How Attention Deep Learning Can Improve Copa
Congestion Control Performance

Emmanuel Lochin
ENAC, TéSA
Toulouse, France

Victor Perrier
ISAE-SUPAERO, TéSA
Toulouse, France

victor.perrier @isae-supaero.fr emmanuel.lochin@enac.fr jean-yves.tourneret@enseeiht.fr

Abstract—Most modern congestion control algorithms, that
aim to optimize delay and throughput, exploit more metrics than
the sole packet loss congestion information. These additional
metrics are mostly based on the round trip time evolution
and allow congestion controls to reach better performance, in
particular on wireless and cellular links as demonstrated by
Copa, BBR, or REMY. Basically, these metrics allow congestion
control to estimate the queuing level of the path and its evolution,
to assess the presence of congestion. Actually, a good estimation
of this level obviously prevents congestion losses, but also allows
assessing a ratio of error link losses among the whole observed
losses. The consistency and accuracy of these metrics are key
to good congestion control performance, and this explains, for
instance, the good performance of Copa currently in production
at Facebook. However, these metrics remain challenging and the
quest of an accurate and practical estimation seems complex.
This paper investigates how a novel deep learning algorithm,
known as Attention, can help in assessing queuing evolution and
status on an end-to-end path. Among others, we focus on the
evolution of the total time spent by packets in the buffers, which
is the key metric of Copa. The results unequivocally demonstrate
a better accuracy of this metric used by Copa.

Index Terms—TCP, Copa, BBR, Congestion Control

I. INTRODUCTION

New congestion control (CC) mechanisms such as Copa [1],
REMY [2], or BBR [3] have demonstrated better performance
[4] than CUBIC, the historical TCP Newreno or any TCP
variant. CUBIC is the current congestion control deployed
over GNU/Linux for instance, BBR is currently deployed by
Google, and Copa is a congestion control for improved video
performance deployed by Facebook'. Such performance can
be achieved due to the addition of novel metrics compared to
the standard ones based on loss signal and timeout estimation.

The algorithm REMY [2], based on machine learning (ML),
was a pioneer in this domain. However, as explained in [4]
and [5], the pace of convergence to achieve a consistent CC
algorithm can take more than 24 hours offline learning and
remains specific to a given architecture. Following REMY,
some improvements based on a similar ML approach have
been proposed with Verus [6], PCC [7], PCC-Vivace. Copa
and BBR rethink the way CC should perform by determining
an optimal operating regime. The former is based on control
theory while the latter is closer to a standard CC algorithm;
and both of them introduce new sensing metrics to assess the

Uhttps://engineering.fb.com/2019/11/17/video-engineering/copa/

ENSEEIHT, IRIT, TéSA

Nicolas Kuhn Patrick Gelard
CNES
Toulouse, France
firstname.lastname @cnes.fr

Jean-Yves Tourneret

Toulouse, France

network congestion level. This optimal objective is given by
a theoretical point corresponding to the standard TCP knee
phase [8].

As a matter of fact, all these novel CC strategies lay on
novel metrics such as total queuing delay as for instance,
in [1], round trip time (RTT) or minimum RTT in [3], [1],
bottleneck bandwidth in [3], etc. While these CC focus on
bringing out new congestion management, the accuracy of the
metrics estimated greatly influences their performance. This
is the rationale of this paper which investigates new metrics
of interest and improves the estimation of existing ones. Our
objective is not to propose a novel CC candidate or seek to
compete with the numerous existing proposals but to improve
the accuracy of these novel metrics proposed by these new CC
using recent trends in ML.

The paper is structured as follows: the next section presents
the basics of new CC algorithms. We then introduce and
explain the metrics of interest; afterward we present the
experimental setup used to validate our assumptions; later
this paper focuses on explaining the choice of deep learning
algorithms and how we trained them. Finally, the last part
presents and explains our results.

II. IN QUEST OF THE OPTIMAL CONTROL POINT

The idea developed in this paper follows a common trend
among recently proposed CC mechanisms: instead of using
only loss signals of a packet to assess the network con-
gestion level (meaning that no acknowledgment packet has
been received for a given sent packet, or a timeout has
been triggered), we define new metrics to better estimate the
network congestion level. As explained in [3] that adopts a
hybrid approach combining delay and loss signals, congestion
control should remain at the optimal control point (see Fig.
1), achieving full capacity while minimizing the queue load.
However, to reach this optimal point, we need better insight
into the queuing evolution of the network bottleneck rather
than considering simple loss signals as illustrated in [3].

To better assess what is this optimal control point, let’s
consider a simple model where a fixed-sized bottleneck queue
with a service p bit/s, a max queue size ¢,,, and a current
queue size or load ¢, is crossed by a single flow at A bit/s.
This flow might encounter three states: 1) if p > A, the queue
is always empty and packets are passed without delay; 2) if

u < Xand q < qm, packets are then stored and the end-to-
end delay increases; 3) finally if 4 < A and ¢; = g,,,, arriving
packets are dropped and severe congestion occurs. The delay
and delivery characteristics considering this bottleneck link are
illustrated in Fig. 1. The problem is thus to operate as close as
possible to this optimum operating point. However and this is
the rationale of this paper, this optimal point cannot be reached
without an accurate estimation of the network congestion level.

TCP Vegas was the first attempt to solve this problem based
on a delay-based CC that estimates the RTT of a flow by track-
ing the time of a sent packet and its corresponding received
ACK (acknowledgment packet). The objective was to interpret
a raise of the RTT as a congestion signal, as illustrated by
the state 2) above (i.e. 4 < A and ¢; < gy,,). However, TCP
Vegas has poor performance in several scenarios [9], which
has led to a hybrid approach combining delay and loss-based
approaches. This was at the origin of BBR, a TCP delay-based
algorithm [3]. BBR is quite similar to TCP Vegas but attempts
to determine both the bottleneck capacity of the path and the
RTT. In other words, BBR combines a novel metric to improve
the robustness of the CC algorithm.

Copa and BBR are the two main CC mechanisms that aim
at operating close to this optimal point. Both algorithms use
delay signals to detect congestion and sense the network load
with a flickering of the capacity as illustrated with Copa in
Fig. 2. When they are in the congestion avoidance phase, both
mechanisms are trying to increase and reduce the throughput
periodically to probe the network congestion level. However,
as shown in [3], these metrics are influenced by several factors
and are difficult to estimate. Once again, this motivates the
present study, which is to explore novel metrics and schemes
to correctly estimate them.

BDP + bottleneck buffer

RTT

optimal control point

‘ TCP operating point ‘

Throughput

Congestion window

3!
Ga

. 1: Optimal control point as shown in [3].

III. METRICS OF INTEREST

All CC strategies detailed in the previous section basically
attempt to estimate the bottleneck queuing size or evolution.

Change point A

sATT/2 1RTT A sATT/2 1RTT
feedback delay 7 feedback delay
A -
255

= : Queue length
= i Period over which] Eﬁr_rre;gggﬁ:ngato
= LY RTTstanding is computed ' g! B
g “» atchangepoinis < | ONap0e PO
[e
B B e @
2
T & Queue length
a corresponding to .

RTTstanding at Change point B

change point A ...

Time 5RTT

Fig. 2: Copa mechanism following [1].

The optimal regime targeted by BBR, Copa, and other new

algorithms is thus strictly linked to the queuing evolution of the

bottleneck. As a matter of fact, we propose to investigate three
new metrics of interest used jointly with an existing metric,
and to assess their relevance and accuracy.

These new metrics are introduced below and illustrated in

Fig. 3:

e Y] is the bottleneck buffer size. Note that the bottleneck
buffer size (with respect to the maximum size) corresponds
to the maximum size of all the buffer sizes along the path.
The heuristic behind that metric is that there is usually one
bottleneck limiting the global performance;

« Y, is the slope of the bottleneck buffer size over the last NV
packets. This feature is computed using a regression over
the available data (if the packet is lost, we cannot access the
buffer load, because the packet never came through). This
feature is important since knowing if a buffer is being filled
or emptied is critical for a CC algorithm. This knowledge
can help the optimal point to be stabilized, (1);

o Y3 is the average time spent inside buffers over the last NV
packets. This feature is similar to Y7, except that all the
queues that are on the path are considered. Note that this
metric is also used in the Copa mechanism;

e Y, is the slope of the time spent inside buffers over the
last N packets. This feature is the equivalent of Y5 for the
variable Y3.

In an obvious manner, having an accurate estimation of
these metrics will undoubtedly improve the performance of
a congestion control algorithm.

IV. EXPERIMENTAL SETUP AND SCENARIO

The experimentations were conducted using the Mininet
emulator and validated using the parking lot scenario depicted
in Fig. 4. Each link has a capacity of 50 Mbps, and a nominal
delay of 10ms. Each queue enables FQ-CoDel by default
with a size of 500 pkts. Packets are sent from the client to
the server. TCP flows are sent between cl, c2, c3, and c4
to maintain a constant network load. Several studies show
that short-lived flows, mainly generated by Web data transfers
caused by user interactions, dominate the Internet traffic [10].
Thus, the TCP traffic is generated in such a way that the length
of the TCP flows respects the Pareto principle (80% of short

48 500 ... Max size of queues
S e Sum of queue sizes
8 400

w“

(o]

2 300

o

N

v 200

)

3

()

2 0 10 20 30 40 50 60

Packet number

Fig. 3: Visualisation of the metrics. The two plots correspond
to the sum of buffer sizes, and to the maximum of the buffer
size along the path of a packet. Y] is the maximum of the
buffer size for the last packet. Y5 is the slope of the plain blue
line. Y3 is the sum of all buffer sizes during the last packet
transmission. Yy is the slope of the plain orange line.

CLIENT SERVER

N\,
TCP flows
‘ c3 ‘ ‘ c4 ‘

Fig. 4: Parking lot topology used for the tests.

flows, 20% of long flows) as shown in Fig. 5 over the long
run. The objective of this first experimentation is to probe the
network congestion level, i.e., the load of the queues at sl,
s2, and s3. The probe flow follows the blue path outlined in
Fig. 4 and is a TCP flow containing real data. Each TCP flow
following the red path has been generated as follows:

« the duration of each TCP connection has a Poisson distri-
bution with parameter A = 1;

o the time between two starting flows has an exponential
distribution with parameter A = 10;

« the server-client pair is randomly selected between the pairs
(cl, c3), (cl, c4) and (c2, c4),

« each TCP flow is generated with the iPerf traffic generator.

This setup enables realistic and variable network conditions:

o the bottleneck is not stable and moves from sl to s2
randomly. We can see the evolution of the queue length
in Fig. 6: both queues can act as the bottleneck depending
on the network load and flows;

o the number of TCP flows changes to mimic a network load
as shown in Fig. 5;

o TCP constantly switches between the slow-start phase and
the congestion avoidance phase. This allows us to obtain
a very diverse distribution of the variables, representing

various kinds of behavior (few flows, congestion, slow-
start/cruise-control phase, unbalance between buffer load...).

=
o

®

Number of flows

o 20 40 60 80 100
Time (s)

(a) Evolution of the number of flows in the network for 100 seconds.
The alternation between high load phases and phase with almost no
TCP flows can be observed.

20000

15000
10000
5000 I I
. B
o 2 4 6 8 10

Number of flows

Count

12 14 16

(b) Histogram of the number of concurrent flows in the network with
a 1 second resolution. There is a majority of short flows.

Fig. 5: Visualization of some flow characteristics.

>00 v\ JJ_ —— Queuel
400 w Queue 2 ‘
9] |
N \
» 300 | | “‘
() [
> M
g 200 ‘w
© 14 il
100 W) r
f T 1
0 100 200 300 400 500
Time (s)

Fig. 6: Example of the evolution of the two bottleneck queue
lengths at s1 and s2 for two different time periods.

V. MACHINE LEARNING (ML) ALGORITHMS USED IN THIS
STUDY

This section investigates the use of ML algorithms to esti-
mate the aforementioned metrics. We seek to analyze whether
we can correlate the network congestion level (i.e., the fours
metrics introduced earlier) with the data that CC algorithms
have access to (ie, delays, loss signals, sending rate/window,
timestamp of sent packets). Note that this is a blind spot of
recent CC mechanisms, which have introduced simple models
to estimate some of the network internal variables (e.g., the
time spent inside the buffers).

To illustrate that, we would like to estimate what is happen-
ing in 7b with the data from 7a. In some cases, a correlation
can be guessed, but an accurate model needs to be constructed.

500
400
300

200

100

Queue size (Number of packets)

0 10 20 30 40 50 60
Packet Number

(a) RTT.

0.3

N

RTT

0.2

0.1

0 10 20 30 40 50 60
Packet Number

(b) Bottleneck queue size.

Fig. 7: Examples of evolution of some metrics during a
window of 64 consecutive packets.

A. Choice of the prediction algorithm.

In this section, we introduce the different ML algorithms
used is this study and justify both their choice and the validity
of the results obtained with these algorithms. We have an input
of dimension 3N + 1 containing both discrete (Boolean) and
continuous variables. The output that we seek to predict is one
of the continuous metrics, which restricts the type of algorithm
that can be considered. We also need a predictor adapted to
regression.

Our first guesses were the use of feed-forward neural
networks, support vector regressions (SVRs), and traditional
time series prediction (ARIMA for example). Feed Forward
Neural networks are quite simple to use but can be hard to
tune, because of a high number of hyper-parameters (number
of layers, size of the layers, choice of the activation function).

However these kinds of algorithms are not adapted to our
problem for the following reasons :

« the input size is fixed for feed-forward neural networks
and SVRs. If these algorithms are trained with a pattern
size of 64, it is impossible to extend the results to
samples having a different size. We would like to have

an algorithm that can adapt to the length of the time-
series. Indeed, the available amount of data depends on
the capacity of the link (the faster the link, the more data),
and of course, including all the data might improve the
accuracy of the results;

« after consulting the state-of-the-art, we noticed that Copa

for example uses a simple estimator in order to compute
Y3, based on RTTsnding— BRI Tiin. RTTstanding 1S the
minimum of the RTT for a short time window whereas
RTT,,iy is the minimum for a longer time period. Copa
works quite well, so our idea is that being able to compute
a minimum from a vector is certainly important if we
seek to get a good estimation of some metrics. However,
it is very difficult for the mentioned ML algorithms to
estimate a maximum function (it is theoretically possible
with neural networks with large complexity but is difficult
in practice).

In order to fill these gaps, we have studied existing ML algo-
rithms that are adapted to time series. These algorithms include
the family of long short-term memory (LSTM) networks [11]
and GRU [12]. While these algorithms allow the first concern
to be bypassed, they still do not allow a minimum/maximum
to be computed. We also investigated Attention [13]. Atten-
tion has become state-of-the-art solution for natural language
processing, and is adapted to time series as well. We found
that Attention allows us to estimate the maximum/minimum
of a vector with ease. Indeed, Attention mechagrlism involves
the following computation: Y = so ftmax(%) with Q K
and V linear transformations of our input vector X, and n the
length of the vector. To illustrate that, if we choose the simplest
linear transformation X = V = @ = K, the resulting vector
is an estimation of the maximum of X where X could be a
vector of RTT expressed in ms.

For instance X = [9.3246,10.4722,11.5280, 12.6615, 10.6212]
leads to
Y =[12.6147,12.6317,12.6417, 12.6486, 12.6334]

Of course, Attention is more complicated than this example,
and knowing the maximum/minimum is not enough to make
a correct prediction. However, this example illustrates the
intuition which lead us to consider that Attention should be
adapted for our task. It was indeed confirmed by the results:
for the moment, Attention-based algorithms achieve the best
performance on our datasets. We thus have chosen to use such
a scheme.

B. Features

As mentioned before, we seek to use ML algorithms to
predict the network congestion level. As we are using an
emulated environment, the internal congestion level is known
at each time instant, which allows supervised ML algorithms
to be considered. We use then the data collected by the probe
flow to estimate the metrics. These collected data are:

« the average rate at which the packets are sent;

« a binary variable indicating which packets have been lost;

o the RTT of each packet, as shown in Fig. 7a. Note that we
have used the complete time series in this work;

« a timestamp indicating when each packet was sent.

As a consequence, the vector of features that will be used at
the input of the ML algorithm is of size 3N + 1.

C. Robustness

The main issue with ML algorithms is that they will not
generalize if learning is conducted in a restricted learning
space (i.e., our emulated environment), which is different
from the real world. In order to study this generalization
capability from our algorithm, we trained our algorithm in
a restricted environment, and then tested it with different
parameters. This way, it was possible to determine whether the
proposed predictor is robust to changes in some of the network
parameters. If some parameter changes have an impact on
the prediction, the learning data set needs to be improved,
and include a higher diversity to improve generalization. The
parameters that we changed to test the robustness of our
estimator include:

« the topology of the network: the number of nodes between
the client and the server;

« the capacity of the links;

« the delay of the links;

« the queuing/scheduling mechanism in the buffers.

VI. RESULTS

Neural networks were trained in a supervised way to predict
the internal congestion level from the features provided by
the CC algorithm. The predictions of our algorithm are then
evaluated in two different ways:

a) error plots: the x axis represents the real value of the
variable to be predicted whereas the y axis is the average error
resulting from that prediction. The line represents the average
of the estimation error, and the area around the line shows the
standard deviation, indicating how the error is spread around
its average value. Note that the y axis has been normalized by
the maximum range of the x axis, to allow comparison within
the total range;

b) multivariate distributions: the actual value of the
variable is represented in the z-axis whereas its prediction is
in the y-axis. This representation shows how the predictions
are distributed around their means. Note that between two
consecutive blue lines, there are 10% of the points of the
scatter plot. The top panel of each figure shows the distribution
of the variable we try to predict (Y7, Y, Y3 or Yy). Finally, the
right panel shows the distribution of the predicted variable.

Fig. 8a shows that the bottleneck load can be predicted
with good accuracy with the proposed ML algorithm. The
important point is to know if the bottleneck is full or in
an empty state, in order to work close to the optimal point
corresponding to the queue almost empty, but used at 100%
of its capacities. The prediction of Y5 (Fig. 8b) is correct and
it provides important information, namely if the queue is being

filled or emptied. However, the prediction around the edge is
slightly worse: the evolution speed is always underestimated.
Table I shows performance measures for the prediction of the
Boolean variable (Y > 0). We can observe that the prediction
is correct in 84% of cases. We think that this information is
also very useful for a CC algorithm, and is complementary to
the knowledge of Y7 and Y3 for finer control. For example,
if we are already working at the optimum control point, and
(Yz > 0), then we can slightly reduce the sending window to
stabilize Y5 around zero, with a low value of Y7.

The proposed ML algorithm is also predicting Y3 (Fig. 8c)
with high accuracy, when compared to the simple Copa pre-
dictor (RTTstanding — BT Tinin): both methods underestimate
the total load on all the buffers (Y3), but our approximation
error is approximately half of that obtained with Copa. Note
again that our aim is not a comparison with Copa or BBR, but
rather to improve the performance of existing CC algorithms.
Predictions of Y; and Y3 show that the proposed algorithm
tends to overestimate the load when the queue is almost
empty, and to underestimate the load when it is not empty.
The estimation provided by Copa is sensitive to the same
phenomenon.

This can be explained by the following reasons:

« when the buffers are full, Copa estimates the load propor-
tionally to RTTs;4nding — LTy This estimation works
if, during the aforementioned time window, the buffers are
empty. This way RTT,,;, should correspond to the RTT
caused by the link, and the estimation should be correct.
However, in practice, especially when we work with large
buffers, the queues are not emptied fully, and RTTs;qnding
is just an overestimation of the RTT of the link. That leads
to an underestimation of the buffer load. Copa uses this
estimation with the hypothesis that Copa is the only CC
being used, but this scenario is not realistic: in a lot of
cases, there are different CC algorithms in competition;

e our ML algorithms based on neural networks or SVRs
are black boxes. Thus, we cannot explain how the load is
precisely computed. Note that a similar underestimation is
observed for these algorithms and for Copa. We think that
this can be explained as follows: if we are working on a
big buffer, we will rarely see the empty state of that buffer,
since the algorithm cannot differentiate between the RTT
caused by the state of the link and the RTT caused by the
minimal load in the buffer;

« there is also a small overestimation of the load of the buffer

TABLE I: Scores for Y5, the slope the bottleneck buffer size
over the last 15 sent packets.

Results
True positives 36 %
False positives 8%
False negatives 8%
True negatives 47%
Precision 0.81
Recall 0.81

when the queues are almost empty.

400

Prediction error (%)
b
S o
Prediction
N w
S &
3 8

100 200 300

Y1 true value

400
100

(al) Errors ¢ 0 100 200

Truth

300 400

(a2) Distribution

(a) Yi: average size in packets of the bottleneck, for the last 15 sent
packets.

1000

Prediction error (%)

Prediction
o

=500
—1000 =500 0

Y2 true value

500 1000

-1000

(bl) Errors

-1000 -500 0
Truth

500 1000

(b2) Distribution

(b) Ya: slope of the average size in packets of the bottleneck, for the
last 15 sent packets.

/\

40 —— our estimation
—— copa estimation

800

600

Prediction error(%)

Prediction

IS
S
S

200 400 600

Y3 true value

800

(c1) Errors ®0 20 a0

Truth

600 800

(c2) Distribution

(c) Y3: average size in packets of all the buffers along the path of the
packets, for the last 15 sent packets.

Fig. 8: Error and prediction of the three variables using
Attention (the error is normalized with the maximum range
of the variable).

VII. CONCLUSION

This paper introduces metrics of interest that aims to
increase CC algorithms overall performance. These metrics
are : the buffer size at the bottleneck; the evolution trend
of that buffer; the total delay on the current path due to
network congestion; and finally the evolution trend of that

delay. Estimating these metrics with good accuracy allows CC
algorithms to better perform. Indeed, these metrics provide
a consistent estimation of the network congestion level, and
allow CC algorithms to correctly react to congestion. We
propose a prediction method based on Attention allowing
challenging metrics to be estimated accurately. To validate
our proposal, we perform real measurements with Mininet.
All the measurements have been challenged by changing the
network topology and the environment variables to effectively
demonstrate the robustness of the method proposed.
Determining whether the pacing of consecutive packets can
lead to a better prediction of the aforementioned metrics is
an interesting prospect: as shown in [14], if the packets are
sent following a specified pattern, some information can be
gained, especially if we are already working on metrics based
on delay. As a result, we are currently investigating the impact
of specific patterns on the accuracy of the metrics estimated.

VIII. ACKNOWLEDGMENTS

The authors would like to thank ISAE-SUPAERO and
CNES for their funding support.

REFERENCES

[1] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet,” in USENIX NSDI, Renton, WA, Apr. 2018, pp.
329-342.

K. Winstein and H. Balakrishnan, “TCP ex machina: computer-generated
congestion control,” in ACM SIGCOMM Conference. ~ Hong Kong:
ACM, Aug. 2013, pp. 123-134.

N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Commun. ACM, vol. 60,
no. 2, p. 58-66, Jan. 2017.

F. Y. Yan et al., “Pantheon: the training ground for internet congestion-
control research,” in USENIX ATC, Boston, MA, Jul. 2018, pp. 731-743.
K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated
congestion control,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
p. 123-134, Aug. 2013.

Y. Zaki, T. Potsch, J. Chen, L. Subramanian, and C. Gorg, “Adaptive
congestion control for unpredictable cellular networks,” SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, p. 509-522, Aug. 2015.

M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “PCC:
Re-architecting congestion control for consistent high performance,” in
USENIX NSDI, Oakland, CA, May 2015, pp. 395-408.

D.-M. Chiu and R. Jain, “Analysis of the increase and decrease al-
gorithms for congestion avoidance in computer networks,” Computer
Networks and ISDN Systems, vol. 17, no. 1, pp. 1-14, 1989.

J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan, “Evaluation of tcp vegas:
Emulation and experiment,” in ACM SIGCOMM, New York, NY, USA,
1995, p. 185-195.

D. Ciullo, M. Mellia, and M. Meo, “Two schemes to reduce latency in
short lived TCP flows,” IEEE Communications Letters, vol. 13, no. 10,
Oct. 2009.

S. Hochreiter and J. Schmidhuber, “LSTM can solve hard long time
lag problems,” Advances in neural information processing systems, pp.
473-479, 1997.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated feedback
recurrent neural networks,” in Proceedings of the 32nd International
Conference on Machine Learning, vol. 37. Lille, France: PMLR, Jul.
2015, pp. 2067-2075.
A. Vaswani et al,
abs/1706.03762, 2017.
V. Konda and J. Kaur, “Rapid: Shrinking the congestion-control
timescale,” in /[EEE INFOCOM, Rio de Janeiro, Brazil, 2009, pp. 1-
9.

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13] “Attention is all you need,” CoRR, vol.

[14]

