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Abstract: This article investigates new strategies to compute accurate low-complexity Log Likelihood Ratio (LLR) values based
on the Bayesian formulation under uncorrelated fading channels for both antipodal and CSK modulations when no Channel State
Information (CSI) is available at the receiver. These LLR values are then used as input to modern error correcting schemes
used in the data decoding process of last generation GNSS signals. Theoretical analysis based on the maximum achievable
rate is presented for the different methods in order to evaluate the performance degradation with respect to the optimal CSI
channel. Finally, Frame Error Rate (FER) simulation results are shown, validating the appropriate performance of the proposed
LLR approximation methods.

1 Introduction

Reliable and precise position, navigation and timing (PNT) infor-
mation is fundamental in safety-critical applications such as Intel-
ligent Transportation Systems (ITS), automated aircraft landing or
autonomous unmanned ground/air vehicles (robots/drones), to name
a few. The main source of positioning information is provided
by Global Navigation Satellite Systems (GNSS) [1], a technology
which has attracted a lot of interest in the last decade. Even if most
of the research has been in the signal processing aspects [2], in
order to overcome the system limitations under non-nominal con-
ditions [3, 4], and data fusion strategies with alternative ranging
technologies [5–8], a key part of GNSS receivers is the data demod-
ulation stage which allow to recover essential information. The latter
has been long disregarded but may be a critical point in harsh
environments, being the main object of this contribution.

In the last generation of GNSS signals, modern error correcting
codes (i.e., such as low-density parity-check (LDPC) or convolu-
tional codes) were considered in the GNSS signal design in order to
enhance the data demodulation performance, especially over harsh
scenarios [9, 10]. The inputs to the corresponding soft decoding
algorithms are the so-called Log-Likelihood Ratio (LLR) values
[11, 12], which represent a statistical test to compare the good-
ness of fit between probabilities of receiving a positive or negative
logic bit. These LLR values can be shown to be sufficient statistics
for the decoding and detection process [13]. Typically, in order to
compute the LLRs, the entire knowledge of the propagation chan-
nel behaviour referred as perfect channel state information (CSI) is
considered. However, this assumption does not hold necessary true
in real-life applications since the CSI might not be fully available
at the receiver [14], yielding a possible decoding loss due to the
incorrect information at the decoding input. This situation can be
further aggravated under urban environments where effects such as
shadowing or multipath reduce the channel capacity at the receiver.

In this work, we focus on the uncorrelated fading channel [11]
which is commonly used to model phenomena such as shadowing or
multipath. This channel is modeled by a fading gain hn and an addi-
tive Gaussian noise with variance σ2. Note that if this parameters are
perfectly known at the receiver (i.e., perfect CSI) the LLR has a well
known closed-form expression [11]. Otherwise, the LLR expression

is unknown and LLR approximations are required. Indeed, when no
CSI is available at the GNSS receiver only one method to compute
such LLR approximation is available in the literature [11], which has
several limitations: 1) this method can only be used with antipodal
modulations and it is not valid for M -ary modulations, such as the
code shift keying (CSK) modulation [15], and 2) it requires a high
decoder complexity in order to compute the LLR approximation,
which may not be useful in practice.

Bearing in mind the lack of practical solutions in the literature,
the goal of this contribution is to provide new strategies to com-
pute low-complexity closed-form LLR approximation expressions
for both antipodal and CSK modulations, considering the uncorre-
lated fading channel and with no CSI available at the receiver. Thus,
the article focus on the following cases:

• Antipodal modulation and GNSS pilot signal (Section 3): most
of the new generation GNSS signals are composed by a data and a
pilot component, therefore two LLR approximation methods are pre-
sented first considering the GNSS pilot signal case, which allows to
estimate some channel parameters at the receiver. The first method
was proposed in [11] based on [16], which seeks to maximize the
mutual information between the transmitted symbol and the LLR,
and is given for completeness. This method provides a good LLR
approximation at expenses of a high complexity burden. To reduce
the computational complexity, and resorting to a Bayesian formula-
tion, a second method based on our previous work [17] is presented.
This method not only reduces the complexity but also provides simi-
lar LLR values. In order to evaluate the performance w.r.t. the perfect
and statistical CSI solutions a study of the capacity is also provided.
• Antipodal modulation and GNSS data signal (Section 4): legacy
GNSS signals may not have a pilot component and/or simple
receiver implementations may only track the data component. In
that context, and w.r.t. the pilot signal case in Section 3, new alter-
natives must be studied. We propose two Bayesian approximations
considering an uncorrelated fading channel, no CSI and a data signal
component. Again, we also provide the channel capacity perfor-
mance analysis of the proposed methods, w.r.t. the perfect CSI case
and the Bayesian approximation with a pilot signal component.
• M -ary CSK modulation and GNSS pilot signal (Section 6): the
CSK is a M -ary modulation that can increase the data rate with-
out losing synchronization performance, thus being a suitable signal
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candidate for futures GNSS applications [15]. We derive a new
low-complexity LLR approximation expression that can be used
over uncorrelated fading channels when no CSI is available at
the receiver. Moreover, since this modern signal is expected to
be transmitted as a data component [12, 18] along with a GNSS
pilot component, the latter can be exploited to infer some of the
channel parameters. Finally, we also provide the channel capacity
performance analysis of the proposed methods.

The article is organized as follows: the system model for the
antipodal modulation and background on LLR expressions consid-
ering both perfect CSI and statistical CSI [17, 19] are provided in
Section 2; LLR approximations for an antipodal modulation with-
out CSI considering a GNSS pilot signal are provided in Section 3,
and without a pilot signal in Section 4; the system model for the CSK
modulation and background on LLR expressions considering perfect
CSI are provided in Section 5; the LLR approximations for the M -
ary CSK modulation without CSI considering a GNSS pilot signal
are provided in Section 6; Results are analyzed for two uncorrelated
fading channels in Section 7 and conclusions are drawn in Section 8.

2 System Model for the Antipodal Modulation
and LLR with Perfect/Statistical CSI

2.1 System Model and LLR with Perfect CSI

Current GNSS signals transmit binary data information, we assume
the transmitted message as a binary vector u = [u1, · · · , uK ] of K
bits. This message is encoded into a codeword c = [c1, · · · , cN ]
of length N > K and mapped to Antipodal symbols (e.g. Binary
Phase-Shift Keying) xn = µ(cn) ∈ {−1, 1}, where we impose
µ(0) = 1 and µ(1) = −1. Each symbol xn is then spread using a
pseudo-random noise (PRN) sequence that can be expressed in vec-
tor form as pn ∈ RL, where L corresponds to the number of chips
of the PRN sequence. Then, the transmitted symbol per coded bit is
given by

xn = xn · pn ∈ RL, n = {1, . . . , N} , (1)

where by convention vectors are defined as column vectors. Then,
chip-level rectangular pulse shaping is used before transmission.
Considering the data demodulation stage of a GNSS receiver, a key
task is to obtain the posterior probability of a transmitted code sym-
bol cn given the observed sample yn. Received signal models for
two relevant (open sky and fading) scenarios are discussed in this
subsection, after relevant LLR concepts are reviewed.

The information in yn is used to compute the LLR value, defined
for the n-th symbol as,

Ln = ln

(
p(cn = 0|yn)

p(cn = 1|yn)

)
= ln

(
p(xn = 1|yn)

p(xn = −1|yn)

)
(2)

This LLR can be used to feed the input of a Soft Input Soft Output
(SISO) error correction decoder [13]. Assuming that cn are identi-
cally and uniformly distributed (i.u.d.) [13] ∀n = 1, . . . , N , (2) can
also be written as

Ln = ln

(
p(yn|xn = 1)

p(yn|xn = −1)

)
, (3)

where equiprobable symbols are assumed. Note that p(yn|xn) rep-
resents the likelihood distribution given a transmitted symbol, which
directly depends on the transmission channel.

• Open Sky Environment

Standard techniques typically assume an additive white Gaussian
noise (AWGN) propagation model. Assuming perfect time and fre-
quency synchronisation, the received baseband symbol sequence at

the chip-level can be written as

yn = xn + wn ∈ RL, n = {1, . . . , N} , (4)

where wn ∼ N (0, L2 · σ2IL), with IL being the identity matrix
of size L. Thus, we denote the normalized output of the matched
filter as yn =

y>n pn
L ∈ R. Then, the normalized received symbol

sequence is

yn = xn + wn ∈ R, n = {1, . . . , N}, (5)

where wn ∼ N (0, σ2) and σ2 is known. In a standard GNSS
receiver this is the symbol model at the output of the prompt correla-
tor, for which the channel is considered to be static over a symbol
period. Note that all symbols yn are affected by the same noise
statistics then the Gaussian likelihood p(yn|xn) is

p(yn|xn) =
1√

2πσ2
e−

(yn−xn)2

2σ2 , (6)

and considering equiprobable symbols the LLR can be computed as

Ln =
2yn
σ2

. (7)

• Fading Environment

If we consider now a GNSS environments characterized by effects
such as shadowing or multipath, the detection function typically used
in this context corresponds to an uncorrelated fading channel with
additive real-valued AWGN. Again, we assume perfect time and fre-
quency synchronisation, the received baseband symbol sequence at
the chip-level can be written as

yn = hn · xn + wn ∈ RL, n = {1, . . . , N} , (8)

where hn denotes the fading gain per chip and wn ∼ N (0, L2 ·
σ2IL), with IL being the identity matrix of size L. Thus, we denote

the normalized output of the matched filter as yn =
y>n pn
L ∈ R.

Then, the normalized received symbol sequence is

yn = hn · xn + wn ∈ R, n = {1, . . . , N}, (9)

where both wn and hn are independent random processes. wn
are i.i.d. centered Gaussian random variables with variance σ2, i.e.
wn ∼ N (0, σ2). hn are also i.i.d. random variables with an asso-
ciated probability density function (pdf) given by p(h), i.e. hn ∼
p(h). It is assumed that hn ≥ 0 and change independently from one
sample to another. All the symbols are again affected by the same
noise statistics and the LLR simplifies to [16]

Ln =
2

σ2
hn · yn , (10)

which explicitly implies perfect CSI, i.e. hn and the variance σ2 are
assumed known. In practice, this assumption does not hold and even
if σ2 can be precisely estimated, the fading gain remains unknown
in most of the situations.

2.2 LLR with Statistical CSI

A relaxation of the perfect CSI situation is to consider that full sta-
tistical CSI is available at the receiver, i.e. σ2 is assumed known or
accurately estimated and hn is an unknown random quantity whose
pdf and parameters are well characterized. Additionally, we con-
sider a binary input memoryless channel where symbols xn are
unknown. From a Bayesian perspective [20], since both xn and
hn are unknown quantities it is sound to consider them as random
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variable. All the statistically relevant information about these vari-
ables is contained in their joint posterior distribution p(xn, hn|yn).
Assuming that xn and hn are independent

p(xn, hn|yn) ∝ p(yn|xn, hn)p(xn, hn)

= p(yn|xn, hn)p(xn)p(hn) , (11)

where the first term corresponds to the likelihood of observations
given the unknowns and the second term represents the a priori
knowledge on xn and hn. From (9) the likelihood distribution is

p(yn|xn, hn) ∼ N (µ, σ2), (12)

with mean µ = hn · xn and known variance σ2. According to the
LLR definition (2) we are interested in the marginal distribution,

p(xn|yn) =

∫∞
−∞

p(xn, h|yn)dh, (13)

which leads to

Ln = ln

( ∫∞
−∞ p(xn = 1, h|yn) dh∫∞
−∞ p(xn = −1, h|yn) dh

)
(14)

= ln

( ∫∞
−∞ p(yn|xn = 1, h)p(h) dh∫∞
−∞ p(yn|xn = −1, h)p(h) dh

)
. (15)

since xn are equiprobable. In order to model a GNSS urban envi-
ronment it is common practice to use the 2-state Prieto model [21].
Nevertheless, this model does not have a closed-form expression for
the channel gain pdf p(h). An alternative proposed in [12] is to con-
sider a Rice distribution. However, as noted in [12], the LLR has no
closed-form and in practice its use is computationally too complex.
In addition, the statistical CSI required to compute the LLR may not
be available, therefore different alternatives must be accounted for,
being the object of the rest of the article.

3 Antipodal GNSS Data Demodulation without
CSI for a Pilot Signal Component

In this section we present two methods to compute the LLR approx-
imation when no CSI is available at the receiver, but some channel
parameters can be inferred by means of a GNSS pilot component,
which is typically available in new generation GNSS signals. For
instance, the GPS L1C signal is composed of two different compo-
nents: a data component used to transmit the C/NAV-2 message [22]
and a pilot component which transmits a secondary known code [22].
This secondary code can be used as a learning/training sequence as
described in this section.

3.1 Best LLR Linear Approximation (BLA)

For completeness we introduce the method proposed in [16] and
used for a GNSS data component in [12]. Motivated by (10), this
method computes the coefficient α that provides the best linear
approximation of the LLR as

Ln = αyn . (16)

The scaling factor α is obtained by maximizing the mutual informa-
tion I (L;X) between the transmitted symbol X and the detector
input L, both being random variables whose realizations xn and Ln
are observed at the receiver,

α = arg max
α

I (L;X) , (17)

where the mutual information is defined as,

I (L;X) = H (X)−H (X|L) , (18)

with H (X) and H (X|L) the entropy of X and the conditional
entropy ofX given L, respectively. When considering a memoryless

binary input symmetric output channel and consistent LLR values,
this expression can be expressed as a function of the LLR pdf at the
receiver input [23], considering {X = +1}:

I (L;X) = 1−
∫∞
−∞

log2

(
1 + e−L

)
p (L|X = +1) dL . (19)

This approximate criterion is derived from the capacity associ-
ated with a binary input memoryless channel, C = I (L;X) = 1−
EL|X=+1

[
log2(1 + eL)

]
, for which the conditional pdf of the true

LLRs has been replaced by the conditional pdf of the approximated
ones. When considering C = I (L;X) it can be shown that the
conditional pdfs given the true LLRs are both symmetric and con-
sistent (see [16]). The latter condition is not necessary fulfilled for
p
(
L̂|X

)
and the quantity Î

(
L̂;X

)
cannot be interpreted as a true

mutual information quantity. However, this quantity can be used as
a good approximate measure, as proved in [16] where this quan-
tity is maximized for the best linear LLR approximation. Notice that
the proposed optimization method [16] assumes the knowledge of
the linearly approximated LLRs conditional pdf. However, in real
scenarios this is unknown at the receiver and one has to resort to
a numerical resolution (which it is often computationally demand-
ing) in order to estimate the approximated LLRs conditional pdf. To
overcome this limitation, one can resort to the corresponding empir-
ical mean estimator as done in [11, 12] through the time average
estimation proposed in [24],

Î
(
L̂;X

)
≈ 1− 1

K

K∑
k=1

log2

(
1 + e−xkL̂k

)
, (20)

where K is the number of samples used to estimate Î
(
L̂;X

)
.

Notice that this method needs a learning sequence (i.e., known
values xk). This information can be directly obtained through the
symbols of the GNSS pilot component. Finally, in order to compute
α, one can apply a one-dimensional search method [25] based on the
objective function (20). We underline that that this method does not
require knowledge of σ2, therefore no CSI is required.

3.2 Bayesian LLR Linear Approximation

Recall from Section 2.2 that the problem of computing the LLR val-
ues involve solving the integrals in (14), for which we have to select
a prior distribution for hn. In [11] the pdf p(h) was selected to be a
Rice distribution, leading to a complex LLR expression for practical
applications. In Bayesian inference, a common approach is to select
a prior distribution to be conjugate of the likelihood distribution,
which results in a posterior distribution that is of the same family
as the a priori, where only the parameters need to be updated [26].
This idea was exploited in [17] to provide a simple low-complexity
closed-form LLR approximation for M-ary modulations over uncor-
related fading channels. Given that the likelihood (12) is Gaussian,
the conjugate prior distribution for hn in (11) is also Gaussian [20],

hn ∼ N (µh, σ
2
h) , (21)

where the pdf parameters (i.e., µh and σ2
h) need to be adjusted

according to the unknown parameters’ uncertainty. The marginal
distribution in (14) is obtained by solving the integral

p(xn|yn) ∝
∫∞
−∞

e−
(yn−hxn)2

2σ2 e
− (h−µh)2

2σ2
h dh , (22)

which can be shown to be another Gaussian (refer to [17])

p(xn|yn) ∝ e

− (xn−yn/µh)2

2

(
σ2+σ2

h
µ2
h

)
∝ N

(
yn
µh
,

(
σ2 + σ2

h

µ2
h

))
, (23)
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and the corresponding LLR are

Ln =
2ynµh(
σ2 + σ2

hn

) , (24)

where similar to (16) the resulting LLR approximation is a linear
function of yn. Additionally, we underline that under the AWGN
channel (i.e., µh = 1 and σ2

h = 0) the LLR in (24) reduces to the
Gaussian LLR solution in (7). Notice that (24) requires the knowl-
edge of σ2, as well as µh and σ2

h. The latter values can be obtained
by resorting to the maximum likelihood (ML) estimates [17]:

µ̂h =
1

K

K∑
k=1

ykxk , σ̂2
h =

1

K

K∑
k=1

(ykxk − µ̂h)2 − σ2 .

(25)
where K is the number of samples used to estimate µh and σ2

h,
xk is the k-th symbol of a binary learning sequence (i.e., the
known secondary code from the GNSS pilot component) and yk
is the k-th received pilot symbol. Finally, the Bayesian LLR linear
approximation is given by

Ln =
2ynµ̂h(

1
K

∑K
k=1 (ykxk − µ̂h)2

) . (26)

Figure 1 summarizes the different approaches in Section 3.

Fig. 1: Linear LLR approximations: (top) estimating I(L;X)
through time average, and (bottom) the Bayesian approach.

3.3 Performance of the LLR Approximation Methods for the
Antipodal Modulation and a Pilot Signal

In this section we evaluate the LLR approximations over well-
known uncorrelated fading channels in order to compare the channel
capacity performance with the perfect CSI and statistical CSI cases.

• Normalized Rayleigh Fading Channel

The normalized Rayleigh fading channel [27] is typically used to
describe phenomena such as shadowing or multipath, and it is well
known to provide a closed-form solution of the LLR (14), i.e., when
full statistical CSI is considered. As a consequence, we can obtain
an upper bound for the LLR approximation performances. Follow-
ing [27], the LLR expression (14) when considering a normalized
Rayleigh fading channel is

Ln = log

 Φ
(
y/
√

2σ2(1 + 2σ2)
)

Φ
(
−y/

√
2σ2(1 + 2σ2)

)
 , (27)

where Φ(z) = 1 +
√
πzez

2

erfc(−z), and erfc(·) represents the
complementary error function. We evaluate the upper bound of the
maximum achievable rate R0 [28] of the LLR linear approxima-
tions as well as the LLR expression with full statistical CSI (27) and
perfect CSI (7), (10). To compute such maximum achievable rate
we follow the methodology proposed in [29] based on the extrinsic
information transfer (EXIT) chart analysis.
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Fig. 2: Antipodal modulation, no CSI and pilot signal: upper bounds
of maximum achievable rate R0 for: (top) a normalized Rayleigh
channel, and (bottom) a 2-state Prieto channel model.

Figure 2 (top plot) illustrates the open sky R0 upper bound, i.e.,
AWGN channel, for i) the perfect CSI case (7), and ii) the Bayesian
LLR linear approximation (26) when 12 seconds of pilot symbols
are retrieved. Moreover, considering the normalized Rayleigh chan-
nel the R0 upper bound is shown for iii) perfect CSI (10), iv) full
statistical CSI (27), v) Bayesian LLR linear approximation (26), and
vi) the LLR approximation (16), considering that the mutual infor-
mation I (L;X) in (17) is computed from (19) when 12 seconds of
pilot symbols are retrieved. We can observe that:

i) Channel capacity loss caused by the fading effect: considering
an ideal coding scheme of rate R = 1/2, the channel capacity loss
between the AWGN channel and the normalized Rayleigh channel
(when perfect CSI solutions are assumed) is around 1.6 dB. Notice
that this loss can be reduced when applying lower rate channel cod-
ing schemes. As an example, the channel capacity difference with a
channel coding scheme of rate R = 1/3 is around 0.9 dB.
ii) Channel capacity loss due to channel uncertainty: considering
an ideal coding scheme of rate R = 1/2, the channel capacity loss
is around 0.8 dB between the full statistical CSI solution and the
perfect CSI solution. Moreover, the best and Bayesian LLR linear
approximations provide the same channel capacity than the full sta-
tistical CSI solution, proving that when no perfect CSI is available,
only the first and second order moments of the fading distribution are
required to achieve an optimal solution. Finally, when the transmis-
sion channel is characterized by an AWGN, the Bayesian solution
(26) converges to the perfect CSI solution (7).
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• 2-State Prieto Channel

In a second scenario, we propose to evaluate the performance in
a more realistic GNSS urban scenario. We consider a 2-state Prieto
channel model [21] for a vehicle speed of 50 km/h and a satellite
elevation angle of 40 degrees. In this example, we consider the data
component of the signal GPS L1C which is characterized by a sym-
bol rate of 100 symbols/s and a PRN code of length 10230 chips.
The results are shown in Figure 2 (bottom plot), where we illustrate
again the upper bound of the maximum achievable rate.

In this case, considering perfect CSI and a coding scheme of rate
1/2, the channel capacity loss is around 6 dB w.r.t. the AWGN
scenario. Notice that for this type of scenarios, error correcting
schemes with lower rates are highly recommended. On the other
hand, we verify that the best and Bayesian linear approximations,
((16) and (24)), almost converge to the perfect CSI solution (loss
around 0.8 dB), proving the validity of such approximations. Finally,
we underline that no full statistical CSI expression is available since
p (L|X = +1) has no closed-form and is unknown at the receiver.

To conclude, we provide a brief comment on the complexity of
the LLR linear approximation methods (refer to Figure 1): 1) the
first method requires an online estimation technique which needs
to resort to an iterative one-dimensional search method, based on a
cost function involving log / exp function evaluations. Note that the
complexity of this method directly depends on the number of sam-
plesK to estimate Î(L̂;X); ii) the second method avoids to compute
the one-dimensional search, but instead the first and second order
moments of the fading distribution have to be estimated. Note from
(25) that only simple arithmetical operations are required. Again, the
complexity of the method depends on the number of samplesK used
to estimate µh and σ2

h, but for equal number of samples the Bayesian
solution is computationally less expensive than the best linear one.

4 Antipodal GNSS Data Demodulation without
CSI for a Data Signal Component

The previous section focused on LLR approximations when a pilot
component (i.e., training sequence) is available. However, legacy
GNSS signals may not have a pilot component, therefore different
alternatives must be accounted for. In the sequel we introduce data
demodulation strategies considering an uncorrelated fading channel,
no CSI and a data signal component.

4.1 Bayesian LLR Approximation without Training Data:
MLE of µh and σ2

h through Expectation-Maximization

In contrast with Section 3.2, where the underlying pilot signal
assumption allowed to compute the ML estimates in (25) which are
in turn used to compute the LLR approximation (26), in this case we
do not have access to such training sequence. Therefore we propose
a method to derive the µh and σ2

h ML estimates when no learning
sequence is available. The marginal likelihood p(yn) = p(yn|xn =
1)p(xn = 1) + p(yn|xn = −1)p(xn = −1) is a mixture of two
Gaussian distribution:

yn ∼ N (µhxn, σ
2
h + σ2)p(xn = +1)

+N (µhxn, σ
2
h + σ2)p(xn = −1)

=
1

2
N (µh, σ

2
h + σ2) +

1

2
N (−µh, σ2

h + σ2)

=
1

2
N (µh, σ

2
a) +

1

2
N (−µh, σ2

a), (28)

with σ2
a = σ2

h + σ2. Thus, we can compute Λ(yn;µh, σ
2
a) =

log p(y1, . . . , yN ) as

log (Λ) =

N∑
n=1

log

(
1

2
√

2πσ2
a

(
e
− (yn−µh)2

2σ2a + e
− (yn+µh)2

2σ2a

))
,

(29)

and obtain the maximum likelihood estimates of µh and σ2
a as the

roots of the partial derivatives with respect to µh and σ2
a. The partial

derivative with respect to µh is

d log (Λ)

dµh
=

N∑
n=1


(
yn+µh
σ2
a

)
e
ynµh
σ2a −

(
yn−µh
σ2
a

)
e
− ynµh

σ2a

e
ynµh
σ2a + e

− ynµh
σ2a

 ,

(30)
and we have to solve for d log (Λ)

dµh
= 0, which has no analytical

solution. However, conditional on a specific realization of the latent
variables xn we could use the µh estimate from the previous Section
3.2. We first obtain the (discrete) posterior distribution of xn given
the observations:

γx1 = p(xn = 1|yn) =
p(yn|xn = 1)p(xn = 1)

p(yn)

=
1
2N (µh, σ

2
a)

1
2N (µh, σ

2
a) + 1

2N (−µh, σ2
a)

=
e
ynµh
σ2a

e
ynµh
σ2a + e

− ynµh
σ2a

, (31)

and

γx−1 = p(xn = −1|yn) =
p(yn|xn = −1)p(xn = −1)

p(yn)

=
1
2N (−µh, σ2

a)
1
2N (µh, σ

2
a) + 1

2N (−µh, σ2
a)

=
e
− ynµh

σ2a

e
ynµh
σ2a + e

− ynµh
σ2a

. (32)

Then, (30) can be expressed as

d log (Λ)

dµh
=

N∑
n=1

(
γx1

yn + µh
σ2
a

− γx−1

yn − µh
σ2
a

)
, (33)

and we can estimate µh as,

µ̂h =
1

N

(
N∑
n=1

γx1yn −
N∑
n=1

γx−1yn

)
. (34)

We can proceed similarly to estimate σ2
a,

d log (Λ)

dσ2
a

=

N∑
n=1


(

(yn+µh)2

2(σ2
a)2

)
e
ynµh
σ2a +

(
(yn−µh)2

2(σ2
a)2

)
e
− ynµh

σ2a

e
ynµh
σ2a + e

− ynµh
σ2a

− 1

2σ2
a


=

N∑
n=1

(
(yn + µh)2

2
(
σ2
a
)2 γx1 +

(yn − µh)2

2
(
σ2
a
)2 γx−1 −

1

2σ2
a

)
, (35)

and obtain σ2
a as (i.e., d log (Λ)

dσ2
a

= 0),

σ̂2
a =

1

N

(
N∑
n=1

γx1 (yn − µ̂h)2 +

N∑
n=1

γx−1 (yn + µ̂h)2

)
.

(36)
Notice that in the previous equations it was not taken into account
that γx1 and γx−1 depend on the unknown parameters. An iterative
Expectation-Maximization (EM) algorithm can be used in order to
estimate µ̂h and σ̂2

a. The resulting EM algorithm is as follows:

1. Initialize µh and σ2
a and evaluate the log-likelihoods.

2. E-step: Evaluate the posterior probabilities γx1 and γx−1 using
the current values of µh and σ2

a with (31) and (32).
3. M-step: Estimate the new parameters µ̂h and σ̂2

a with the updated
values of γx1 and γx−1 using (34) and (36).
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4. Evaluate the log-likelihoods with the updated parameter esti-
mates. If the log-likelihood change is below a given small threshold
ε, stop. Otherwise, go back to the E-step.

Finally, the resulting expression for the LLR values with no CSI
and a data channel signal is

Ln =
2ynµ̂h
σ̂2
a

. (37)

4.2 Bayesian LLR Approximation without Training Data:
Rough Estimation of µh and σ2

h

To avoid the iterations in the previous EM-based solution, a sim-
pler low complexity approach to derive µh and σ2

h ML estimates is
proposed. The ML estimates in (25) can be approximated as,

µ̂h =
1

N

N∑
n=1

|yn| , σ̂2
h =

1

N

N∑
n=1

(|yn| − µ̂h)2 − σ2 . (38)

where yn is the n-th received symbols, and N is the number of
received symbols used to estimate µh and σ2

h. The corresponding
LLR expression without CSI and a data signal is,

Ln =
2ynµ̂h(

1
N

∑N
n=1 (|yn| − µ̂h)2

) . (39)

Notice that the approximated ML estimates in (38) are biased, in
contrast to the true ones in (25). As expected, this bias is made appar-
ent only at low SNR values. As it will be shown in next Section 4.3
this has a minor impact in terms of maximum achievable rate R0
with respect to the perfect CSI case, but a clear impact is present at
low SNR for the fading distribution first and second order estimation
performance (refer to Fig.4). The fact that such bias has almost no
impact on the maximum achievable rate translates into a marginal
impact in the frame error rate analysis shown in Section 7.1.

4.3 Performance of the LLR Approximation Methods for the
Antipodal Modulation and a Data Signal

As done in Section 3.3 for the pilot signal scenario, we can assess the
upper bound of the maximum achievable rateR0 for approximations
(37) and (39), results shown in Figure 3. The two approximations
are compared to the perfect CSI case for both AWGN and Rayleigh
channel, as well as to the Bayesian LLR linear approximation (26)
considering a pilot signal.
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Fig. 3: Antipodal modulation, no CSI and data signal: upper bounds
of maximum achievable rate R0 for a normalized Rayleigh channel.

Notice that all the LLR approximation methods converge to the
same solution. However, it is well known that finite length codes
used in real coding schemes are not optimal, thus it is likely that
in real scenarios these methods will not be equivalent. Then, in
order to evaluate this issue we illustrate in Figure 4 the estimation
accuracy of the first and second order moments of the fading distri-
bution when 12 seconds of signal are retrieved (i.e., obtained from
2000 Monte Carlo runs). Note from these results that when a pilot
is available at the receiver, an accurate estimation of the first and
second order moments is achieved independently of the signal-to-
noise ratios (SNR). On the other hand, when no pilot is available, the
EM-based method does not correctly estimate the parameters in low
SNR regimes. In addition, the estimation accuracy using the rough
approximation (38) is significantly degraded and only performs well
for high SNR. Thus, it is expected that the error correcting perfor-
mance of real channel coding schemes when considering both LLR
approximations (37) and (39) will be degraded w.r.t the Bayesian
approximation exploiting a pilot signal (26). Because the EM-based
solution performs better than (38), we expect the error correction
performance using the former (37) be better than with the latter (39).
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Fig. 4: Fading distribution first (top) and second (bottom) order
moments estimation, using the Bayesian LLR approximation meth-
ods with pilot and data signal components.

5 System Model for the M-ary CSK and LLR with
Perfect CSI

The code shift keying (CSK) modulation [30] is aM -ary orthogonal
modulation which was first proposed as a GNSS signal candidate in
[15]. Each symbol CSK x` corresponds to a different circular shift of
a unique PRN sequence c. Let S` = {`, 1 ≤ ` ≤ 2Q = M} be the
set of data symbols, withQ the number of bits to be transmitted, then
the PRN sequence c` associated to the symbol x`, ` ∈ S`, satisfies
the following rule:

c`(i) = c(mod(i−m`, L)), ∀` ∈ [1, 2Q], ∀i ∈ [1, L], (40)

where i represents the PRN chip, m` is the integer number corre-
sponding to the `-th symbol shift, L is the number of chips in the
PRN sequence and mod(x, y) is the modulus operation. As an exam-
ple, in Fig. 5, it is illustrated the PRN sequences associated to the
4-ary CSK modulation with a number of chips L = 10230.

At the transmitter the information bits are usually encoded by an
error correction code, generating a codeword of lengthN bits. Then,
the N codeword bits are grouped in N/Q CSK symbols of Q bits.
Finally, the M -ary CSK associates each CSK symbol x` to a PRN
sequence c` by right shifting the fundamental PRN sequence c.
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Fig. 5: CSK Symbol Waveform Example

5.1 CSK Data Demodulation in Open Sky Environments

As presented in Section 1, an open sky environment can be modelled
by an AWGN channel. Then, assuming an AWGN channel and per-
fect time and frequency synchronisation , the n-th received sequence
yn corresponding to the transmitted CSK PRN sequence cn,` asso-
ciated to the vector sequence [b1, b2, . . . , bQ] and the CSK symbol
x` can be expressed as:

yn,i = cn,i,` + nn,i, (41)

where i represent the PRN chip, nn,i ∼ N (0, σ2) are zero-mean
i.i.d. Gaussian noise samples with variance σ2 = N0/2. Note that
coherent reception is a valid assumption since a GNSS receiver capa-
ble to demodulate the CSK signal is also tracking in parallel the
pilot signal component, which may provide a precise phase estima-
tion. Let us now define xj , 1 ≤ j ≤ 2Q−1 the transmitted symbol
if bq = 1, and xt, 1 ≤ t ≤ 2Q−1 the transmitted symbol if bq = 0.
Therefore, considering perfect synchronization and following the
LLR derivation in [18], the LLR expression for the bit bq is given
by

Ln,bq = log


∑
∀j

(
e

1
σ2

1
L

∑L
i=1 yn,icn,i,xj

∏
z 6=q P (bj,z)

)
∑
∀t

(
e

1
σ2

1
L

∑L
i=1 yn,icn,i,xt

∏
z 6=q P (bt,z)

)
 ,

(42)
where P (bj,z) denotes the probability of bj,z which is z-th bit of
the transmitted symbol xj and P (bt,z) denotes the probability of
bt,z which is the z-th bit of the transmitted symbol xt. Moreover,
the term 1

L

∑L
i=1 yn,icn,i,xl corresponds to the normalized correla-

tion between the n-th transmitted and n-th received PRN sequences.
When a Bit Interleaver Coded Modulation (BICM) scheme [18, 28]
is implemented at the receiver and equiprobable transmission bits
are assumed, the LLR can be simplified to,

Ln,bq = log


∑
∀j

(
e

1
σ2

1
L

∑L
i=1 yn,icn,i,xj

)
∑
∀t

(
e

1
σ2

1
L

∑L
i=1 yn,icn,i,xt

)
 . (43)

5.2 CSK Data Demodulation in Fading Environments with
Perfect CSI

Assuming the uncorrelated fading channel defined in Section 2, the
received sequence can be written as

yn,i = hn · cn,i,` + nn,i, (44)

where nn,i ∼ N (0, σ2) are zero-mean i.i.d. Gaussian noise sam-
ples with variance σ2 = N0/2 and hn is the fading gain, which is
assumed to be invariant within the symbol, and is also defined as
an i.i.d. random variable with associated pdf give p(h) and h ≥ 0 .
Again, coherent reception and perfect synchronization are assumed.
The LLR expression for the bit bq over the uncorrelated fading

channel can be derived from (42) as

Ln,bq = log


∑
∀j

(
e

1
σ2

1
L

∑L
i=1 yn,ihncn,i,xj

∏
z 6=q P (bj,z)

)
∑
∀t

(
e

1
σ2

1
L

∑L
i=1 yn,ihncn,i,xt

∏
z 6=q P (bt,z)

)


(45)
where hn is considered known at the receiver. Note that the previous
equation can be simplified considering a BICM scheme,

Ln,bq = log


∑
∀j

(
e

1
σ2

1
L

∑L
i=1 yn,ihncn,i,xj

)
∑
∀t

(
e

1
σ2

1
L

∑L
i=1 yn,ihncn,i,xt

)
 , (46)

where perfect CSI is assumed in order to compute the LLR.

6 A Bayesian Approach to CSK Demodulation in
Fading Environments without CSI

In this sequel we derive the LLR values for a CSK modulation con-
sidering that no CSI is available at the receiver. In that perspective,
we adapt the Bayesian method in Section 3.2 to compute a closed-
form LLR expression. From the definition of the LLR in (3), we
redefine the LLR expression for the bit bq over the uncorrelated
fading channel as

Ln,bq = log

(
p(yn|bq = 1, hn)

p(yn|bq = 0, hn)

)
, (47)

where

p(yn|bq = 1, hn) =
∑
∀j

p(xj)

∫∞
−∞

p(yn|xj , h)p(h)dh (48)

p(yn|bq = 0, hn) =
∑
∀t
p(xt)

∫∞
−∞

p(yn|xt, h)p(h)dh (49)

We follow the approach in [17] and consider a conjugate prior
distribution for hn,

hn ∼ N (µh, σ
2
h) , (50)

where as in (21) µh and σ2
h need to be adjusted according to the

channel uncertainty. From (48) and (49) we are interested in

∫∞
−∞

p(yn|xj , h)p(h)dh ∝
∫∞
−∞

L∏
i=1

e−

(
yn,i−hcn,i,xj

)2
2σ2 e

− (h−µh)2

2σ2
h dh

(51)∫∞
−∞

p(yn|xt, h)p(h)dh ∝
∫∞
−∞

L∏
i=1

e−
(yn,i−hcn,i,xt)

2

2σ2 e
− (h−µh)2

2σ2
h dh

(52)

In order to compute the LLR expression, we only need to compute
those terms which depend on cn,i,xj and cn,i,xt (refer to Appendix
9),

κn,1 = −
2µh

1
L

∑L
i=1 yn,icn,i,xj +

σ2
h

σ2

(
1
L

∑L
i=1 yn,icn,i,xj

)2

2
(
σ2 + σ2

h

) ,

(53)

κn,2 = −
2µh

1
L

∑L
i=1 yn,icn,i,xt +

σ2
h

σ2

(
1
L

∑L
i=1 yn,icn,i,xt

)2

2
(
σ2 + σ2

h

) .

(54)

Finally, (47) is given by

Ln,bq = log

(∑
∀j e
−κn,1P (xj)∑

∀t e
−κn,2P (xt)

)
. (55)
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Considering that the q-th bit of the symbol xj is always equal to 1
and the q-th bit of the symbol xt is always equal to 0, then (55) is

Ln,bq = log

(
P (bq = 1)

∑
∀j e
−κn,1 ∏

z 6=q P (bj,z)

P (bq = 0)
∑
∀t e
−κn,2

∏
z 6=q P (bt,z)

)
. (56)

When considering that a BICM scheme is implemented at the
receiver, the previous expression can be written as,

Ln,bq = log


∑
∀j e

2µh
1
L

∑L
i=1 yn,icn,i,xj

+
σ2h
σ2

(
1
L

∑L
i=1 yn,icn,i,xj

)2
2(σ2+σ2

h)

∑
∀t e

2µh
1
L

∑L
i=1

yn,icn,i,xt
+
σ2
h
σ2

( 1
L

∑L
i=1

yn,icn,i,xt)
2

2(σ2+σ2
h)

 .

(57)
Notice that to compute (57) several exponential operations are
required. A useful metric to reduce the computational complexity
is the log-sum approximation [31], and the LLR approximation is

Ln,bq = log

maxxj e

2µh
1
L

∑L
i=1 yn,icn,i,xj

+
σ2h
σ2

(
1
L

∑L
i=1 yn,icn,i,xj

)2
2(σ2+σ2

h)

maxxt e

2µh
1
L

∑L
i=1

yn,icn,i,xt
+
σ2
h
σ2

( 1
L

∑L
i=1

yn,icn,i,xt)
2

2(σ2+σ2
h)

 .

(58)
The previous expression avoids to use log/exp function evalu-

ations, reducing the computational burden at the receiver. Notice
that the first µh and second σ2

h order moments of p(h) are assumed
to be known, i.e. partial statistical CSI is assumed. However, these
parameters might not be available at the receiver and therefore they
must be estimated online. Assuming a binary learning sequence
(e.g., symbols of a pilot component), we can infer µh and σ2

h as in
(25). Moreover, this LLR approximation considers σ2 known at the
receiver, as typically done in the literature [17, 27], a result which
also holds true in those scenarios where σ2 was precisely estimated
before the fading effect. In any case, if one wants to avoid the knowl-
edge of σ2 and provide a LLR without CSI close-form expression,
(58) can be replaced by

Ln,bq = log

maxxj e

2µ̂h
1
L

∑L
i=1 yn,icn,i,xj

+β·
(

1
L

∑L
i=1 yn,icn,i,xj

)2
2( 1
K

∑K
m=1(ykxk−µ̂h)2)

maxxt e

2µ̂h
1
L

∑L
i=1

yn,icn,i,xt
+β·( 1

L

∑L
i=1

yn,icn,i,xt)
2

2( 1
K

∑K
m=1(ykxk−µ̂h)2)

 .

(59)
where µ̂h is estimated as in (25), K is the number of pilot sym-
bols used to estimate the channel fading parameters and β is a
coefficient which weighs the second term in (53)-(54). Notice that
β = 0 involves neglecting the second term in (53)-(54) and provides
a LLR approximation based on the metric obtained in (24), where
the observed symbol is the output of the matched filter of the CSK
demodulator 1

L

∑L
i=1 yn,ici,xl . On the other hand, high values of

β can mask the information provided by the first term in (53)-(54),
generating an inaccurate LLR approximation. Based on simulations,
we have found that β = 1 is the optimal value, yielding (59) finally
to

Lbq =α

max
xj

 L∑
i=1

yn,ici,xj +
1

2L

(
L∑
i=1

yn,ici,xj

)2


− α

max
xt

 L∑
i=1

yn,ici,xt +
1

2L

(
L∑
i=1

yn,ici,xt

)2
 ,

(60)

where α = µ̂h
L
K

∑K
m=1(ykxk−µ̂h)2

.

6.1 Performance of the LLR Approximation Methods for the
CSK Modulation

As done in Section 3.3, we compute the maximum achievable
rate of the Bayesian LLR approximation method (60) for different
CSK modulation orders Q = {2, 4, 6}, considering a BICM CSK
demodulator, and for both uncorrelated normalized Rayleigh fading
channel and 2-state Prieto channel. These results are summarized in
Figure 6. The new Bayesian CSK demodulation is compared to the
perfect CSI cases given by (43) and (46). Both fading scenarios are
also compared to the LLR approximation case (58) where partial sta-
tistical CSI is available at the receiver (i.e., where µh, σ2

h and σ2 are
assumed to be known).

• Normalized Rayleigh Fading Channel

As previously seen in Section 3.3, two different effects can cause a
channel capacity loss. In Figure 6 (top) we can first see the impact of
the fading channel, which induces for an ideal coding scheme of rate
R = 1/2 a loss of 1.2 dB, 1.3 dB and 1.4 dB for modulation orders
of Q = 2, Q = 4 and Q = 6, respectively, w.r.t. the AWGN case.
Moreover, an additional 0.5 dB are lost due to channel uncertainty.
Note that the channel capacity loss can be reduced by using coding
scheme of lower rates. The latter is highly recommended for modu-
lation orders greater than Q = 2, because transmitting more bits in
one symbol increases the demodulation threshold.

• 2-State Prieto Channel

Results for the maximum achievable rate considering a 2-state Pri-
eto channel model, for a vehicle speed of 50 km/h and a satellite
elevation angle of 40 degrees, are shown in Figure 6 (bottom). As
an example, we consider the data component of the GPS L1C sig-
nal which is characterized by a symbol rate of 100 symbols/s and a
PRN code of length 10230 chips. W.r.t. the Rayleigh fading channel,
we can see a channel capacity loss which is further degraded. For an
ideal channel coding scheme of rate R = 1/2, a loss of around 6 dB
is found for the CSK modulation scheme of orderQ = 2,Q = 4 and
Q = 6. Moreover, an additional 1 dB is lost due to the channel uncer-
tainty. Note that in this limit fading channel scenario, high-order
CSK modulations are not recommended without low rate channel
coding schemes. Furthermore, due to the bad channel quality, spe-
cific channel coding structure such as rate compatible Root-LDPC
codes [9], which allows to retrieve the entire diversity of the channel,
are also highly recommended.

7 Results: FER Performance for the CED with the
GPS L1C signal and LDPC Codes

In this section we compare soft decoding performance correspond-
ing to the different LLR approximations introduced in the previous
sections. Particularly, as an example, we provide the Frame Error
Rate (FER) (i.e., w.r.t. the carrier-to-noise density (C/N0)) perfor-
mance for the Clock and Ephemerides Data (CED) considering the
GPS L1C signal [32] with irregular LDPC codes, decoded with a
sum-product algorithm [23].

7.1 Results for Antipodal GNSS Modulations

First, we consider a normalized Rayleigh fading channel and a chan-
nel coding scheme based on the standard irregular LDPC code of
rate 1/2 used to encode the GPS L1C subframe 2 [32]. The FER
results are summarized in Figure 7, where we show the perfor-
mance of the LLR approximation in Section 3, (16) (BLA) and (26)
(Bayesian), when 12 seconds of pilot symbols are retrieved. For
comparison, we also show the FER results corresponding to the per-
fect CSI LLR (10) (Perfect CSI) and the full statistical CSI LLR
(27) (Stats CSI). From the FER results we can see that both BLA
and Bayesian approximation methods achieve a similar data demod-
ulation performance w.r.t the statistical CSI case, which proves that
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Fig. 6: Upper bounds of maximum achievable rate R0 for a CSK
modulation with Q = 2, 4, 6: (top) normalized Rayleigh channel,
and (bottom) 2-state Prieto channel.

when no CSI is available only a good estimation of the first and
second order moments of the fading distribution are required. More-
over, when the channel transmission is characterized by an AWGN
channel, the LLR approximation in (26) converges to the perfect CSI
LLR solution (7). Figure 8 shows the same comparison but for a data
signal component. For comparison, we show the FER results corre-
sponding to the LLR approximation with a pilot component (i.e.,
with a learning sequence and 12 seconds of pilot symbols retrieved)
(26). Considering that no pilot sequence is available, we show the
FER performance for the approximations introduced in Section 4,
(37) (No Pilot EM) and (39) (No Pilot Approx). Notice first that
the method which estimates the first and second order moments of
the fading distribution through the EM algorithm provides a FER
very similar to the one obtained with the pilot case (26), with only
a 0.1 dB performances loss. On the other hand, the simpler method
which estimate the corresponding first and second order moments of
the fading distribution based on the absolute value of the received
symbol reduces the data demodulation performance around 0.4 dB.
Note from Figure 4 that LLR values from the methods in Section
4 were expected to provide lower error correction performance than
the method obtained with the pilot case (26).

As a second scenario, we consider a 2-state Prieto channel model
for a vehicle speed of 50 km/h and a satellite elevation angle of 40
degrees. We show the FER results again for the GPS L1C data within
subframe 2 but in this case with a regular rate compatible Root LDPC
codes of rate R = 1/3 (proposed in [9] to reduce the demodulation
threshold) channel coding scheme. The comparison of the different
methods with and without a pilot signal is illustrated in Figure 9.
Notice that the EM-based method provides a FER very similar to
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Fig. 7: FER of standard GPS L1C CED over a normalized Rayleigh
channel for antipodal modulations and a pilot signal component.
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Fig. 8: FER of standard GPS L1C CED over a normalized Rayleigh
channel for antipodal modulations and a data signal component.

the one obtained with the pilot case (26). In addition, a very small
performance loss is observed w.r.t. the perfect CSI case. On the other
hand, the simpler approximation (39) reduces the data demodulation
performance around 1 dB w.r.t. the EM-based solution.

7.2 Results for M-ary CSK Modulations

As in the previous subsection we consider first a normalized
Rayleigh fading channel, with a channel coding scheme based on the
standard irregular LDPC used to encode the GPS L1C subframe 2.
The FER results for the CSK modulation with Q = {2, 4, 6, 8, 10}
are summarized in Figure 10, where we show the performance of
the LLR approximations in Section 6: i) with partial statistical CSI
(58), and ii) when 12 seconds of pilot symbols are retrieved (60). For
comparison, we also show the FER results corresponding to the per-
fect CSI LLR (46) and the perfect CSI LLR values under AWGN
channel (43). From the FER results we can see that both partial
statistics CSI (58) or no CSI (60) achieve a similar data demod-
ulation performance, independently of the CSK modulation order.
On the other hand, we can appreciate a FER performances loss in
the order of 0.6-0.8 dB due to the channel uncertainty. The channel
uncertainty impact seems to increase along with the CSK modula-
tion order. Finally, we can see a significant FER performance loss
due to the fading effect, i.e., in the order of 2-4 dB. Again, this loss
of performances is related with the modulation order. From these
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Fig. 9: FER GPS L1C CED with a regular rate compatible Root-
LDPC code of rate R = 1/3 over a 2-state Prieto channel, for
antipodal modulations.
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Fig. 10: FER of the CED for the GPS L1C data component over a
normalized Rayleigh channel, for the CSK modulation.

results we can suggest to use channel coding schemes of lower rate
for higher-order CSK modulations.

Results for a second scenario, considering a 2-state Prieto channel
model for a vehicle speed of 50 km/h and a satellite elevation angle
of 40 degrees, and a channel coding scheme based on rate compat-
ible Root LDPC codes of rate R = 1/4, are summarized in Figure
11. We show FER performance results for CSK modulations with
Q = {2, 4, 6}∗ and the different approximations in Section 6: i) par-
tial statistical CSI (58), and ii) when 12 seconds of pilot symbols are
retrieved (60). For comparison, we also show the FER results cor-
responding to the perfect CSI LLR case (46). From the FER results
we can see that both (58) and (60) achieve almost a similar data
demodulation performance independently of the CSK modulation
order, as for the previous normalized Rayleigh fading channel sce-
nario. On the other hand, we can appreciate a FER performance loss
in the order of 1.5-2 dB due to the channel uncertainty. Again, these
results suggest to consider low rate error correcting schemes in order
to reduce the demodulation threshold.

8 Conclusion

This article addressed the problem of GNSS data demodulation over
fading environments, for which no practical solutions existed in the

∗Notice that results for higher order CSK modulations have not been

included due to the lack of practical use (i.e., C/N0 around 50-55 dB-Hz).
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Fig. 11: FER of the CED for the GPS L1C data component encoded
with a Root Code of Rate R = 1/4 over the 2-state prieto channel,
for the CSK modulation.

literature when no CSI is available at the receiver. In that perspective,
we derived several closed-form LLR approximations for both state-
of-the-art antipodal GNSS modulations and new GNSS candidate
CSK modulations. Regarding the former, both pilot and data signals
were considered. Since modern GNSS signals always have a pilot
component only this case was considered for the CSK modulation.

If a pilot component is available at the receiver some chan-
nel parameters can be inferred. For antipodal modulations, two
LLR approximation methods were introduced, the first one being
the state-of-the-art for GNSS data demodulation without CSI but
computationally too expensive. Therefore, a second low complex-
ity Bayesian LLR approximation was also presented. Results over
two uncorrelated fading channels showed that both methods con-
verge to the full statistical CSI method thus being optimal. For the
data signal case (i.e., no training sequence available) two Bayesian
LLR approximations were derived, the first one using an EM-based
algorithm to estimate the first and the second order moments of the
fading distribution, and the second one being a low complexity alter-
native. Results over two uncorrelated fading channels showed that
the EM-based method data demodulation performance is very close
to the pilot signal case, which validated its good behaviour. The low
complexity alternative was shown to perform well only at high SNR.

Regarding the CSK modulation, we derived a Bayesian LLR
approximation without CSI and a pilot component being tracked.
The maximum achievable rate over two uncorrelated fading chan-
nels was presented to provide the performance degradation w.r.t. the
AWGN channel. Simulation results showed the good performance of
the proposed method, being a promising data demodulation solution.
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9 Derivation of
∫∞
−∞ P (Y |xj , h)p(h)dh to Compute

the Closed-form CSK LLR Approximation

In this Appendix we are interested in the computation of the integrals∫∞
−∞ P (Y |xj , h)p(h)dh in (51)-(52), therefore we want to obtain,

∫∞
−∞

N∏
i=1

e−

(
yn,i−hcn,i,xj

)2
2σ2 e

− (h−µh)2

2σ2
h dh ∝ (61)

∫∞
−∞

e
− 1

2σ2
1
N

∑N
i=1

(
y2n,i−2hyn,icn,i,xj+h2c2n,i,xj

)
e
− (h−µh)2

2σ2
h dh =∫∞

−∞
e
−β1

1
N

∑N
i=1

(
y2n,i−2hyn,icn,i,xj+h2

)
e−β2(h−µh)2dh

where β1 =
σ2
h

2σ2σ2
h

and β2 = σ2

2σ2σ2
h

. Since the product of two
Gaussian distributions is in turn a Gaussian distribution we proceed
by finding the resulting mean (µa) and variance (σ2

a) as,

(h− µa)2

σ2
a

+ κn =
h2

σ2
a

+
2hµa

σ2
a

+
µ2
a

σ2
a

+ κn =
β1

N

N∑
i=1

y2
n,i (62)

+β2µ
2
h − 2h

(
β1

N

N∑
i=1

yn,icn,i,xj + β2µh

)
+ h2 (β1 + β2)

where κn is an auxiliary constant, and after identifying terms on both
sides of (62),

1

σ2
a

= (β1 + β2) , (63)

µa

σ2
a

=

(
β1

N

N∑
i=1

yn,icn,i,xj + β2µh

)
, (64)

µ2
a

σ2
a

=

(
β1

N

∑N
i=1 yn,icn,i,xj + β2µh

)2

(β1 + β2)
. (65)

Then, the constant κn can be computed as,

κn =
β1

N

N∑
i=1

y2
n,i + β2µ

2
h −

(
β1

N

∑N
i=1 yn,icn,i,xj + β2µh

)2

(β1 + β2)

=
β1β2

(
1
N

∑N
i=1 y

2
i + µ2

h − 2µh
1
N

∑N
i=1 yn,icn,i,xj

)
β1 + β2

+

β2
1

(
1
N

∑N
i=1 y

2
i −

(
1
N2

∑N
i=1 yn,icn,i,xj

)2
)

β1 + β2
(66)

where β1β2

β1+β2
= 1

2(σ2+σ2
h)

and β2
1

β1+β2
=

σ2
h

2σ2(σ2+σ2
h)

. Finally,
(61) yields to ∫∞

−∞
e
− (h−µa)2

σ2a e−κndh = e−κn (67)

where the pdf definition is applied [17]. Note that in order to com-
pute the LLR expression, we are only interested in those terms which
depend on cn,i,xj . Then, we define the constant κn,1 as those values
of κn which depends on cn,i,xj ,

κn,1 = −
2µh

1
N

∑N
i=1 yn,icn,i,xj +

σ2
h

σ2

(
1
N

∑N
i=1 yn,icn,i,xj

)2

2
(
σ2 + σ2

h

) ,

(68)
and the corresponding κn,2 for cn,i,xt (see (53)-(54)).
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