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Estimation of Instrument Spectral Response Functions (ISRFs)

An ill-posed problem
For each pixel ℓ = 1, ..., Nλ

▶ 1 wavelength λℓ

▶ 1 observation yℓ ∈ R+

▶ 1 ISRF Iℓ ∈ RN+1

▶ 1 nonlinear function fℓ
▶ 1 reference spectrum: rℓ = π(r , λℓ)

yℓ

known

= fℓ
unknown

(⟨ g
unknown

( rℓ

known

), Iℓ

unknown

⟩) + ϵl
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Contributions of this Thesis

An ill-posed problem
For each pixel ℓ = 1, ..., Nλ yℓ

known

= fℓ
unknown

(⟨ g
unknown

( rℓ

known

), Iℓ

unknown

⟩) + ϵl

▶ Linear inverse problem: yℓ = ⟨rℓ, Iℓ⟩ + ϵl

▶ New model: Sparse representation of ISRFs
▶ Sparse nonlinear inverse problem: yℓ = fℓ(⟨rℓ, Iℓ⟩) + ϵl

▶ Separable nonlinearities [Golub1973]
▶ General model of nonlinearities
▶ Dictionary preconditioning

▶ Sparse nonlinear inverse problem with shifts: yℓ = fℓ(⟨g(rℓ), Iℓ⟩) + ϵl

▶ Model of shifts
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ISRF Estimation as an Inverse Problem

An ill-posed problem
For each pixel ℓ = 1, ..., Nλ

▶ 1 wavelength λℓ

▶ 1 observation yℓ ∈ R+

▶ 1 ISRF Iℓ ∈ RN+1

▶ nonlinearities: functions fℓ and g
▶ 1 reference spectrum: rℓ = π(r , λℓ)

yℓ

known

= fℓ
unknown

(⟨ g
unknown

( rℓ

known

), Iℓ

unknown

⟩) + ϵl
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ISRF Estimation as an Inverse Problem
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An ill-posed problem
For each pixel ℓ = 1, ..., Nλ

▶ 1 wavelength λℓ

▶ 1 observation sℓ ∈ R+

▶ 1 ISRF Iℓ ∈ RN+1

▶ 1 reference spectrum: rℓ = π(r , λℓ)

sℓ

known

= ⟨ rℓ

known

, Iℓ

unknown

⟩ + ϵl
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ISRF Estimation as an Inverse Problem

Assumption: ISRFs Iℓ vary little from ℓ to ℓ + 1

Sliding window W(λℓ) of L + 1 measurements around λℓ

▶ Rℓ = Π (r , W(λℓ)) = [rℓ− L
2
, ..., rℓ+ L

2
] ∈ R(L+1)×(N+1)

▶ sℓ = [sℓ− L
2
, ..., sℓ+ L

2
] ∈ RL+1

Observation model (matrix form)
sℓ = RℓIℓ

Assumptions about ISRF Iℓ: positivity
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Parametric models

Gaussian model 1

Iℓ,βG(x) = AG exp
(

− (λℓ − x − µG)2

2σ2
G

)
, x ∈ ∆

∆ wavelength grid, βG = (AG, µG, σ2
G)T - parameters

Super-Gaussian model 1

Iℓ,βSG(x) = ASG exp
(

−
∣∣∣∣λℓ − x − µSG

wSG

∣∣∣∣kSG
)

, x ∈ ∆

βSG = (ASG, µSG, wSG, kSG)T - parameters

1Beirle S. et al. (2017) – Parameterizing the instrumental spectral response function and its changes by a super-Gaussian and its derivatives,
Atmos. Meas. Tech.
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Proposed non-parametric model

Sparse representation of ISRFs (SPIRIT)

▶ Dictionary Φ ∈ R(N+1)×ND

(SVD of representative ISRFs)

Iℓ ≈ IK
ℓ = Φαℓ =

K∑
k=1

αkΦγk

sℓ ≈ RℓIK
ℓ = Ψℓαℓ

where Ψℓ = RℓΦ ∈ R(L+1)×ND
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ISRF Estimation as a sparse inverse problem

Optimization problem with ℓ0 norm 2

arg min
αℓ

∥sℓ − Ψℓαℓ∥2
2

s.t.∥αℓ∥0 ≤ K

Relaxation via ℓ1 regularization (LASSO)

arg min
αℓ

∥sℓ − Ψℓαℓ∥2
2 + µ∥αℓ∥1

Relaxation via quadratic envelope regularization 3

arg min
αℓ

∥sℓ − Ψℓαℓ∥2
2 + Qγ(µ∥αℓ∥0)(αℓ), γ > 0

2Mallat, S., Zhang, Z. (1993) - Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process.
3Carlsson M. (2019) – On convex envelopes and regularization of non-convex functionals, J. Optim. Theory Appl.
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Experimental Setup and Evaluation Metrics

Data description

▶ Reference spectra: 4A/OP radiative transfer software
▶ Simulated ISRFs for the MicroCarb spectrometer
▶ Measured spectra: s(λl) = (r ∗ Il)(λl) =

∫∞
−∞ r(λl − u)Il(u)du
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Metrics

▶ ISRF approximation errors: Eℓ =
∑N/2

n=−N/2 |Iℓ(n∆) − Îℓ(n∆)|

▶ Residual errors: ρ = 1
Nλ

∑Nλ

ℓ=1 ||sℓ − rℓ Îℓ||22
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Numerical results
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G
 = 69.194

SG
 = 0.445

OMP
 = 0.267

LASSO
 = 3.592

EnvQuad
 = 0.282

K = 3
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Numerical results
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ISRF estimation error (K = 3) and mean ISRF estimation error

▶ Poor performance with parametric models (0.1s)
▶ Limited performance of the LASSO algorithm (0.01s)
▶ Best performance achieved with quadratic envelopes (1s)
▶ OMP: best trade-off between computation time and estimation performance (0.001s)
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Sparse nonlinear inverse problem

Forward model

yℓ

known

= fℓ
unknown

(⟨ g
unknown

( rℓ

known

), Iℓ

unknown

⟩) + ϵl ℓ = 1, ..., Nλ

Iℓ = Φαℓ, αℓ sparse
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Spectrum with nonlinearity

▶ Parameterized nonlinearities: function fθ
▶ Spectrometer calibration
▶ Hyperspectral imaging
▶ Epidemiology
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Description of nonlinearities

Parameterized nonlinearities

▶ fθ bijective
▶ Separable nonlinearity4: fθ(z) =

∑P
p=0 gp(z)θp ∀z ∈ R+

▶ Polynomials5

▶ General model of nonlinearities 6,7

▶ fθ = θ1xθ2

▶ fθ = tanh(θ1x) + θ2x

4Golub,G. H., Pereyra V. (2003) - Separable nonlinear least squares: the variable projection method and its applications, Inverse Probl.
5Altmann Y. et al. (2012), Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery, IEEE Trans.

Image Process.
6Taghvaei A. et al. (2020), Fractional SIR epidemiological models, Sci. Rep.
7Babaie-Zadeh M. et al. (2001), Blind separating convolutive post non-linear mixtures, Proc. 3rd ICA Workshop.
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Iterative optimization method

Extended Invariance Principle (EXIP) with sparsity

▶ Problem formulation with sparsity: arg min
θ,αℓ

∥yℓ − fθ ◦ (Ψℓαℓ)∥2
2 + µ∥αℓ∥0

▶ Resolution method: An iterative approach
▶ Step 1: Estimation of θ : arg min

θ
∥yℓ − fθ ◦ (Ψℓαℓ)∥2

2

▶ Step 2: EXtended Invariance Principle (EXIP)8 for estimating αℓ:
βℓ = g(αℓ) = Ψℓαℓ

arg min
αℓ

[
β̂ℓ − g(αℓ)

]T
R

′′

βℓ
(β̂ℓ)

[
β̂ℓ − g(αℓ)

]
+ µ∥αℓ∥0

where Rβℓ
(βℓ) = ∥ yℓ − fθ ◦ βℓ∥2

2 and R ′′
βℓ

(β̂ℓ) = ∇2Rβℓ
(β̂ℓ)

8Stoica P. & Soderstr T. (1989) - On reparametrization of loss functions used in estimation and the invariance principle, Signal Process.
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Experimental Setup and Evaluation Metrics

Data description

▶ Reference spectra: 4A/OP radiative transfer software
▶ Simulated ISRFs for the MicroCarb spectrometer
▶ Measured spectra: s(λl) = (r ∗ Il)(λl) =

∫∞
−∞ r(λl − u)Il(u)du
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Metrics

▶ ISRF approximation errors: Eℓ =
∑N/2

n=−N/2 |Iℓ(n∆) − Îℓ(n∆)|

▶ Residual errors: ρ = 1
Nλ

∑Nλ

ℓ=1 ||sℓ − rℓ Îℓ||22
▶ Estimation errors for the parameters of the nonlinearities:

rNL = 1
Q
∑Q

i=1
(
fθ(xi) − fθ̂(xi)

)2
, xi ∈ D
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Numerical results - ISRF estimation

▶ Nonlinearity: fθ(z) = θ1
1+exp(−θ2z) + θ2z
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▶ Measured spectrum divided into 14 channels
of Q = 70 wavelengths SNR=55dB

▶ 1 ISRF to estimate per wavelength
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Competitive performance with EXIP / OMP
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Radiometric calibration using multiple reference spectra

MicroCarb spectrometer

yℓ

known

= fθℓ

unknown

(⟨ rℓ

known

, Iℓ

unknown

⟩) + ϵl ℓ = 1, ..., Nλ

θℓ - parameter vector of pixel ℓ
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Radiometric errors: (functions fθℓ
)

▶ Linear gains
▶ Dark current
▶ Nonlinear gains

▶ 1 function fθℓ
per pixel ℓ

▶ Q reference spectra r (q)
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Radiometric Calibration Using Multiple Reference Spectra

Joint estimation of ISRF and radiometric errors (SPIRITUAL)

▶ Polynomial model:

yℓ,q = fθℓ
(sℓ,q) =

P∑
p=0

θℓ
p (sℓ,q)p =

P∑
p=0

θℓ
p

(
(r (q)

ℓ )T Iℓ

)p
, q = 1, .., Q

▶ Iterative estimation:
▶ Step 1: Estimate nonlinearity parameters θℓ using Q reference spectra
▶ Step 2: Estimate ISRFs via sliding window with all reference spectra
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Numerical results - Radiometric calibration using multiple reference spectra
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Numerical results - Radiometric calibration using multiple reference spectra
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Sparse nonlinear inverse problem with shifts

Forward model

yℓ

known

= fℓ
unknown

(⟨ g
unknown

( rℓ

known

), Iℓ

unknown

⟩) + ϵl ℓ = 1, ..., Nλ

Iℓ = Φαℓ, αℓ sparse
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Parameterized nonlinearities:
▶ fθ

▶ Spectrometer calibration
▶ Hyperspectral imaging

▶ shifts gc

▶ Incorrect values of λℓ

▶ Doppler effect
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Sparse nonlinear inverse problem with shifts

Joint estimation of sparse vectors, nonlinearity and shifts

▶ Shift: λ′
ℓ = λℓ + gc(ℓ)

▶ Joint estimation problem: arg min
α,θ,c

Nλ∑
ℓ=1

∥yℓ − fθ ◦ (Rℓ(c)Φαℓ)∥2
2 + µ

Nλ∑
ℓ=1

∥αℓ∥0

Rℓ(c) ≜ Π (r , W (λℓ + gc(ℓ)))
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Sparse nonlinear inverse problem for MicroCarb

Problem in presence of radiometric errors and spectral shifts

▶ Q reference spectra r (q)

▶ 1 function fθℓ
per pixel ℓ

▶ 1 function gcq per reference spectrum q
▶ Forward model assuming polynomial nonlinearities for pixel ℓ, reference spectrum q:

yℓ,q =
P∑

p=0
θℓ

p

(
(r (q)

ℓ (cq))T Iℓ

)p
,

r (q)
ℓ (cq) ≜ π

(
r (q), λℓ +

M∑
m=0

cq
m

(
ℓ

ℓmax

)m
)
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Sparse nonlinear inverse problem for MicroCarb

Iterative estimation in presence of radiometric errors and spectral shifts - ASPIRIT

▶ Estimate spectral shift parameters cq for the Q reference spectra
▶ Estimate radiometric parameters θℓ for the Nλ pixels
▶ Estimate ISRFs via sliding window with all reference spectra
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Radiometric and spectral calibration - Weighted ASPIRIT algorithm
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Numerical results - In presence of radiometric errors and spectral shifts
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Promising results with the proposed method
Best performance obtained when using weights
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Optimal Transport with Wasserstein distance

▶ Joint estimation problem: arg min
α,θℓ,c

Nλ∑
ℓ=1

∥yℓ − fθℓ
◦ (Rℓ(c)Φαℓ)∥2

2 + µ

Nλ∑
ℓ=1

∥αℓ∥0

▶ Optimal Transport
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Numerical results - In presence of spectral shifts
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Numerical results - In presence of spectral shifts
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1 Context and Motivation

2 ISRF Estimation as an Inverse Problem

3 Sparse nonlinear inverse problem

4 Sparse nonlinear inverse problem with shifts

5 Conclusion & Perspectives
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Conclusion

▶ Sparse inverse problem for spectrometer calibration
▶ Best performance with OMP

▶ Nonlinear sparse inverse problem models with different nonlinearities
▶ Competitive performance using EXIP and OMP

▶ Impact of Shifts
▶ Importance of including weights
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Conclusion

▶ Enhanced calibration strategies for atmospheric spectrometers (MicroCarb, CO2M)
▶ Sparse inverse problem models enabling high-accuracy recovery of ISRFs, spectral shifts,

and radiometric nonlinearities
▶ Framework applicable beyond the targeted missions
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Conclusion & Perspectives

▶ Moving toward operational integration for space instruments
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Perspectives

Alternative ISRF Estimation Models

▶ State-space models
▶ Possible use of Kalman filter
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Perspectives

Potential use of Machine Learning

▶ Neural Network to estimate ISRF
▶ Learn nonlinear behaviors from data

Spectrometer Calibration using Sparse Inverse Problems for Atmospheric Sounding 42 / 46



Context and Motivation ISRF Estimation Sparse nonlinear inverse problem Sparse nonlinear inverse problem with shifts Conclusion & Perspectives

Perspectives

Imperfect Knowledge of Reference Spectra

▶ ISRF estimation with reference spectrum uncertainties
▶ Blind deconvolution
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Perspectives

Toward integration within CO2 Retrieval Algorithms

▶ Use the proposed inversion methods to retrieve CO2

▶ Perform joint calibration (level 1) and gas retrieval (level 2)
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Thank you for your attention

I look forward to your questions
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Appendix

Atoms of the dictionaries
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Appendix

Robustness to noise

Mean ISRF approximation error and mean residual as a function of SNR and
method (G, SG, OMP, LASSO, SVD, K-SVD) for MicroCarb (band B1) —

in blue: ISRF estimation errors under the mission criterion; in bold: best
results

ISRF approximation error (%) Residual
Instrument / SNR G SG OMP OMP LASSO LASSO G SG OMP OMP LASSO LASSO

SVD K-SVD SVD K-SVD SVD K-SVD SVD K-SVD
20 dB 16.28 3.39 4.58 4.37 14.38 14.23 185.5 116.4 112.3 112.4 112.7 112.9

MicroCarb 40 dB 16.27 2.04 0.54 0.56 2.05 2.37 70.2 1.56 1.32 1.32 1.53 1.70
bande B1 55 dB 16.27 2.03 0.29 0.33 1.33 1.66 69.21 0.43 0.23 0.24 0.38 0.61

80 dB 16.27 2.03 0.28 0.32 1.27 1.68 69.2 0.39 0.20 0.20 0.34 0.60
120 dB 8.03 7.79 0.51 0.55 0.83 0.73 45.07 37.32 1.11 1.13 1.14 1.13
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Robustness to noise in presence of radiometric errors

Mean ISRF approximation error for MicroCarb (band B1) — in blue: ISRF
estimation errors under the mission criterion

ISRF approximation error (%)
Instrument / SNR SPIRITUAL

20 dB 1.01
MicroCarb 40 dB 0.29
bande B1 55 dB 0.27

80 dB 0.27
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Appendix

ISRF sensitivity to the sceneFigure 11. Examples of ISRFs from uniform scenes (ISRF IN - left) and from different non-uniform scenes displayed in Fig. 12 and FOVs

(ISRF scene - right) (MicroCarb band B1).
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Figure 12. Eight types of scenes (left) with the corresponding ISRFs (FOV 2) (right) for the MicroCarb instrument.

indicate that the outlier ISRF could be first identified by inspecting the residuals between the measured spectrum and the ISRF

reconstructions and then not considered for ISRF estimation.

5.3.5 Impact of uncertainties about the reference spectra and reference ISRFs345

This section analyzes the impact of uncertainties about the ISRFs used to build the dictionary or about the reference spectrum

on the ISRF estimation performance.

Uncertainties about the ISRFs. To evaluate the impact of uncertainties affecting the ISRFs, Gaussian noise is added to

one-third of the ISRFs used to construct the dictionary, with SNR = 40dB and SNR = 60dB . The noisy ISRFs are then made

positive by taking their absolute values and normalized to have a unit area. The results, displayed in the left part of Fig. 16350

19

Spectrometer Calibration using Sparse Inverse Problems for Atmospheric Sounding 50 / 46



Appendix

ISRF sensitivity to the scene
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Figure 13. ISRF estimation errors for ISRFs Scene obtained using a dictionary of uniform ISRFs (top) and mixed ISRFs (bottom).
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Figure 14. Illustration of the generated ISRF (red) at pixel l = 500 in presence of pixel errors as compared to the original ISRF (black) for

the band B1 of MicroCarb.
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Figure 15. Residuals (left) and ISRF estimation errors (right) obtained in presence of pixel errors for the MicroCarb spectrometer using the

different methods (Gauss, Super-Gauss, SVD/KSVD and OMP/LASSO).
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Interpolation-induced Mismatch
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Uncertainties about one ISRF
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Figure 13. ISRF estimation errors for ISRFs Scene obtained using a dictionary of uniform ISRFs (top) and mixed ISRFs (bottom).
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Figure 14. Illustration of the generated ISRF (red) at pixel l = 500 in presence of pixel errors as compared to the original ISRF (black) for

the band B1 of MicroCarb.
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Figure 15. Residuals (left) and ISRF estimation errors (right) obtained in presence of pixel errors for the MicroCarb spectrometer using the

different methods (Gauss, Super-Gauss, SVD/KSVD and OMP/LASSO).
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Uncertainties about the sliding window
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Uncertainties about the dictionary and the reference spectrum

(using K = 4 atoms for the plot in the top row), show that as noise increases, better results are achieved with smaller values

of K in the presence of noise with an increase in ISRF estimation errors. However, the estimation is relatively robust to the

presence of noise affecting ISRFs used to build the dictionary since approximation errors remain below 1% on average for both

noise levels.

Uncertainties about the reference spectrum. In a second experiment, Gaussian noise is added to the reference spectrum,355

with SNR = 20dB, SNR = 40dB and SNR = 60dB. The results are shown in the right part of Fig. 16 (using K = 4 atoms for

the plot in the top row). Using a reference spectrum corrupted by additive noise has clearly a smaller impact on estimation

performance, when compared to degradations affecting ISRFs used to build the dictionary. Note that high noise levels (SNR =

20 dB) are necessary to significantly increase ISRF estimation errors, probably because of an averaging effect when computing

spectral measurement by convolution of the reference spectrum with the ISRF.360

Overall, these results indicate that the proposed method is robust to uncertainties in both the ISRFs and the reference

spectrum, with ISRF approximation errors remaining below 1% for realistic SNR levels.
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Figure 16. Results obtained using SVD and OMP for the different scenarios of noisy ISRFs in the construction of the dictionary (left) and

noisy reference spectra (right) for the band B1 of MicroCarb.

6 Conclusions

This paper studied a new method for estimating the instrument spectral response functions (ISRFs) of spectrometers. This

method is based on a sparse decomposition of the ISRFs into a dictionary of basis functions called atoms. The proposed365

method can be applied to a large variety of instruments as long as the ISRF estimation problem can be formulated as a linear

inverse problem with a sufficient number of measurements (either because the ISRFs do not vary much in a small observation

window, in the spectral or spatial domains, or because observations from several reference spectra can be obtained for the same

ISRF). The method also requires that a sufficient amount and variety of reference ISRFs have been identified and characterized

on the ground to construct the dictionary. We recommend to use the SVD algorithm to build the dictionary using representatives370

ISRFs and the orthogonal matching pursuit (OMP) algorithm to decompose the ISRFs into this dictionary. The performance

of these algorithms is excellent at the price of a very modest computational cost, which suggests its practicality for in-flight

21
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Appendix

Error in the selection of the reference spectrum
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Appendix

Uncertainties about the nonlinearities

▶ fl(x) = Gnlinl(alx + bl)(alx + bl)
with
▶ Gnlinl piecewise nonlinear gain
▶ al multiplicative gain
▶ bl additive gain

▶ Sparsity K = 4
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Appendix

Results for all scenarios and all bands
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Appendix

Results for all scenarios and all bands
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Appendix

Results for all scenarios and all bands
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