Échantillonnage Périodique Non Uniforme pour les Télécommunications par Satellite

Jean-Adrien Vernhes

Encadrants :

Marie Chabert, Bernard Lacaze, Marie-Laure Boucheret, Guy Lesthievent, Roland Baudin

Université de Toulouse

25 Janvier 2016

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Estimation de retard Conclusion

Plan

1 Introduction

- 2 L'échantillonnage PNS pour les Télécommunications
- **3** Reconstruction PNS2 améliorée
- 4 Estimation de retard en PNS2

5 Conclusion

Jean-Adrien Vernhes INP-ENSEEIHT/IRIT – TéSA – CNES – TAS Échantillonnage Périodique Non Uniforme pour les Télécommunications par Satellite 2/60

Section 1

Introduction

Introduction	PNS pour les Télécoms	Reconstruction améliorée	Estimation de retard	Conclusion
00000	00000000000	000000000000	0000000000000000000000	00000
D1				

Plan

1 Introduction

- Contexte des Télécommunications par Satellite
- Formulation du problème
- Approche proposée

2 L'échantillonnage PNS pour les Télécommunications

- **3** Reconstruction PNS2 améliorée
- 4 Estimation de retard en PNS2

5 Conclusion

Jean-Adrien Vernhes INP-ENSEEIHT/IRIT – TéSA – CNES – TAS Échantillonnage Périodique Non Uniforme pour les Télécommunications par Satellite 3/60

Passerelle

PNS pour les Télécoms 00000000000 Estimation de retard Conclusion

Exemples d'application

Contexte des Télécommunications

Converture

Introduction	PNS pour les Télécoms	Reconstruction améliorée	Estimation de retard	Conclusion
0000	00000000000	000000000000	000000000000000000000000000000000000000	00000
α ,				

Contexte

Contexte satellitaire

- Modélisation simplifiée de la chaîne satellitaire
- Frontière entre mondes analogique et numérique
- Étude de l'implantabilité d'échantillonnage non uniforme dans un cadre de télécommunications

PNS pour les Télécoms 00000000000 Estimation de retard Conclusion

Problématique et enjeux

Description

- **Contexte :** augmentation des bandes et des fréquences de transmission dans les communications par satellite
- Challenge technique : Conversion Analogique-Numérique (CAN) embarquée à haute fréquence
- **Contraintes économiques et écologiques :** coût, complexité, poids et consommation des dispositifs électroniques
- **Tendance :** migrer les opérations de traitement du signal du monde analogique au monde numérique
- **Enjeu :** utiliser l'échantillonnage non uniforme pour relâcher les contraintes de l'opération d'échantillonnage

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Estimation de retard Conclus

Approche proposée

Échantillonnage Non Uniforme

- Schémas d'échantillonnage non uniforme possibles :
 - non observé,
 - observé irrégulier : aléatoire ou pseudo aléatoire,
 - observé entrelacé : Échantillonnage Périodique Non Uniforme (PNS).
- Contrainte forte : traitements numériques nécessitent des échantillons uniformes → reconstruction obligatoire
- Sélection du schéma d'échantillonnage PNS :
 - mise en place simple : pas d'horloge non uniforme,
 - reconstruction possible et moins complexe qu'aléatoire,
 - Dans notre contexte : ordre 2 suffit,
 - bon compromis entre performances et complexité d'échantillonnage/reconstruction.

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Estimation de retard Conclusion

Approche proposée

Échantillonnage Périodique Non Uniforme

- Caractéristiques :
 - PNS2 : deux séquences d'échantillonnage uniforme entrelacées,
 - bonne adaptation aux signaux passe-bande,
 - choix souple de la fréquence d'échantillonnage,
 - mise en place simple,
 - modélisation de dispositifs électroniques : les CAN entrelacés.
- Reconstruction linéaire \rightarrow nécessite de connaître décalage Δ

Figure: Modèle d'échantillonnage PNS2

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

Section 2

L'échantillonnage PNS pour les Télécommunications

PNS pour les Télécoms

Reconstruction améliorée

Estimation de retard Conclusion

Plan

1 Introduction

2 L'échantillonnage PNS pour les Télécommunications

- Modèle de signal
- Formules de reconstruction PNS2
- Dispositifs d'échantillonnage pratiques : CAN entrelacés
- 3 Reconstruction PNS2 améliorée
- **4** Estimation de retard en PNS2

5 Conclusion

Jean-Adrien Vernhes INP-ENSEEIHT/IRIT – TéSA – CNES – TAS Échantillonnage Périodique Non Uniforme pour les Télécommunications par Satellite 9/60

PNS pour les Télécoms •0000000000 Reconstruction améliorée

Estimation de retard Conclusion

Signal de Télécommunications

Modèle de signal aléatoire

- Processus aléatoire stationnaire : $\mathbf{X} = \{X(t), t \in \mathbb{R}\}$ à moyenne nulle, variance finie et une densité spectrale de puissance $S_x(f)$
- Théorème de Wiener-Khintchine :

$$R_x(\tau) = \int_{-\infty}^{\infty} e^{2i\pi f\tau} S_x(f) \, df$$

avec $R_X(\tau) = \mathrm{E}[X(t)X^*(t-\tau)]$ la fonction d'autocorrélation de ${f X}$

• **PNS2**: 2 séquences uniformes entrelacées $\mathbf{X}_0 = \{X(n), n \in \mathbb{Z}\}$ et $\mathbf{X}_\Delta = \{X(n + \Delta), n \in \mathbb{Z}\}, \Delta \in]0, 1[$

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms

Reconstruction améliorée

Estimation de retard Conclusion

Signal de Télécommunications

Modèle passe-bande

- Cadre des télécommunications : Deux sous-bandes distinctes

•
$$S_x(f) = 0, \ f \notin \mathcal{B}^+ \cup \mathcal{B}^-$$

Figure: Modèle passe-bande

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms

Reconstruction améliorée

Estimation de retard Conclusion

Conditions sur la fréquence d'échantillonnage

Rappel des différentes conditions

- Échantillonnage uniforme passe-bas : critère de Shannon $f_e \ge f_{\rm SH} = 2 f_{\rm max}.$
- Échantillonnage uniforme passe-bande :

 Échantillonnage Périodique Non Uniforme (PNS) : critère de Landau souple f_e ≥ f_L = 2B.

Jean-Adrien Vernhes

PNS pour les Télécoms

Reconstruction améliorée

Estimation de retard Conclusion

Reconstruction PNS2

Formules de reconstruction

Simplification : support \mathcal{B} inclus dans la $k^{\text{ème}}$ bande de Nyquist normalisée $\mathfrak{B}_{\mathcal{N}}(k)$:

$$\mathcal{B}_{\mathcal{N}}(k) = \left(-(k+\frac{1}{2}), -(k-\frac{1}{2})\right) \cup \left(k-\frac{1}{2}, k+\frac{1}{2}\right)$$

Figure: Bande de Nyquist

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms

Reconstruction améliorée

Estimation de retard

Conclusion 00000

Reconstruction PNS2 à l'aide de filtres [1]

Figure: Schéma de reconstruction PNS2 dans un cadre aléatoire

Expressions générales des fonctions de transfert :

$$\begin{array}{llll} \eta_t(f) &=& e^{2i\pi ft} \frac{S_0 S_t - S_\Delta S_{t-\Delta}}{S_0^2 - |S_\Delta|^2}(f) \\ \psi_t(f) &=& e^{2i\pi f(t-\Delta)} \frac{S_0 S_{t-\Delta} - S_\Delta^* S_t}{S_0^2 - |S_\Delta|^2}(f) \\ \text{avec} : S_\lambda(f) &=& \sum_{n \in \mathbb{Z}} S_x(f+n) e^{2i\pi n\lambda}, \ f \in (-\frac{1}{2}, \frac{1}{2}) \end{array}$$

[1] B. Lacaze. "Filtering from PNS2 Sampling". In: STSIP 11.1 (2012), pp. 43-53.

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms

Estimation de retard Conclu 0000000000000000 00000

Reconstruction PNS2 - Expression temporelle

Formules de reconstruction

• Formules de reconstruction PNS2 exactes si $2k\Delta \notin \mathbb{Z}$ [1] :

$$\begin{cases} X(t) = \frac{A_0(t)\sin\left[2\pi k(\Delta - t)\right] + A_\Delta(t)\sin\left[2\pi kt\right]}{\sin\left[2\pi k\Delta\right]}\\ \text{avec } A_\lambda(t) = \sum_{n \in \mathbb{Z}} \frac{\sin\left[\pi(t - n - \lambda)\right]}{\pi(t - n - \lambda)} X(n + \lambda) \end{cases}$$

- $\bullet\,$ Choix de Δ légèrement contraint pour permettre la reconstruction
- Inconvénient : totalité de la bande de Nyquist reconstruite \rightarrow manque de flexibilité

[1] B. Lacaze. "Equivalent circuits for the PNS2 sampling scheme". In: IEEE Trans. on Circ. and Syst. I: Regular Papers, 57.11 (2010), pp. 2904-2914.

PNS pour les Télécoms

Reconstruction améliorée

Estimation de retard Conclusion

Dispositifs d'échantillonnage pratiques

Convertisseurs Analogique-Numérique entrelacés temporellement (TI-ADCs)

- Structure : L convertisseurs élémentaires à la même fréquence (f_s) entrelacés temporellement et multiplexés
- **But :** partager l'opération d'échantillonnage pour atteindre une haute fréquence
- Fréquence totale : $f_e = L f_s$
- Avantages : haute fréquence d'échantillonnage à moindre coût, moindre complexité et moindre consommation

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms

Estimation de retard Conclusion

TI-ADCs synchronisés : un modèle idéal

Jean-Adrien Vernhes INP-ENSEEIHT/IRIT – TéSA – CNES – TAS Échantillonnage Périodique Non Uniforme pour les Télécommunications par Satellite 17/60

PNS pour les Télécoms

Conclusion 00000

TI-ADCs synchronisés : un modèle idéal

Synchronisation à tout prix

- Échantillonnage uniforme en sortie : synchronisation parfaite requise
- En pratique : disparités entre composants, imperfections de fabrication et conditions d'utilisation ⇒ apparition de désynchronisation
- Forte sensibilité à la désynchronisation
- Solution communément utilisée : phase de calibration et corrections matérielles pour retrouver échantillonnage uniforme en sortie

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms

Estimation de retard Conclusion

TI-ADCs désynchronisés : un modèle réaliste

Figure: Modèle de TI-ADCs réalistes/désynchronisés

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms

Reconstruction améliorée

Estimation de retard Conclusion

TI-ADCs désynchronisés : un modèle réaliste

Contributions : Adaptation à la désynchronisation

- Échantillonnage Périodique Non Uniforme (PNS) en sortie : possibilité de désynchronisation
- Pas de corrections matérielles de la désynchronisation requises
- Estimation de la désynchronisation puis utilisation dans la reconstruction PNS consécutive
- Complexité transférée du monde analogique au monde numérique
- **Paradigme de la "Dirty RF" :** comment s'accomoder de dispositifs analogiques à faible coût grâce à un traitement numérique en aval de leurs imperfections?

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

Introduction	
00000	

PNS pour les Télécoms

Reconstruction améliorée

Résumé

Objectif de nos contributions

- Utilisation des propriétés de l'échantillonnage périodique non uniforme :
 - Souplesse, simplicité, adaptation au contexte
 - Compromis entre performances, simplicité de mise en place et complexité de reconstruction
- Relâcher les contraintes de l'échantillonnage uniforme passe-bande
- Thèse propose les solutions suivantes :
 - Modèle alternatif des TI-ADCs
 - Compensation numérique de la désynchronisation
 - Fonctionnalités additionnelles jointes à l'opération de reconstruction

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

Section 3

Reconstruction PNS2 améliorée

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Estimation de retard Conclusi

Plan

1 Introduction

2 L'échantillonnage PNS pour les Télécommunications

3 Reconstruction PNS2 améliorée

- Principe et choix de fonctionnalités additionnelles
- Reconstruction sélective avec rejet d'interférence
- Reconstruction du signal analytique
- Conclusion

4 Estimation de retard en PNS2

5 Conclusion

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Estimation de retard Conclusio

Reconstruction PNS améliorée

Présentation

- Filtrage conjoint : intégration d'une opération de filtrage lors de la reconstruction
- Idée : modifier le schéma de reconstruction pour reconstruire une version filtrée du processus échantillonné
- Permet de **joindre** plusieurs opérations dans le même temps \rightarrow **simplification** de la chaîne
- Condition : présence de suréchantillonnage

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Estimation de retard Conclusion

Reconstruction PNS améliorée

Principe du filtrage conjoint

- Filtre conjoint \mathcal{H}_c de fonction de transfert $H_c(f)$
- Méthode : Reconstruction de $\mathbf{Y} = \mathcal{H}_c[\mathbf{X}]$ à partir du filtrage de $\mathbf{X}_0 = \{X(n), n \in \mathbb{Z}\}$ et $\mathbf{X}_\Delta = \{X(n + \Delta), n \in \mathbb{Z}\}$ par :

$$\begin{cases} \eta_t^{H_c}(f) = ie^{2i\pi ft} \frac{H_c(f+k)e^{2i\pi k(t-\Delta)} - H_c(f-k)e^{-2i\pi k(t-\Delta)}}{2\sin[2\pi k\Delta]}, \\ \psi_t^{H_c}(f) = ie^{2i\pi f(t-\Delta)} \frac{H_c(f-k)e^{-2i\pi kt} - H_c(f+k)e^{2i\pi kt}}{2\sin[2\pi k\Delta]}. \end{cases}$$

Figure: Schéma de reconstruction PNS2 généralisé

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Estimation de retard Conclusion

Reconstruction PNS améliorée

Principe du filtrage conjoint

 \bullet Décomposition en séries de Fourier \rightarrow expression des fonctions de reconstruction :

$$\begin{cases} r_n^{(0,H_c)}(t) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \eta_t^{H_c}(f) e^{2i\pi f(t-n)}, \\ r_n^{(\Delta,H_c)}(t) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \psi_t^{H_c}(f) e^{2i\pi f(t-n)}. \end{cases}$$

• Reconstruction finalement obtenue par :

$$\tilde{y}(t) = \sum_{n \in \mathbb{Z}} r_n^{(0,H_c)}(t) x(n) + \sum_{n \in \mathbb{Z}} r_n^{(\Delta,H_c)}(t) x(n+\Delta)$$

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Estimation de retard Conclusion

Reconstruction PNS améliorée

Contributions

- Idée : adapter le choix du filtre conjoint aux fonctionnalités visées
- Filtre conjoint à support spectral adapté à la bande du signal : Filtrage passe-bande généralisé et reconstruction sélective avec rejet d'interférence [1]
- Filtre conjoint analytique : **Reconstruction du signal analytique**[2]

[1] J.-A. Vernhes et al. "Conversion Numérique-Analogique sélective d'un signal passe-bande soumis à des interférences". In: GRETSI 2013.

[2] J.-A. Vernhes et al. "Selective Analytic Signal Construction From A Non-Uniformly Sampled Bandpass Signal". In: IEEE ICASSP 2014.

PNS pour les Télécoms 00000000000 **Reconstruction améliorée**

Estimation de retard Conclu

Reconstruction sélective

Principe

- Généralisation de la reconstruction pour une sous-bande quelconque
- Application au rejet d'interférences
- En pratique : travail à partir d'un nombre fini d'échantillons :

$$\tilde{y}(t) = \sum_{n=-\frac{N}{2}}^{\frac{N}{2}} r_n^{(0,H_c)}(t)x(n) + \sum_{n=-\frac{N}{2}}^{\frac{N}{2}} r_n^{(\Delta,H_c)}(t)x(n+\Delta)$$

 Intégration d'une amélioration de la convergence via le choix de filtres généralisés de régularité croissante → 3 exemples

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 000000000000 Reconstruction améliorée

Estimation de retard Conclusion

Exemple de filtre

Figure: Filtre rectangulaire conjoint \mathcal{H}^R

Formules de reconstruction associées

$$\begin{cases} r_n^{(0,H^R)}(t) = \frac{-B\sin\left[2\pi f_c(t-n) - 2\pi k\Delta\right]}{\sin\left[2\pi k\Delta\right]} \operatorname{sinc}\left[\pi B(t-n)\right] \\ r_n^{(\Delta,H^R)}(t) = \frac{B\sin\left[2\pi f_c(t-n-\Delta) + 2\pi k\Delta\right]}{\sin\left[2\pi k\Delta\right]} \operatorname{sinc}\left[\pi B(t-n-\Delta)\right] \end{cases}$$

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 000000000000 Reconstruction améliorée

Estimation de retard

Conclusion

Exemple de filtre

Figure: Filtre trapézoïdal conjoint \mathcal{H}^T

Formules de reconstruction associées

$$\begin{cases} r_n^{(0,H^T)}(t) &= -(B+B_{tr})\frac{\sin\left[2\pi f_c(t-n)-2\pi k\Delta\right]}{\sin\left[2\pi k\Delta\right]} \times \\ &\quad \sin\left[\pi (B+B_{tr})(t-n)\right] \sin\left[\pi B_{tr}(t-n)\right] \\ r_n^{(\Delta,H^T)}(t) &= (B+B_{tr})\frac{\sin\left[2\pi f_c(t-n-\Delta)+2\pi k\Delta\right]}{\sin\left[2\pi k\Delta\right]} \times \\ &\quad \sin\left[\pi (B+B_{tr})(t-n-\Delta)\right] \sin\left[\pi B_{tr}(t-n-\Delta)\right] \end{cases}$$

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Estimation de retard

Conclusion 00000

Exemple de filtre

Figure: Filtre conjoint en cosinus surélevé \mathcal{H}^{CS}

Formules de reconstruction associées

$$\begin{cases} r_n^{(0,H^{CS})}(t) &= \frac{\sin\left[2\pi f_c(t-n) - 2\pi k\Delta\right]}{2\left[4B_{tr}^2(t-n)^2 - 1\right]\sin\left[2\pi k\Delta\right]} \times \\ r_n^{(\Delta,H^{CS})}(t) &= \frac{-\sin\left[2\pi f_c(t-n)\right] + B_{tot}\sinc\left[\pi B_{tot}(t-n)\right]\right)}{2\left[4B_{tr}^2(t-n-\Delta)^2 - 1\right]\sin\left[2\pi k\Delta\right]} \times \\ (B\sinc\left[\pi B(t-n-\Delta)\right] + B_{tot}\sinc\left[\pi B_{tot}(t-n-\Delta)\right]\right) \end{cases}$$

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 000000000000 Reconstruction améliorée

Estimation de retard Conclusion

Analyse des performances

Figure: Tracé de l'EQMN en fonction du nombre d'échantillons du signal

Jean-Adrien Vernhes INP-ENSEEIHT/IRIT – TéSA – CNES – TAS Échantillonnage Périodique Non Uniforme pour les Télécommunications par Satellite 29/60

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Estimation de retard Conclusie

Reconstruction sélective avec rejet d'interférence

Contexte multi utilisateurs

- Bande partagée entre M utilisateurs \rightarrow utilisateurs adjacents considérés comme interférence
- **Proposition** d'un schéma adapté : **une seule** opération d'échantillonnage et **M reconstructions** en parallèle

Figure: Schéma de reconstruction PNS2 d'un signal séparé en plusieurs canaux distincts interférant les uns avec les autres

Jean-Adrien Vernhes INP-ENSEEIHT/IRIT – TéSA – CNES – TAS Échantillonnage Périodique Non Uniforme pour les Télécommunications par Satellite 30/60

PNS pour les Télécoms 00000000000 **Reconstruction améliorée**

Estimation de retard Conclusion

Analyse des performances

Figure: Tracé de l'erreur quadratique de reconstruction en fonction du nombre d'échantillons du signal : avec et sans interférence proche

Jean-Adrien Vernhes INP-ENSEEIHT/IRIT – TéSA – CNES – TAS Échantillonnage Périodique Non Uniforme pour les Télécommunications par Satellite 31/60

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Estimation de retard Conclusion

Reconstruction du signal analytique

Fonctionnement

- **Représentation complexe** du signal très utilisée en télécommunications
- Contenu spectral de la bande positive uniquement
- Définition :

$$\begin{cases} x_a(t) &= x(t) + ix_h(t) \\ x_h(t) &= x(t) * h(t) \end{cases}$$

• $x_h(t)$ transformée de Hilbert de x(t) par filtrage analytique :

$$h(t) = \frac{1}{\pi t}$$
 $H(f) = -i \operatorname{sign}(f)$

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

 Introduction
 PNS pour les Télécoms
 Reconstruction améliorée
 Estimation de retard
 Conclusion

 00000
 0000000000
 00000000000
 000000000000
 00000
 00000

Reconstruction du signal analytique

Figure: Filtre rectangulaire analytique conjoint \mathcal{H}_a^R

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Estimation de retard Conclusion

Reconstruction du signal analytique

Figure: Filtre trapézoïdal analytique conjoint \mathcal{H}_a^T

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

Introduction PN 00000 000

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Estimation de retard Conclusion

Reconstruction du signal analytique

Figure: Filtre analytique conjoint en cosinus surélevé \mathcal{H}_a^{CS}

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Estimation de retard Conclusion

Analyse des performances

Figure: Tracé de l'erreur quadratique de reconstruction en fonction du nombre d'échantillons du signal

Jean-Adrien Vernhes INP-ENSEEIHT/IRIT – TéSA – CNES – TAS Échantillonnage Périodique Non Uniforme pour les Télécommunications par Satellite 34/60

PNS pour les Télécoms 00000000000 Reconstruction améliorée ○○○○○○○○○● Estimation de retard Conclusio

Conclusion

Résumé

- Intégration de fonctionnalités intéressantes à la reconstruction PNS2 à partir d'un choix approprié de filtre conjoint
- Note : intégration également possible en échantillonnage uniforme classique
- Mais choix PNS2 permet de bénéficier de ses propriétés :
 - très adapté aux signaux passe-bande de télécommunications (deux sous-bandes),
 - fréquence d'échantillonnage plus faible qu'en uniforme \rightarrow aucune contrainte de positionnement,
 - modélisation de dispositifs pratiques.
- Hypothèse : connaissance du retard Δ
- Question : que peut-on faire quand on ne le connaît plus?

Section 4

Estimation de retard en PNS2

PNS pour les Télécoms 00000000000 Estimation de retard Conclusion

Plan

1 Introduction

2 L'échantillonnage PNS pour les Télécommunications

8 Reconstruction PNS2 améliorée

4 Estimation de retard en PNS2

- Principe général
- Méthode par signal d'apprentissage
- Méthode aveugle

5 Conclusion

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000

Estimation de retard en PNS2

Principe général

- Reconstruction PNS2 exacte nécessite la connaissance du retard
- En pratique : incertitude due aux conditions de fonctionnement qui causent des variations
- Idée : estimation du retard inconnu pour une utilisation lors de la reconstruction
- Utilisation : Modélisation possible des TI-ADCs désynchronisés dans un cadre de travail alternatif
- Nécessite donc des **méthodes d'estimation fiables** du retard PNS2 car désynchronisation impacte fortement les performances

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Estimation de retard

Conclusion 00000

Problématique de la désynchronisation

Impact sur la reconstruction

Expression théorique de l'EQMN de reconstruction en présence de désynchronisation :

$$\begin{aligned} \mathsf{EQMN} &= \frac{\mathrm{E}\left[|x(t) - x^{(\tilde{\Delta})}(t)|^2\right]}{\mathrm{E}\left[|x(t)|^2\right]} \\ &= 4\left(\frac{\sin\left[2\pi kt\right]}{\sin\left[2\pi k\tilde{\Delta}\right]}\right)^2 \frac{\int_0^\infty \sin^2\left[\pi f(\Delta - \tilde{\Delta})\right]S_x(f)df}{\int_0^\infty S_x(f)df} \end{aligned}$$

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Reconstruction améliorée 0000000000000

Impact de la désynchronisation

Figure: EQMN de reconstruction en présence de désynchronisation modélisée par $\tilde{\Delta}$ variable

Jean-Adrien Vernhes INP-ENSEEIHT/IRIT – TéSA – CNES – TAS Échantillonnage Périodique Non Uniforme pour les Télécommunications par Satellite 39/60 Introduction PNS pour les Télécoms Reconstruction améliorée Estimation de retard Estimation de retard en PNS2 par signal d'apprentissage [1,2]

Présentation du fonctionnement de la méthode

- Utilisation d'un signal d'apprentissage avec une DSP connue a priori
- Échantillonnage via un schéma PNS2 désynchronisé
- Formation d'un critère quadratique \rightarrow connaissance de la DSP permet de calculer expression théorique
- $\bullet\,$ Comparaison entre valeurs théorique et empirique $\rightarrow\,$ estimation du retard $\Delta\,$

[1] J.-A. Vernhes et al. "Adaptive Estimation and Compensation of the Time Delay in a Periodic Non-Uniform Sampling Scheme". In: SampTA 2015.

[2] J.-A. Vernhes et al. "Estimation du retard en échantillonnage périodique non uniforme - Application aux CAN entrelacés désynchronisés". In: GRETSI 2015.

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

Échantillonnage Périodique Non Uniforme pour les Télécommunications par Satellite

Conclusion

Introduction	PNS pour les Télécoms	Reconstruction améliorée	Estimation de retard	Conclusion	
00000	00000000000	000000000000	000000000000000000000000000000000000000	00000	
Principe					

Critère quadratique

- Séquences d'échantillons : $\mathbf{X}_0^{\mathsf{app}}, \mathbf{X}_\Delta^{\mathsf{app}}$ caractérisées par le retard Δ
- Formation d'un critère quadratique d'expression théorique :

$$\begin{aligned} \sigma_{\Delta}^2 &= & \mathbf{E}\left[|x^{\mathsf{app}}(n+\Delta) - x^{\mathsf{app}}(n)|^2\right] \\ &= & \int_{-\infty}^{\infty} \left|e^{2i\pi f\Delta} - 1\right|^2 S_{x^{\mathsf{app}}}(f) \, df \end{aligned}$$

• Simplification possible selon notre hypothèse d'un signal passe-bande à bande limitée $\mathcal{B}_{\mathbf{X}^{app}}$:

$$\sigma_{\Delta}^2 = 2 \int_{\mathcal{B}_{\mathbf{X}^{app}}} (1 - \cos\left[2\pi f \Delta\right]) S_{x^{app}}(f) \, df$$

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Reconstruction améliorée

 Estimation de retard
 Conclusion

 000000000000000
 00000

Principe

Comparaison

- Calcul possible du critère σ_{Δ}^2 grâce la connaissance de l'expression de $S_{x^{\text{app}}} \rightarrow$ critère différent pour deux signaux différents
- Estimation empirique du critère σ_{Δ}^2 à partir des échantillons du signal disponibles
- Comparaison entre expression théorique et estimation empirique \Rightarrow estimation du retard Δ
- Étude de deux exemples : signal sinusoïdal et bruit à bande limitée

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Estimation de retard

Conclusion 00000

Signal d'apprentissage : premier exemple

Signal sinusoïdal

• Signal sinusoïdal à la fréquence f_0 défini par :

$$S_{x^{\text{app}}}(f) = \frac{1}{2} (\delta(f - f_0) + \delta(f + f_0)) \ , \ -\frac{1}{2} < f_0 < \frac{1}{2}$$

• Expression du critère :

$$\sigma_{\Delta}^2 = 2(1 - \cos[2\pi f_0 \Delta])$$

- Estimation de Δ par inversion avec $\hat{\sigma}_{\Delta}^2$ estimé empiriquement
- Tracé de l'erreur quadratique d'estimation $E\left[|\hat{\Delta} \Delta|^2\right]$ en fonction du nombre d'échantillons pour $N_{\text{ite}} = 1000$ itérations

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Signal sinusoïdal - Résultats

Figure: Résultats de l'estimation par la méthode supervisée avec signal d'apprentissage sinusoïdal

Jean-Adrien Vernhes INP-ENSEEIHT/IRIT – TéSA – CNES – TAS Échantillonnage Périodique Non Uniforme pour les Télécommunications par Satellite 44/60

PNS pour les Télécoms 000000000000 Estimation de retard

Conclusion 00000

Signal d'apprentissage : deuxième exemple

Bruit à bande limitée

 $\bullet\,$ Bruit à bande limitée de fréquence centrale f_c et de bande B défini par :

$$S_{x^{\mathsf{app}}}(f) = \begin{cases} 1 \text{ sur } \left(-f_c - \frac{B}{2}, -f_c + \frac{B}{2}\right), \ 0 < B < 1\\ 0 \text{ ailleurs} \end{cases}$$

• Expression du critère :

$$\sigma_{\Delta}^2 = 4B(1 - \cos\left[2\pi f_c \Delta\right] \operatorname{sinc}\left[\pi B \Delta\right]).$$

- $\bullet\,$ Sinus cardinal empêche inversion de la fonction pour calculer $\Delta \to {\rm r\acute{e}solution}$ numérique
- Tracé de l'erreur quadratique d'estimation ${\rm E}\left[|\hat{\Delta}-\Delta|^2\right]$ pour $N_{\rm ite}=1000$ itérations

PNS pour les Télécoms 00000000000 Reconstruction améliorée

Estimation de retard

Conclusion 00000

Bruit à bande limitée - Résultats

Figure: Résultats de l'estimation par la méthode supervisée avec signal d'apprentissage de type bruit à bande limitée

PNS pour les Télécoms 00000000000 Estimation de retard

Conclusion 00000

Estimation de retard en PNS2 par signal d'apprentissage

Avantages/Inconvénients

- Avantages :
 - faible complexité,
 - fonctionnement rapide de l'estimation,
 - signaux d'apprentissage classiques : génération peu complexe,
 - intégration possible dans une stratégie de Built-In Self Test (BIST).

Limitations :

- nécessite génération d'un signal particulier :
 - soit via ajout d'un circuit dédié supplémentaire,
 - soit perte potentielle de bande passante.
- mises à jour nécessitent périodes de silence du signal d'intérêt.

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Estimation de retard

Conclusion 00000

Estimation aveugle de retard en PNS2 [1,2]

Présentation du fonctionnement de la méthode

- Utilisation de la stationnarité du signal
- Stationnaire en entrée \Rightarrow stationnaire en sortie
- Propriété respectée par le signal reconstruit uniquement en absence de désynchronisation
- Idée : Test de stationnarité pour un retard variable $\tilde{\Delta} \to$ estimation de Δ par optimisation

 J.-A. Vernhes et al. "Estimation du retard en échantillonnage périodique non uniforme - Application aux CAN entrelacés désynchronisés". In: GRETSI 2015.
 J.-A. Vernhes et al. "Blind Estimation and Compensation of Unknown Time Delay in Periodic Non-Uniform Sampling: Application to Time Interleaved ADCs". In: IEEE ICASSP 2016.

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Estimation de retard

Conclusion 00000

Estimation aveugle de retard en PNS2

Principe : propriété de stationnarité

- **Propriété :** signal reconstruit $\mathbf{X}^{(\tilde{\Delta})} = \{X^{(\tilde{\Delta})}(t), t \in \mathbb{R}\}$ stationnaire au sens large si et seulement si $\tilde{\Delta} = \Delta$.
- Expression théorique de la puissance $P^{(\tilde{\Delta})}(t) = \mathbb{E} \left| \left| x^{(\tilde{\Delta})}(t) \right|^2 \right|$:

$$P^{(\tilde{\Delta})}(t) = \frac{8}{\sin^2\left(2\pi k\tilde{\Delta}\right)} \int_0^\infty \left(\sin^2\left[\pi k\tilde{\Delta}\right]\cos^2\left[\pi k(2t-\tilde{\Delta})\right] + \sin\left[2\pi kt\right]\sin\left[2\pi k(t-\tilde{\Delta})\right]\sin^2\left[\pi f(\Delta-\tilde{\Delta}) + \pi k\tilde{\Delta}\right]\right) S_x(f)df.$$

- **Dépendance** claire en t lorsque $\tilde{\Delta} \neq \Delta$
- Absence de désynchronisation $\tilde{\Delta} = \Delta$:

$$P^{(\Delta)}(t) = 2\int_0^\infty S_x(f)df$$

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Estimation de retard

Conclusion 00000

Estimation aveugle de retard en PNS2

Principe : propriété de stationnarité

- Idée : rechercher le paramètre de reconstruction qui n'entraîne pas de variations de la puissance
- Stratégie : évaluation de la puissance du signal reconstruit $P^{(\tilde{\Delta})}(t_m)$ pour m=1,...,M :

$$P^{(\tilde{\Delta})}(t_m) = \mathsf{E}\left[\left|X^{(\tilde{\Delta})}(t_m)\right|^2\right] , t_m = \frac{m}{M+1} , \ m = 1, ..., M$$

• En pratique : estimation de la puissance du signal reconstruit $P^{(\tilde{\Delta})}(t_m)$ pour différentes valeurs de $\tilde{\Delta}$ par :

$$\widehat{P}^{(\tilde{\Delta})}(t_m) = \frac{1}{N} \sum_{n=-\frac{N}{2}}^{\frac{N}{2}} \left| X^{(\tilde{\Delta})} \left(n + t_m \right) \right|^2 , \ m = 1, ..., M.$$

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000

Puissances et variance

Méthodologie

Calcul de la variance de la puissance et recherche du minimum :

$$\hat{\Delta} = \min_{\tilde{\Delta}} \, f\left(\tilde{\Delta}\right) = \min_{\tilde{\Delta}} \, \operatorname{Var}\left[\widehat{P}_{m,\ m=1..M}^{(\tilde{\Delta})}\right]$$

Figure: Principe de l'estimation aveugle

Jean-Adrien Vernhes INP-ENSEEIHT/IRIT – TéSA – CNES – TAS Échantillonnage Périodique Non Uniforme pour les Télécommunications par Satellite 51/60

PNS pour les Télécoms 00000000000

Stratégie d'estimation

Simplification

Estimation de la puissance pour t_m = ^A/₂ seulement (M = 1) :

$$P^{(\tilde{\Delta})}(\frac{\tilde{\Delta}}{2}) = \frac{2}{\cos^2\left[\pi k \Delta\right]} \int_0^\infty \cos^2\left[\pi f(\Delta - \tilde{\Delta}) + \pi k \tilde{\Delta}\right] S_x(f) df$$

• Dérivation d'un critère simplifié :

$$\hat{\Delta} = \min_{\tilde{\Delta}} \operatorname{Var} \left[\widehat{P}_{m, \ m=1..3}^{(\tilde{\Delta})} \right]$$

avec :

$$\widehat{P}_1 = P_0, \qquad \widehat{P}_2 = P^{(\tilde{\Delta})}(\frac{\Delta}{2}), \qquad \widehat{P}_3 = P_{\Delta}$$

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 **Estimation de retard Conclusion**

Analyse de performance

Définition du RSE

Tracé du Rapport Signal à Erreur (RSE) en dB :

Figure: Performances de l'estimation simplifiée

Jean-Adrien Vernhes INP-ENSEEIHT/IRIT – TéSA – CNES – TAS Échantillonnage Périodique Non Uniforme pour les Télécommunications par Satellite 53/60

PNS pour les Télécoms 00000000000 Estimation de retard

Conclusion 00000

Estimation aveugle de retard en PNS2

Avantages/Inconvénients

- Avantages : Méthode aveugle
 - basée uniquement sur échantillons du signal en entrée,
 - pas de déconnexion du système ou d'envoi d'un signal particulier,
 - mise à jour possible périodiquement sans complexité supplémentaire.

• Limitations :

- Hypothèses :
 - signal stationnaire en entrée \rightarrow non valide lors de multitrajets par exemple,
 - variations lentes et localisées de Δ .
- Test de stationnarité relativement complexe
- $\bullet\,$ Comportement non adaptatif $\to\,$ piste de travail future

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

Section 5

Conclusion

PNS pour les Télécoms 00000000000 Estimation de retard

Conclusion

Plan

1 Introduction

- 2 L'échantillonnage PNS pour les Télécommunications
- B Reconstruction PNS2 améliorée
- 4 Estimation de retard en PNS2
- **6** Conclusion
 - Contributions
 - Travail futur

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Estimation de retard

Conclusion

Conclusion générale

Contributions

- PNS proposé en tant que schéma d'échantillonnage alternatif pour les télécommunications
- Intégration de fonctionnalités d'intérêt pour les télécommunications :
 - filtrage passe-bande généralisé et reconstruction sélective avec rejet d'interférence [1],
 - reconstruction du signal analytique [2].

[1] J.-A. Vernhes et al. "Conversion Numérique-Analogique sélective d'un signal passe-bande soumis à des interférences". In: GRETSI 2013.

[2] J.-A. Vernhes et al. "Selective Analytic Signal Construction From A Non-Uniformly Sampled Bandpass Signal". In: IEEE ICASSP 2014.

PNS pour les Télécoms 00000000000 Estimation de retard

Conclusion

Conclusion générale

Contributions

- Modélisation alternative et innovante des TI-ADCs désynchronisés
- Estimation de la désynchronisation :
 - à partir d'un signal d'apprentissage [1,2],
 - de manière aveugle [2,3].

[1] J.-A. Vernhes et al. "Adaptive Estimation and Compensation of the Time Delay in a Periodic Non-Uniform Sampling Scheme". In: SampTA 2015.

[2] J.-A. Vernhes et al. "Estimation du retard en échantillonnage périodique non uniforme - Application aux CAN entrelacés désynchronisés". In: GRETSI 2015.

[3] J.-A. Vernhes et al. "Blind Estimation and Compensation of Unknown Time Delay in Periodic Non-Uniform Sampling: Application to Time Interleaved ADCs". In: IEEE ICASSP 2016.

PNS pour les Télécoms 00000000000 Estimation de retard

Conclusion

Conclusion générale

Travail futur - Reconstruction améliorée

- Simulations avec gigue d'horloge pour conditions plus proches des situations réelles
- Prise en compte de modèles d'échantillonnage pratique basés sur des échantillonneurs réels
 - bloqueurs,
 - à porte analogique,
 - ...
- Reformulation de la technique de filtrage conjoint dans le cadre des bancs de filtre
- Application à l'échantillonnage I/Q : correction de la désynchronisation entre voies I et Q

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

PNS pour les Télécoms 00000000000 Estimation de retard

Conclusion

Conclusion générale

Travail futur - Estimation de retard

- Utilisation des séquences *pseudorandom noise (PN)* comme signaux d'apprentissage : exemples des séquences *Constant Amplitude Zero AutoCorrelation (CAZAC)*
- Mise en place adaptative de la méthode aveugle
- Application à l'échantillonnage I/Q : estimation de la désynchronisation entre voies I et Q

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS

Introduction	PNS pour les Télécoms	Reconstruction améliorée	Estimation de retard	Conclusion
00000	00000000000	000000000000	000000000000000000000000000000000000000	00000

Merci pour votre attention

Jean-Adrien Vernhes

Jean-Adrien Vernhes

INP-ENSEEIHT/IRIT - TéSA - CNES - TAS