase shift φ(t) in the
distances defined in eq.’s (8)–(10), which are minimized jointly with respect to the phase φ(t) and the
symbols yielding to the extended state. It is assumed that the phase shift is constant during a period
symbol. Hence, only one phase value has to be estimated during this window. More precisely, we
propose to minimize the cost function

K∑
k=1

∣∣e−jφkrk −mk

∣∣2 (17)

where φk denotes the phase shift for the kth period symbol. In order to adapt the detection algorithm
to the phase tracking problem, one redefines the squared distance (8) as follows

Γ[k, (A;α)] =

k∑
i=1

∣∣∣e−jφk,(A;α)
i ri −mk,(A;α)

i

∣∣∣2 (18)

†Similarly to section 3, the subscript u is omitted here for notation simplicity.
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where
(
φ
k,(A;α)
1 , . . . , φ

k,(A;α)
k

)
and

(
m
k,(A;α)
1 , . . . ,m

k,(A;α)
k

)
denote the sequences of estimated

phase shifts and symbols in the path reaching the state (A;α) at the kth symbol period. Moreover,
one must also redefine the transition variable Γtrans[k, (A;α), b] given in (9). To that end, the
increment ∆[k, (A;α), b] defined in (10) has to be modified in order to take into account the phase
tracking, i.e., one chooses the minimal increment with respect to the unknown phase shift. More
precisely, we define the function

∆[k, (A;α), b, φ] =
∣∣∣e−jφrk −mk+1,(A;α),b

k

∣∣∣2 (19)

which differs from (10) through the introduction of the unknown variable φ. The increment
∆[k, (A;α), b] which transforms Γ[k, (A;α), b] into Γtrans[k, (A;α), b] in (9) has to be replaced by
the minimum increment ∆[k, (A;α), b, φ] with respect to φ, which gives

∆min[k, (A;α), b] = min
φ∈I(A;α)

k

∆[k, (A;α), b, φ] (20)

and
Γtrans[k, (A;α), b] = Γ[k, (A;α)] + ∆min[k, (A;α), b]. (21)

In (20), the minimization is achieved on the set I(A;α)
k defined by

I(A;α)
k =

[
φ
k,(A;α)
k −∆φ;φ

k,(A;α)
k + ∆φ

]
(22)

for some positive real-value ∆φ. This means that the optimal φ at time k + 1 coming from the state
(A;α) is searched in a window of length 2∆φ centered around the phase φk,(A;α)

k , which represents
the current estimated phase shift in the path reaching this state at time k. The minimization problem
(20) leads to a simple analytic solution, which is specified in appendix B.

One denotes by φ
k,(A;α),b
trans the value of the phase which minimizes (20). Similarly to

Γtrans[k, (A;α), b], the transition phase φ
k,(A;α),b
trans is used when the algorithm has to choose a

transition toward the state (B;β). Indeed, the selected phase φk,(A;α),b
trans , among the different states

(A;α) which lead to (B;β) at time k + 1, is the one corresponding to the selected Γtrans[k, (A;α), b].
This selected value of φk,(A;α),b

trans becomes then the new phase φk+1,(B;β)
k+1 at time k + 1 in the state

(B;β).
Note that the analytic solution of problem (20) given in appendix B is quite simple. However,

the algorithm can be speed up by discretizing the phase estimation problem. This means that
one estimates the phase in the finite set {0, δφ, 2δφ, . . . , 2π − δφ}, instead of estimating it in the
continuous set [0; 2π]. The quantizing step is then defined by δφ = 2π/Nφ, where Nφ is the number
of possible phase values, which tunes the accuracy of the estimation. The research set I(A;α)

k in (22)
has then to be replaced by the finite set Ĩ(A;α)

k defined by

Ĩ(A;α)
k =

{
φ
k,(A;α)
k − nφδφ, . . . , φk,(A;α)

k + nφδφ

}
(23)

where nφ is the integer part of ∆φ/δφ. Note that φk,(A;α)
k appearing in (23) is obtained at the previous

iteration in a similar way and is itself a multiple of δφ. Similarly, ∆min[k, (A;α), b] is defined by

∆min[k, (A;α), b] = min
φ∈Ĩ(A;α)

k

∆[k, (A;α), b, φ] (24)

and φ
k,(A;α),b
trans denotes the value of the phase which minimizes (24). This discrete minimization

simply reduces to find the minimum value among the 2nφ + 1 values of ∆[k, (A;α), b, φ], which
significantly speeds up the computation of ∆min[k, (A;α), b] (nφ is generally small, for instance
equal to 10 in the simulations presented in section 6). Moreover, while the number of states is
important, the minimization problem (24) does not need to be computed for each state at a given
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time k. Indeed, there is only a small number, say Nsymb, of possible symbols mk+1,(A;α),b
k : this

means that there are NsymbNφ possible values of ∆[k, (A;α), b, φ] for all states b and φ. Thus, for
a given time instant k, these NsymbNφ values, their minima in the Nφ possible sets Ĩ(A;α)

k and the
arguments of these minimas, can be computed once and for all and saved into tables. Hence, for a
given state (A;α) and a given b, ∆min[k, (A;α), b] and φk,(A;α),b

trans are simply obtained by selecting
appropriate values in these tables.

As for the problem addressed in section 3, the transition variables of the form Γtrans[k, (A;α), b]
are used to choose the optimal transition which leads to a given state, i.e., the transition minimizing
Γtrans[k, (A;α), b].

Note that the bit stuffing detection method is not modified by this phase estimation. Hence, the
demodulation algorithm is identical to the one presented in section 3.5, where the transition variable
Γtrans[k, (A;α), b] is now defined by (21).

5. THE MULTI-USER SCENARIO

This section studies the case where the received signal is a multi-user signal, from which the data
transmitted by a single user of interest have to be estimated. In a first part, the adaptation of the
mono-user detection algorithm to this new context is studied, still assuming that there is no phase
shift. This generalization is achieved by performing a reduction of the multi-user interference. Next,
one studies a scenario where there is a possible varying phase shift.

Consider the multi-user signal model defined in (5). The method presented for the mono-user
scenario might be directly generalized to the multi-user problem. Indeed, one might define a multi-
user extended trellis, whose extended states are composed of the CRC states and the TC states of all
users. However, this strategy, which is theoretically optimal, would face two major difficulties: first,
it would require the knowledge of the parameters (delays, gains, Doppler and phase shifts) of all
users, even if one is interested to recover the data of one single user. On the other hand, the size of
this extended trellis would increase exponentially with respect to the number of users, which would
make the detection algorithm untractable.

Therefore, we propose a sub-optimal approach, which first applies a reduction of the multi-user
interference, and then applies a modified version of the mono-user algorithm to the signal resulting
from this interference reduction. One first define a method adapted to the case where only one
single interferer is present. This method is next adapted to the multi-interferer case by developing
an empirical approach inspired by the one presented in [17]. The approach presented here assumes
first that the parameters (delay, gain, Doppler and phase shifts) of the user of interest are known by
the receiver, along with the gains of the other users, while the delays, Doppler and phase shifts of
the other users are unknown. The case of an unknown phase shift for the user of interest is finally
investigated.

5.1. Single interferer

In order to simplify the presentation, we first consider a single interferer. The received signal (5)
can be expressed as

ru(t) = su(t) +AIsI(t− TI)e−i(2πFIt+ΦI) + nu(t) (25)

where the subscript I stands for the interferer. Neglecting the additive noise, and using the fact that
the GMSK modulation is a constant modulus modulation, we obtain

|ru(t)− su(t)| ≈ |AIsI(t− TI)e−i(2πFIt+ΦI)| = AI ,∀t. (26)

Therefore, one proposes a least-squares approach, which consists of minimizing the energy of the
difference |ru(t)− su(t)| −AI . More precisely, a new cost function replacing (6) is defined as
follows

K∑
k=1

||ru,k −mu,k| −AI |2 (27)
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where ru,k andmu,k denote the sample obtained from ru(t) in the kth symbol period, and the sample
obtained from the kth estimated symbol of the user of interest. With this new definition of the cost
function, the detection algorithm presented in section 3 can be used after transforming the transition
variable (8) into

Γ[k, (A;α)] =

k∑
i=1

∣∣∣|ri −mk,(A;α)
i | −AI

∣∣∣2 (28)

and

∆[k, (A;α), b] =
∣∣∣|rk −mk+1,(A;α),b

k | −AI
∣∣∣2 . (29)

5.2. Multiple interferers

When several interferers are present in the received signal, the property (26) does not hold anymore.
However, this property allows an empirical approach to be defined, similar to the one proposed
in [17]. More precisely, we propose to remove in the cost function used in the Viterbi algorithm
the average multi-user interference power of interfering signals, denoted as ē2

u, from the difference
between symbols and the received signal. In this paper, one suggests to define a cost function slightly
different from the one proposed in [17], based on the least-squares criterion given in (27). More
precisely, this function is given by

K∑
k=1

∣∣∣|ru,k −mu,k| −
√
ē2
u

∣∣∣2 (30)

where ē2
u is the average power of interfering signals defined by

ē2
u =

∑
j 6=u

A2
j =

1

a2
u

∑
j 6=u

a2
j . (31)

It can be observed that the cost function (30) actually reduces to (27) for a single interferer, and
to (6) in the mono-user scenario defined by zero gains Aj . Note that the consistency of the cost
function for the different scenarios does not hold for the cost function proposed in [17].

With these definitions, the detection algorithm for the user of interest can be obtained from the
mono-user detection algorithm developed in section 3, by appropriately modifying the definition of
the transition variable Γ[k, (A;α)] in view of the cost function (30), which leads to

Γ[k, (A;α)] =

k∑
i=1

∣∣∣|ri −mk,(A;α)
i | −

√
ē2
u

∣∣∣2 (32)

and

∆[k, (A;α), b] =
∣∣∣|rk −mk+1,(A;α),b

k | −
√
ē2
u

∣∣∣2 . (33)

The different steps of the multi-user detection algorithm are then identical to those of the mono-
user scenario, presented in section 3.5. Note that, concerning complexity considerations, the
computational cost of the mono-user and multi-user algorithms are similar: the slight increase in the
multi-user algorithm complexity is only due to the introduction of the average power ē2

u (which is
computed at the initialization of the algorithm) into the squared distances (32) and (33). In particular,
this increase does not depend on the number of users, which constitutes a key advantage of this
approach.

5.3. Phase tracking

The detection algorithm proposed above is designed for a known phase shift for the user of interest.
If this phase shift is unknown, the detection can be simply modified by using the procedure described
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in section 4, i.e., by incorporating a phase term in the cost function (30), leading to

k∑
i=1

∣∣∣|e−jφkri(l)−mk,(A;α)
i | −

√
ē2
u

∣∣∣2 . (34)

This procedure requires to define a minimum increment ∆min[k, (A;α), b] and a transition variable
Γtrans[k, (A;α), b] similar to (20)-(21), where the function ∆[k, (A;α), b, φ] is defined by

∆[k, (A;α), b, φ] =
∣∣∣|e−jφrk −mk+1,(A;α),b

k | −
√
ē2
u

∣∣∣2 . (35)

Simple computations show that the minimum of ∆[k, (A;α), b, φ] with respect to φ cannot be
obtained in closed form as for the mono-user case. Thus this minimum ∆min[k, (A;α), b] can only be
obtained by using a numerical minimization algorithm. For complexity reasons, it is impossible to
perform a numerical minimization for each state of the extended trellis. Therefore, one proposes to
use the discrete minimization procedure detailed in section 4. Hence, the computationally expensive
exact minimization of (35) simply amounts to selecting the minimizer in a table determined once
and for all at the beginning of the algorithm. The computational cost of the resulting detection
algorithm in the multi-user case with phase tracking is then slightly increased when compared to
the mono-user case with perfect phase recovery.

6. SIMULATIONS

This section presents some simulation results associated with the different scenarios considered
in this paper (mono/multi-user, with/without phase tracking). The different detection algorithms
are evaluated in the context of the AIS system, whose transmitter characteristics are recalled for
consistency. Each user sends fixed length data messages composed of 168 bits concatenated with a
16-bit CRC. The stuffing bits are then inserted according to the AIS recommendation, i.e., a bit 0 is
inserted after each sequence of five consecutive bits 1. The resulting sequence is next encoded with
NRZI, and then modulated using the GMSK scheme with parameters WT = 0.4 and LT = 3 (note
that these parameters are known by the receiver). In this system model, NRZI coding and GMSK
modulation constitute the TC defined before. The generator polynomial for CRC computation is
G(x) = x16 + x12 + x5 + 1 (specified by the AIS recommendation).

6.1. Mono-user scenario with known phase shift

A mono-user transmission is first considered with an additive white Gaussian noise (AWGN)
channel with known phase shift. The algorithm detailed in Section 3.5 and Appendix A has been
evaluated for the AIS system. Note that the proposed method cannot be compared with the methods
[4]–[8] mentioned in the introduction since they do not take into account the presence of bit stuffing.
Therefore, our receiver is compared to a conventional coherent GMSK demodulator based on the
Viterbi algorithm, for which the bit stuffing mechanism is simply managed as follows: any bit
following a sequence of five bits 1 is deleted to remove the stuffing bit.

Fig. 4 shows the BER curves for these two methods as a function of the signal to noise ratio
ES/N0. The proposed receiver clearly outperforms the conventional GMSK receiver. An important
performance criterion in AIS is also the PER. Fig. 5 presents the corresponding PER curves versus
ES/N0. One can notice in this figure that the improvement provided by the proposed method is even
more significant, since a gain of more than 3.5 dB can be observed for a target PER of 0.1. Note that
this gain increases when the target PER decreases.

6.2. Mono-user scenario with phase tracking

Figure 6 shows some simulation results obtained with the algorithm presented in section 4, with
the AIS system characteristics described previously. The performance of the algorithm presented
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Figure 4. Proposed receiver compared with the conventional GMSK receiver in Bit Error Rate.
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Figure 5. Proposed receiver compared with the conventional GMSK receiver in Packet Error Rate.

in section 3 for known modulation index (denoted h) and phase shift provide a reference to which
suboptimal detectors can be compared. The performance of the NDA algorithm is also reported for
comparison. In order to simulate an incorrect modulation index in the transmitter, the simulations
have been conducted with an actual modulation index h = 0.45, whereas the AIS recommendation
specifies h = 0.5. The proposed algorithm considered the following two cases:

1. h is estimated using the AIS preamble and the parameter ∆φ defined in (22) – (23) is set to
4◦ which covers all possible values of phase shifts;

2. h is not estimated, and the detection algorithm uses the nominal value h = 0.5 given by the
AIS recommendation. ∆φ is then set to 10◦ (since h is not estimated, the values of phase
shifts can be larger than before).

One can note that, with and without estimation of h, the proposed receiver (with unknown h)
outperforms the NDA algorithm, with gains equal to 2.5 dB and 1 dB, respectively. One can
also observe a performance loss close to 0.5 dB and 2 dB when compared to the case where the
modulation index is known. To conclude, by using the proposed receiver, the detection performance
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is not severely degraded when the modulation index is estimated using the AIS preamble and the
phase is tracked using an appropriate least square criterion.
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Figure 6. Proposed receiver compared with the algorithm presented in section 3 when the modulation index
is known and the NDA algorithm in Packet Error Rate.

6.3. Multi-user scenario without phase shift

For a multi-user transmission without phase-shift, the receivers proposed in sections 5.1 and 5.2 are
compared with the method presented in [2], which uses a non-coherent GMSK demodulator and
an error correction mechanism based on the CRC presence. Fig. 7 shows the performance of the
proposed detector in terms of packet error rates (PER) with 4 interfering signals. Since the error
correction technique proposed in [2] is not adapted to bit stuffing, the PER curves presented in
Fig. 7 for this technique have been obtained without introducing bit stuffing, contrary to the PER
curves for the proposed receiver, where bit stuffing is actually present and is taken into account.
The proposed method provides a gain of at least 3 dB when the interference level is low and more
than 6 dB when the interference level is high. These results show that the proposed receiver is more
resistant to interferences than the receiver of [2] (in addition, the receiver allows bit stuffing to be
considered, contrary to the algorithm of [2]). This is due jointly to the interference mitigation and
to the efficiency of the proposed error correction strategy.

Fig. 8(a) shows the algorithm performance for different numbers of interfering signals, for a
carrier-to-interference ratio (C/I) fixed to 5 dB. The algorithm presented in section 5.1 is used for
the single interferer case whereas the algorithm of section 5.2 is used for multiple interferers. One
can see that, the more concentrated the interference power into one single signal, the better the
performance. This result can be explained as follows: when the interference is concentrated into
one single interfering user, the mean power ē2

u is close to the instantaneous interference power,
resulting in good interference reduction. Fig. 8(b) shows that the detector performs similarly for
one or multiple interferers for large C/I ratio (C/I = 7 dB). Indeed, with higher C/I, the interference
power becomes negligible, and thus the interference mitigation technique has minor effect.

6.4. Multi-user scenario with phase tracking

This section considers the case of a multi-user transmission where the phase shift for the user of
interest is unknown. Therefore, one resorts to the algorithm proposed in section 5.3. Figures 9(a)
and 9(b) present the PER obtained with 1 and 4 interferers, respectively. For these simulations, the
actual modulation index is h = 0.45, while the estimated modulation index is ĥ = 0.47. Moreover,
C/I is fixed to 7 dB, and the maximum phase shift ∆φ considered in the phase tracking procedure
is ∆φ = 6◦. For comparison, these figures show the PER obtained without phase shift. The PER
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Figure 7. Comparison in Packet Error Rate between the proposed receiver with 4 interfering signals and the
strategy introduced in [2] for different C/I ratios.
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Figure 8. Influence of the number of interfering signals on the receiver performance in PER with
C/I = 5 dB (a) and C/I = 7 dB (b).

obtained in the presence of phase shift using the NDA phase estimation is also displayed in the
different figures. Obviously, one can note a performance loss when the phase shift is unknown and
has to be estimated. This loss (multi-user case) is a bit higher than the one observed in Section 6.2
(mono-user case with phase tracking). However, it also clearly appears from this comparison that
the detection algorithm proposed in this paper significantly outperforms the NDA estimation-based
detection algorithm.

7. CONCLUSION

This paper proposed different CRC-based receivers for the demodulation of AIS signals for mono-
user and multi-user transmissions. These receivers were designed to handle known and unknown
phase shift. All receivers developed a particular Viterbi algorithm based on extended states,
composed of a CRC-state and a TC-state. The bit-stuffing procedure was managed by defining
specific conditional transitions in the extended trellis. The proposed receivers were simulated for
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Figure 9. PER of different receivers in the presence of 1 interferer (a) and 4 interferers (b).

realistic AIS scenarios, in particular for cases where the actual modulation index is different from
the value specified by the AIS recommendation. The proposed algorithms were compared with other
techniques proposed in the literature for the demodulation of AIS signals. The comparison showed
performance improvement for the proposed receivers in terms of packet error rates. A multi-user
strategy with a computational complexity close to the mono-user algorithm was finally investigated.
Further work will consider the estimation of the modulation index and its impact on the performance
results.
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A. MONO-USER ALGORITHM

This appendix provides more details about the detection algorithm presented in Section 3, for the
mono-user scenario with known phase shift. Note that the algorithms designed for phase tracking
and multi-user scenario can be seen as a generalization of this algorithm. As mentioned in Section
3.5, this algorithm is composed of 4 steps, described below.

In these algorithms, NS is the number of symbols, Distance(xk, Ss) is the cost function of the
Viterbi algorithm (actually the distance between the received symbol xk and the reference symbol
Ss), NextS(σTC, b) is the symbol following the TC-state σTC and carrying the bit b. NTC and NCRC
are the numbers of TC-states and CRC-states.

Algorithm 1 Initialization

Γ[0, (:; :)]←∞
Γ[0, (A;α)]← 0
P [0, (:; :)]← 0
S[0, (:; :)]← 0
R[0, (:; :)]← 0

Algorithm 2 Transition variable computation

for s = 1 to NS do
d[s]← Distance(xk, Ss)

end for
for σTC = 0 to NTC − 1 do

Γtrans[(:;σTC), 0]← d[NextS(σTC, 0)]
Γtrans[(:;σTC), 1]← d[NextS(σTC, 1)]

end for
Γtrans[(:; :), 0]← Γtrans[(:; :), 0] + Γ[k − 1, (:; :)]
Γtrans[(:; :), 1]← Γtrans[(:; :), 1] + Γ[k − 1, (:; :)]
Γtrans[(:; :),SB]←∞
Ptrans[(:; :), 0]← 0
Ptrans[(:; :), 1]← P [k − 1, (:; :)] + 1
Ptrans[(:; :),SB]← 0
Strans[(:; :)]← S[k − 1, (:; :)]
for σCRC = 0 to NCRC − 1 do

for σTC = 0 to NTC − 1 do
if P [k − 1, (σCRC;σTC)] = P then

Γtrans[(σCRC;σTC),SB]← Γtrans[(σCRC;σTC), 0]
Γtrans[(σCRC;σTC), 0]←∞
Γtrans[(σCRC;σTC), 1]←∞
Strans[(σCRC;σTC)]← Strans[(σCRC;σTC)] + 1

end if
end for

end for
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Algorithm 3 State variable computation

for σCRC = 0 to NCRC − 1 do
for σTC = 0 to NTC − 1 do
TσCRC(0)← PrevσCRC(σCRC, 0)
TσCRC(1)← PrevσCRC(σCRC, 1)
TσCRC(SB)← σCRC
TσTC(0)← PrevσTC(σTC, 0)
TσTC(1)← PrevσTC(σTC, 1)
TσTC(SB)← PrevσTC(σTC, 0)
bmin ← arg minb Γtrans[(TσCRC(b);TσTC(b)), b]
Γ[k, (σCRC;σTC)]← Γtrans[(TσCRC(bmin);TσTC(bmin)), bmin]
P [k, (σCRC;σTC)]← Ptrans[(TσCRC(bmin);TσTC(bmin)), bmin]
S[k, (σCRC;σTC)]← Strans[(TσCRC(bmin);TσTC(bmin))]
R[k, (σCRC;σTC)]← bmin

end for
end for

Algorithm 4 Path reading
σCRC ← 0
σTC ← σfTC
n← K − S[K, (0;σfTC)]
for k = K to 1 do
b← R[k, (σCRC;σTC)]
if b 6= SB then
σCRC ← PrevσCRC(σCRC, b)
σTC ← PrevσTC(σTC, b)
Un ← b
n← n− 1

else
σTC ← PrevσTC(σTC, 0)

end if
end for
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B. MINIMUM PHASE DERIVATION

Given the definition of ∆[k, (A;α), b, φ] in (19), it is straightforward to show that the minimization
problem (20) can be re-expressed as the following maximization problem

max
φ∈I(A;α)

k

<e
(
e−jφrkm

k+1,(A;α),b
k

)
. (36)

Denoting Mk and ψk as the modulus and the phase of rkm
k+1,(A;α),b
k , (36) reduces to

max
φ∈I(A;α)

k

Mk cos(φ− ψk). (37)

Denoting as

φkm = φ
k,(A;α)
k − ψk −∆φ

φkM = φ
k,(A;α)
k − ψk + ∆φ,

the analytic solution of (20) is defined as follows

• if 0 ∈ [φkm;φkM ] (modulo 2π),

∆min[k, (A;α), b] =
(
|rk|2 + |mk+1,(A;α),b

k |2
)
− 2Mk

φ
k,(A;α),b
trans = ψk

• if 0 /∈ [φkm;φkM ] (modulo 2π),

∆min[k, (A;α), t] =
(
|rk|2 + |mk+1,(A;α),b

k |2
)
− 2Mk max

(
cosφkm, cosφkM

)
φ
k,(A;α),b
trans = ψk + arg max

φ=(φkm,φ
k
M )

cosφ.
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