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Context and Motivation
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Climate change challenges
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ar inverse problem with shifts & Perspectives
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Context and Motivation
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Climate change challenges

Atmospheric CO, at Mauna Loa Observatory Simulated €O, at 2x2 km? grid
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Context and Motivation
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Climate change challenges

Droughts and heat waves Intense wildfire seasons Frequent natural disasters
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Context and Motivation
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Climate change challenges
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Intense wildfire seasons Frequent natural disasters
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Monitoring Atmospheric CO, Concentrations via Remote Sensing
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Context and Motivation
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Monitoring Atmospheric CO, Concentrations via Remote Sensing
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Context and Motivation
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Spectrometer Calibration for Accurate CO, Conce
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Calibration, | . diative transfer
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Level 0 ' W " HW
= raw data ‘

Level 1 = calibrated spectra

CNES (+ images, geometry...) Level 2
= XCO, concentrations

(*+ weighting function, secundary
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Context and Motivation
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Estimation of Instrument Spectral Response Functions (ISRFs)

Theoretical spectrum

A W\(‘\‘(VI

For each pixel £ =1, ..., Ny

s

Normalized intensity

J > 1 wavelength A\,

1268 12685 1260 12695 1270 12705
Afom)

1 observation y, € R™

1 ISRF I, € RV+1

Il:Z()U

[Z:Z‘vl)

| 2
>
» 1 nonlinear function f;
>

1 reference spectrum: rp = 7w(r, \y)

H

5

e = I g r Iy +€
g = & g (g) b))
2 known unknown unknown  known unknown

Measured spectrum

12685 1269 12695 1270
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Context and Motivation

Contributions of this Thesis
An ill-posed problem

For each pixel £=1,.... N = 1 ro ), | + €
A {/ \g (( \% ( & ) \ﬁ ) + e
known unknown unknown  known unknown

> Linear inverse problem: y, = (ry, I;) + ¢
» New model: Sparse representation of ISRFs
> Sparse nonlinear inverse problem: y, = f;((rs, Iy)) + ¢

> Separable nonlinearities [Golub1973]
» General model of nonlinearities
» Dictionary preconditioning

> Sparse nonlinear inverse problem with shifts: y, = f,((g(r0), Is)) + €
» Model of shifts
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@ Context and Motivation

21 ISRF Estimation as an Inverse Problem

Bl Sparse nonlinear inverse problem

B Sparse nonlinear inverse problem with shifts

Bl Conclusion & Perspectives
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|2l ISRF Estimation as an Inverse Problem
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ISRF Estimation
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ISRF Estimation as an Inverse Problem

An ill-posed problem

For each pixel £ =1, ..., Ny

Normalized intensity
2 A

Theoretical spectrum

12685 1260 12695 1270 12705

Il:Z()U

[Z:Z‘vl)

Measured spectrum

1269 12695 1270
A [nm]

1 wavelength Ay

> 1 observation y, € R
> 1ISRF I, € RV
»  nonlinearities: functions f; and g
> 1 reference spectrum: r; = w(r, Ap)
= f r, / €
kri%vn unlﬁwn : unkiwn ( kr:f/vn ' unk\fown e
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ISRF Estimation
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ISRF Estimation as an Inverse Problem
An ill-posed problem

For each pixel £ =1, ..., Ny

zos ﬂ > 1 wavelength \,
C
Q
08 > 1 observation s, € RT
(9]
N
'Téo-“’ 1 » 1ISRF I, € RN+!
S ARNRNNEI
z02 True spectrum | > 1 reference spectrum: r; = 7w(r, \r)

Spectrum with ISRF errors

760 762 764 766 768
A [nm] f(@ :< Cﬁ 5 \{; >+6l
known known  unknown
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ISRF Estimation
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ISRF Estimation as an Inverse Problem

Assumption: ISRFs I, vary little from £ to ¢+ 1

Sliding window W(\;) of L + 1 measurements around A,

Observation model (matrix form)
Sy = Rglg

Assumptions about ISRF I;: positivity
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ISRF Estimation
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Parametric models
Gaussian model !

Ny — o 2
I s (x) = Ac exp <( ! ;2 9] ) , XEA
o

A wavelength grid, 86 = (Ag, ug,02)" - parameters

Super-Gaussian model *

ksG
Ap — X — [isG

WsG

, XEA

Iy psc (x) = Asc exp —‘

Bsc = (Asg, HsG, WsG, ksg) "~ parameters

1Beirle S. et al. (2017) — Parameterizing the instrumental spectral response function and its changes by a super-Gaussian and its derivatives,
Atmos. Meas. Tech.
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ISRF Estimation
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Proposed non-parametric model

Activation
o Y Sparse representation of ISRFs (SPIRIT)
Dictionary I

» Dictionary ® € R(VF1)xNo
I I (SVD of representative ISRFs)
" | §
n = )

I~ I = ®ay =) a,d,,

J k=1
L =
un |

l = ! u SgﬁRgIZK:‘I’zaZ
l = (gt = I +m

- = - I where ¥, = R,® ¢ R(L+1)xNo
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ISRF Estimation
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ISRF Estimation as a sparse inverse problem
Optimization problem with ¢y norm 2
2 arg min ||s; — W03
(e 7]
15 s.t.f|agllo < K
1 Relaxation via ¢; regularization (LASSO)
— Il , 5
0o " argmin ||s; — o5 + gl oue|y
—Q(llxll,) e

0
= < 0 1 2l Relaxation via quadratic envelope regularization 3
X

argmin [|s; — @oav,|3 + @y (nleweflo)(ew). ¥ > 0

2Mallat, S., Zhang, Z. (1993) - Matching pursuits with time-frequency dictionaries. /EEE Trans. Signal Process.

3Carlsson M. (2019) — On convex envelopes and regularization of non-convex functionals, J. Optim. Theory Appl.
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ISRF Estimation
000000800

Experimental Setup and Evaluation Metrics

1
[
0.8

> Reference spectra: 4A/OP radiative transfer software

°
@

°
IS

» Simulated ISRFs for the MicroCarb spectrometer
> Measured spectra: s(\) = (r*I)(\) = [~ r(\ — u)l(u)du

r
o0

> ISRF approximation errors: Ep = ZQZ{NQ [l(nA) — ly(nD)|

Normalized intensity

°
N

> Residual errors: p = N% Z?’;l ||se — red| |3

TESA Spectrometer Calibration using Sparse Inverse Problems for Atmospheric Sounding 16 / 46



ISRF Estimation
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Numerical results

Residuals A for each observation window - MicroCarb (band B1)

2
G —
SG S 1r g =69.194 fiasso = 3592 |
[0}
—OMP 2ol
S g
LASSO =
e -
QEnv Poup = 0-267 Pemvauad = 0-282
760 762 764 766 768
A [nm]
K=3
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ISRF Estimation
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Numerical results
ISRF approximation error - MicroCarb (band B1) 05 Mean ISRF approximation error - MicroCarb (band B1)

-1 SG

log10 error
n
log10 error

760 762 764 766 768 1 2 3 4 5 6 7 8 9 10
A [nm] K

ISRF estimation error (K = 3) and mean ISRF estimation error

Poor performance with parametric models (0.1s)
Limited performance of the LASSO algorithm (0.01s)
Best performance achieved with quadratic envelopes (1s)

OMP: best trade-off between computation time and estimation performance (0.001s)
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Sparse nonlinear inverse problem
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Sparse nonlinear inverse problem

Forward model

- 1 ), b VNte =1, N
\g(<$(\;)\;>)/ A\

known unknown unknown  known unknown

<{s
|

I, = Py, oy sparse
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Sparse nonlinear inverse problem
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Sparse nonlinear inverse problem

Forward model

= \IZ (< (ﬂ ) \Iﬁ >)+€/ gzl,...7N>\

known unknown known  unknown

<=
|

Iy = Py, oy sparse

> Parameterized nonlinearities: function fg

» Spectrometer calibration
» Hyperspectral imaging

True spectrum 1 > Epldemlology
Spectrum with nonlinearity
TR T, T W W W1

Normalized intensity
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Sparse nonlinear inverse problem
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Description of nonlinearities
Parameterized nonlinearities

> fy bijective
> Separable nonlinearity*: fp(z) = 25:0 go(2)0, Vz € Rt

» Polynomials®

» General model of nonlinearities 7

> fo = 01X92
> fo = tanh(@lx) + Orx

4Golub,G. H., Pereyra V. (2003) - Separable nonlinear least squares: the variable projection method and its applications, Inverse Probl.
5Altmann Y. et al. (2012), Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery, IEEE Trans.

Image Process.
(’Taghvaei A. et al. (2020), Fractional SIR epidemiological models, Sci. Rep.
"Babaie-Zadeh M. et al. (2001), Blind separating convolutive post non-linear mixtures, Proc. 3rd ICA Workshop.
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Sparse nonlinear inverse problem
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Iterative optimization method

Extended Invariance Principle (EXIP) with sparsity
» Problem formulation with sparsity: arggﬂn lye — fo o (®ecs)||3 + lleello
i

» Resolution method: An iterative approach
» Step 1: Estimation of 0 : arg mein lye — fo o (Tpar)||3

> Step 2: EXtended Invariance Principle (EXIP)® for estimating a:
Be = g(ou) = Yoy

arg min B — ()] R, (80 [Be — s(e)] + mleulo

where Rg,(B¢) = || ye — fo o Be[l3 and Rj, (B¢) = V2Rg, (Br)

8Stoica P. & Soderstr T. (1989) - On reparametrization of loss functions used in estimation and the invariance principle, Signal Process.

TESA Spectrometer Calibration using Sparse Inverse Problems for Atmospheric Sounding 22 / 46



Sparse nonlinear inverse problem
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Experimental Setup and Evaluation Metrics

i
08

i 1 I
I
MV T
760 762 764 766 768

Metries |

» ISRF approximation errors: E;, = Z,Iy:/i/v/z [(nA) — ly(nD)|

> Reference spectra: 4A/OP radiative transfer software

o
>

o
IS

» Simulated ISRFs for the MicroCarb spectrometer
> Measured spectra: s(\)) = (r+ )(\) = [T r(N — u)l(u)du

r
o0

Normalized intensity

o
N

: Lo, 1 Nx 7112
> Residual errors: p = 7= 37,2 |[se — rele||3
> Estimation errors for the parameters of the nonlinearities:

me =50, (fa(x) — f3(x)%, % € D
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Sparse nonlinear inverse problem
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Numerical results - ISRF estimation

)+922

> Nonlinearity: fg(z) = FXPG(W

200

» Measured spectrum divided into 14 channels
of @ = 70 wavelengths SNR=55dB

150

=]
3

Non-linearity

> 1 ISRF to estimate per wavelength

@
3

o

0 100 200 300

Radiance Mean estimation error - non-linearity Mean ISRF estimation error

1 -0.5

50 5 4

—— EXIP-OMP S o .15
—_OMP > =3

o -2 ° -2

3 -25

2 4 6 2 4 6
K K

Competitive performance with EXIP / OMP
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Sparse nonlinear inverse problem
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Numerical results - ISRF estimation

> Nonlinearity: fp(z) = +1+exp( 5oy T 022
200
- » Measured spectrum divided into 14 channels
’gmo of @ = 70 wavelengths SNR=55dB
25 > 1 ISRF to estimate per wavelength
00 100 200 300
Radiance Mean estimation error - non-linearity Mean ISRF estimation error
! 05
g0 S
— EXIP-OMP 5] 5
——— OMP -1 SREIN
. o o \
OMP-Linear case =2 o L \
3 -25 —=
2 4 6 2 4 6
K K

Competitive performance with EXIP / OMP
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Sparse nonlinear inverse problem
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Radiometric calibration using multiple reference spectra

MicroCarb spectrometer

y = fo re I + €/ EZL...,N)\
g = b o L))
known unknown known  unknown

0, - parameter vector of pixel ¢

1
204 f Radiometric errors: (functions fy,)
e (M e M
206 inear gains
9 » Dark current
N . .
}—é 04 | » Nonlinear gains
S I . .
z 02 True spectrum > 1 function fgé per plxel y4
Spectrum with radiometric errors
W TILITT

> Q reference spectra r(9
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Sparse nonlinear inverse problem
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Radiometric Calibration Using Multiple Reference Spectra

Joint estimation of ISRF and radiometric errors (SPIRITUAL)

» Polynomial model:
P

P
P
Vea = o, (s6a) = D05 (500)” = D05 ((X)H)" a=1,..Q

p=0 p=0
> |terative estimation:

» Step 1: Estimate nonlinearity parameters 8, using Q reference spectra
» Step 2: Estimate ISRFs via sliding window with all reference spectra

Estimation of Correction of

radiometric radiometric ISRF estimation
errors errors

TESA Spectrometer Calibration using Sparse Inverse Problems for Atmospheric Sounding
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Sparse nonlinear inverse problem
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Numerical results - Radiometric calibration using multiple reference spectra

log10 error

ISRF approximation error - MicroCarb (band B1)

764
A [nm]

Mean ISRF approximation error - MicroCarb (band B1)

766 768

— SPIRITUAL 2.2f
224
Radiometric response estimation error - MicroCarb (band B1) g o6
05F ! | ! . | 2
208t
ok
-3r
0.5 . '
760 762
-1 ¥
151
200 400 600 800 1000 _ T
A [nm] e
O 45
o
K=4, P=3, Q=11 g
Competitive performance with SPIRITUAL 1 2 3 4
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Sparse nonlinear inverse problem
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Numerical results - Radiometric calibration using multiple reference spectra

ISRF approximation error - MicroCarb (band B1)

—SPIRITUAL {
OMP-Linear Case 5 \ f
5 -2.5 T ” | \h i
Radiometric response estlmatlon error MlcroCarb (band B1) ,C_’@ “ "‘ i n ‘
0.5F k] H“V" M ‘I ‘ hx“
— 0 [ 3
9 L
g 0.5 760 76 764 766 768
= A [nm]
g 1 Mean ISRF approximation error - MicroCarb (band B1)
1.5
L L L L -1 [ 7
200 400 600 800 1000 S
A [nm] @ -15Fp
o
>
o

o

K=4, P=3, Q=11

N

25E . ; T T . . . . E

Competitive performance with SPIRITUAL
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[ Sparse nonlinear inverse problem with shifts
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Sparse nonlinear inverse problem with shifts
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Sparse nonlinear inverse problem with shifts

Forward model

f ), b VNte t=1,..N
$(<$(\5)\(£,>)e/ A\

known unknown  unknown known unknown

<=
[

I, = Py, oy sparse
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Sparse nonlinear inverse problem with shifts
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Sparse nonlinear inverse problem with shifts

Forward model

r= & g (n) b Dtal=1..M
known unknown unknown  known arilEn

I, = Py, oy sparse

Parameterized nonlinearities:

> f0

» Spectrometer calibration
» Hyperspectral imaging

Normalized intensity

> shifts g¢

» Incorrect values of )\,
» Doppler effect
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Sparse nonlinear inverse problem with shifts
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Sparse nonlinear inverse problem with shifts

Joint estimation of sparse vectors, nonlinearity and shifts

> Shift: A, = Ay + ge(¢)

N,\ N/\
> Joint estimation problem: arg ‘mci)ncz lye — fo o (Re(c)®ax)|3 + MZ leeello
=1 =1

Re(c) £ N (r,W (A + (1))
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Sparse nonlinear inverse problem with shifts
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Sparse nonlinear inverse problem for MicroCarb

Problem in presence of radiometric errors and spectral shifts

Q reference spectra r(@)

>
> 1 function fg, per pixel ¢

» 1 function g, per reference spectrum g
>

Forward model assuming polynomial nonlinearities for pixel ¢, reference spectrum g:
29‘7 ( ré 9 cq))TIg) :
m
foerse (e B (i)

m=0
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Sparse nonlinear inverse problem with shifts
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Sparse nonlinear inverse problem for MicroCarb

Iterative estimation in presence of radiometric errors and spectral shifts - ASPIRIT

> Estimate spectral shift parameters ¢, for the Q reference spectra
» Estimate radiometric parameters 8, for the N, pixels

» Estimate ISRFs via sliding window with all reference spectra

Estimation of Interpolation of Estimation of Correction of
the Q spectral the Q reference radiometric radiometric

ISRF estimation
shifts spectra errors errors
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Motivation 2ar inverse problem Sparse nonlinear inverse problem with shifts

00000@000

erspectives

ric and spectral calibration - Weighted ASPIRIT algorithm

Interpolation of Estimation of Correction of
the Q reference radiometric radiometric ISRF estimation
spectra errors errors

Estimation of the
Q spectral shifts

Increased Increased
weight on weight on flat
spectral lines spectral regions

(T m

— True spectrum
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Sparse nonlinear inverse problem with shifts
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Numerical results - In presence of radiometric errors and spectral shifts

Diff

log10 error

ISRF approximation error

log10 error

T T
—— ASPIRIT
—— W-ASPIRIT |

760 762 764

TESA

760 762 764 766 768
A[nm]

A [nm]

766 768

Measurement reconstruction error and ISRF estimation error versus \ for

K=4 Q=11,P=3and M =3

Promising results with the proposed method
Best performance obtained when using weights

Spectrometer Calibration using Sparse Inverse Problems for Atmospheric Sounding
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Sparse nonlinear inverse problem with shifts
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Optimal Transport with Wasserstein distance

N)\ NA
> Joint estimation problem: arg n'gn g llye — fo, o (Re(c)®ax)|3 + 1 g leeello
a,6e,c 1
» Optimal Transport
x10° x10°
10 3
8| 25
= S
%‘3 ’ Z’w.s Nx
=4 £ arg mcin E Wa(ye, Re(c)ly)
2 05 {=1
-0.4 -0.2 0 0.2 0.4 0.6 -0.4 -0.2 0 0.2 0.4 0.6
o o

Distances between measurements s, and
model R;(c)®oy, versus shift value
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Sparse nonlinear inverse problem with shifts
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Numerical results - In presence of spectral shifts

<]
e
£
5]
=)
-
=3
o

Norme 45 - 0pax = 3
——OT - 6pax = 3

Spectral shift estimation error and
ISRF estimation error versus A for
K =4, M =3 and SNR= 55dB

log10 error

Spectral shift estimation error - MicroCarb (band B1)

200 400 600 800 1000
pixel
ISRF approximation error - MicroCarb (band B1)

760 762 764 766 768
A [nm]
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Sparse nonlinear inverse problem with shifts
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Numerical results - In presence of spectral shifts

Norme £5 - dpax = 38
——OT - dpax = 38

Spectral shift estimation error and
ISRF estimation error versus A for
K =4, M =3 and SNR= 55dB

log10 error

log10 error

Spectral shift estimation error - MicroCarb (band B1)

R R S
ok 4
4+ 4
6 4
8+ 4
o ET— //

200 400 600 800 1000

pixel

ISRF approximation error - MicroCarb (band B1)

760 762 764 766 768
A [nm]
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Conclusion & Perspectives
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Conclusion

> Sparse inverse problem for spectrometer calibration
» Best performance with OMP

> Nonlinear sparse inverse problem models with different nonlinearities
» Competitive performance using EXIP and OMP

> Impact of Shifts

» Importance of including weights
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Conclusion & Perspectives
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Conclusion

» Enhanced calibration strategies for atmospheric spectrometers (MicroCarb, CO2M)

> Sparse inverse problem models enabling high-accuracy recovery of ISRFs, spectral shifts,
and radiometric nonlinearities

» Framework applicable beyond the targeted missions

TESA Spectrometer Calibration using Sparse Inverse Problems for Atmospheric Sounding 39 / 46



Conclusion & Perspectives

» Moving toward operational integration for space instruments

TESA

log10 error

log10 error

AT

ISRF approximation error - band B1

Without errors - y¢ = (rs,Ip)

Spectral shifts - y; = (g(r(), L)

° °
S -1
[
o
=2
et * VWi
3 3 WJM
760 762 764 766 768 760 762 764 766 768
A [nm] A [nm]
Radiometric errors - yg = fo((re,If)) All errors - yr = fe((g(re), Ie))
0 0
-1 S -1
5]
=)
2 5 -2
S

MVl

760 762 764 766 768
A [nm]

760 762 764 766 768
A [nm]
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Conclusion & Perspectives
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Perspectives

Alternative ISRF Estimation Models

> State-space models
» Possible use of Kalman filter

ISRF estimate t-1

ISRFs J,

Prediction

New
observation

St
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Conclusion & Perspectives
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Perspectives

Potential use of Machine Learning

» Neural Network to estimate ISRF
» Learn nonlinear behaviors from data

Spectrum s

"H \‘

ISRFs I,

'wﬂ il M

Reference matrix R
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Conclusion & Perspectives
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Perspectives

Imperfect Knowledge of Reference Spectr

» ISRF estimation with reference spectrum uncertainties

» Blind deconvolution

Original Image Blur and Noise Restoration of Blurred, Error=0.010943

PSF + noise Blind deconvolution
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Conclusion & Perspectives
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Toward integration within CO, Retrieval Algorithms

» Use the proposed inversion methods to retrieve CO,

» Perform joint calibration (level 1) and gas retrieval (level 2)

o

jranster
inversfon

T 4 i i
iy e

el ﬁ' tm

Level 1 = calibrated spectra
(+images, geometry...}
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Thank you for your attention

| look forward to your questions
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Atoms of the dictionaries

Representation of the first atoms in the dictionary constructed using SVD
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Robustness to noise

Mean ISRF approximation error and mean residual as a function of SNR and
method (G, SG, OMP, LASSO, SVD, K-SVD) for MicroCarb (band B1) —
in blue: ISRF estimation errors under the mission criterion; in bold: best

results
ISRF approximation error (%) Residual
Instrument / SNR G SG [OMP| OMP [LASSO [LASSO G SG [OMP| OMP [LASSO|[LASSO
SVD |K-SVD| SVD |K-SVD SVD [K-SVD| SVD |K-SVD

20 dB [[16.28(3.39| 4.58 | 4.37 | 14.38 | 14.23 ||185.5|116.4(112.3| 112.4 | 112.7 | 112.9
MicroCarb 40 dB |{16.27|2.04| 0.54 | 0.56 2.05 237 70.2 | 1.56 | 1.32 | 1.32 1.53 1.70
bande B1 55 dB |/16.27|2.03| 0.29 | 0.33 1833 1.66 |/69.21]| 0.43 | 0.23 | 0.24 0.38 0.61
80 dB |{16.27|2.03| 0.28 | 0.32 1.27 1.68 69.2 | 0.39 | 0.20 | 0.20 0.34 0.60
120 dB|| 8.03 |7.79]| 0.51 | 0.55 0.83 0.73 ||45.07|37.32| 1.11 | 1.13 1.14 1.13
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Robustness to noise in presence of radiometric errors

Mean ISRF approximation error for MicroCarb (band B1) — in blue: ISRF
estimation errors under the mission criterion

ISRF approximation error (%)
Instrument / SNR SPIRITUAL
20 dB 1.01
MicroCarb 40 dB 0.29
bande B1 55 dB 0.27
80 dB 0.27
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ISRF sensitivity to the scene
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ISRF sensitivity to the scene
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Interpolation-induced Mismatch
Mean ISRF error - MicroCarb (band B1)
1B T T T T T T
2t
s
525
o . Measures - variable ISRF
% 3 AN Mode! - variable ISRF
= N Measures - constant ISRF
Model - constant ISRF
-35
4k L L L L L L L i
1 2 3 4 5 6 7 8 9 10

ISRF approxil i e"ﬂfvm:uak MicroCarb (band B1)
T T T T T T T T T

25

log10 error
&

851

AN
‘w w WWW i

L L L L
759 760 762 763 764 765 766 767 768

Spectrometer Calibration using Sparse Inverse Problems for Atmospheric Sounding



Appendix
0000008000000 00

Uncertainties about one ISRF
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Uncertainties about the sliding window

Average ISRF variation over each sliding window - MicroCarb (band B1)
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Uncertainties about the dictionary and the reference spectrum

Approximation error MicroCarb (band B1)
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Error in the selection of the reference spectrum

between the measured spectrum and the spectrum
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Uncertainties about the nonlinearities

Plecewise nonlinear gain functions

2000 40 6000 800 1000 12000 14000 16000 18000
Radiance

> fi(x) = Gnlin(a;x + by)(aix + by)
with o
» Gnlin; piecewise nonlinear gain
P a; multiplicative gain

» b, additive gain

log10 error
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log10 error

Spectrometer Calibration using Sparse Inverse Problems for Atmospheric Sounding



Appendix
00000000000 e000

AXco,,dry air vs lat (y=0.001701x - 1.462334)

points conserves
——- regression lineaire

TR

=20 0 20 40 60
lat (")
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Results for all scenarios and all bands

ISRF approximation error - band B2
Without errors - yg = (r¢, 1) Spectral shifts - yr = (g(re), L)
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Results for all scenarios and all bands

ISRF approximation error - band B3
Without errors - yg = (rs, 1) Spectral shifts - yp = (g(re), L)
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Results for all scenarios and all bands

ISRF approximation error - band B4
Without errors - yg = (rs, 1) Spectral shifts - yp = (g(re), L)
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