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Hyperspectral /multispectral image fusion
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Multispectral multiresolution imaging (Sentinel 2)

Sentinel-2 Bands ‘ Central Wavelength (um) | Resolution (m) Sentinel-2 Bands [ Central Wavelength (um) Resolution (m)
Band 1 — Coastal aerosol 0.443 60 Band 7 - Vegetation Red Edge | 0.783 20
Band 2 - Blue 0.490 10 Band 8 - NIR 0.842 10
Band 3 — Green 0.560 10 Band 8A — Narrow NIR 0.865 20
Band 4 — Red 0.665 10 Band 9 — Water vapour 0.945 60
Band 5 — Vegetation Red Edge | 0.705 20 Band 10 — SWIR - Cirrus 1.375 60
Band 6 — Vegetation Red Edge | 0.740 (20 J Band 11 - SWIR 1.610 20
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Hyperspectral compressive sensing



Hyperspectral compressive sensing
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Curing lll-posed/lll-conditioned inverse problems

Golden rule for solving ill-posed/ill-conditioned inverse problems

Search for solutions which are:
1. compatible with the observed data

2. satisfy additional constraints (a priori or prior information) coming from the
(physics) problem

Frameworks to solve inverse problems

@ Bayesian inference: the causes are inferred by minimizing the Bayesian risk

@ Variational regularization: the causes are inferred by minimizing a cost function
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Variational regularization framework
Unconstrained formulation: min f(x,y) + 7¢(x)
o f(x,y) — data fidelity term: measures the compatibility between x and y
(data-term, loss function, observation model, log-likelihood, ...)

@ ¢(x) — regularizer: expresses prior information about x

@ 7 — regularization parameter: sets the relative weight between the data term
and the regularizer

Proximal algorithms for solving convex inverse problems
SALSA ([Afonso, B-D, Figueiredo, 09, 10]) FBPD ([Condat, 13 ], [V@,13])

@ new class of iterative methods suited to solve large scale non-smooth convex
optimization problems

o replace a difficult problem with a sequence of simpler ones

@ proximity operators, which may be interpreted as implicit subgradients, plays a
central role in the proximal algorithms
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Image regularizers and representations

1970 1980 1990 2000

2010 2020
L L L L 1 L =~
T T T T T T >
/5 based
TV based
Sparsity promoting
Self-Similarity
Deep Learning based
Representations

Original images

Wavelets, X-lets, low dimensional representations

Patch-based, learned dictionaries

Representation learning
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Non-local patch(cube)-based methods
@ Real world images are self-similar: given an image patch (cube in volumes),
there are similar patches at different locations and scales

similar patches

Yi=Xi+n;

Prior: clean image patches
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Patch-based denoising

@ Rather than globally modeling x, model patches: divide and conquer

v Decompose noisy image into (overlapping) patches y;
v" Denoise each patch: %; = denoiser(y;)
v Average overlapping pixel estimates

@ Self-similarity has been exploited in various ways

v" Non-local (generalized) means: X; = f(yi,,-.-,¥ip) (¥i.— similar patches)
[Buades et al., 05; Dabov et al., 07; Chatterjee & Milanfar, 09; Maggioni et al.,
12; Lebrun et al., 13, Rajwade et al., 13, ...]

Np
v Dictionary learning: 5 min g ly: — Dail|3 + Al
3O gy QNP =1

[Elad & Aharon, 05; Mairal et. al., 08,10],

o Gaussian mixture models (GMM) and MMSE estimates:

x; = Elx|y:] = /xpi(y;z)f)?(x) dx

[Zoran and Y. Weiss, 11;Yu et al., 12; Teodoro et al., 16; Houdard et al., 17]
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Patch MMSE denoising

® Questions:
v" How to choose/learn a prior?

v" How to compute the expectation?
@ Essentially three classes of approaches:

v" Non-parametric:
e non-local means [Buades et al., 05] and its many variants/descendants;

e importance sampling [Niknejad et al., 17]

v Semi-parametric: Gaussian mixture models
[Zoran and Weiss, 2011, Teodoro et al., 2015, Houdard et al., 2017]

v' Parametric: non-local Bayesian [Lebrun et al., 13] and variants thereof
[Niknejad et al., 15, Aguerrebere et al., 17]



Patch MMSE Denoising: Gaussian Prior
@ Classical result in linear estimation (Wiener filter)

plylx) = N(y;x,0°I) }
p(x) = N(xp,C)



Patch MMSE Denoising: Gaussian Prior

@ Classical result in linear estimation (Wiener filter)

p(y]x)
p(x)

N(y;x,0°T)
N (x; 1, C)

} = EXly] = u+C(C+0’T) ' (y - )



Patch MMSE Denoising: Gaussian Prior
@ Classical result in linear estimation (Wiener filter)

plylx) = N(y;x,0°I)

= C(C + o> -1 _
o) = N(xmC) }:>]E[X|Y] p+C(C+o%1) (y - p)

@ Basic idea: estimate p and C from (clean or noisy) patches;



Patch MMSE Denoising: Gaussian Prior
@ Classical result in linear estimation (Wiener filter)

plylx) = N(y;x,0°I)

= C(C + o> -1 _
o) = N(xmC) }:>]E[X|Y] p+C(C+o%1) (y - p)

@ Basic idea: estimate p and C from (clean or noisy) patches;

@ In general, image patches are not well modelled by one Gaussian



Patch MMSE Denoising: Gaussian Prior
@ Classical result in linear estimation (Wiener filter)

plylx) = N(y;x,0°I)

= C(C + o> -1 _
o) = N(xmC) }:>]E[X|Y] p+C(C+o%1) (y - p)

@ Basic idea: estimate p and C from (clean or noisy) patches;
@ In general, image patches are not well modelled by one Gaussian

@ Divide and conquer again!



Patch MMSE Denoising: Gaussian Prior
@ Classical result in linear estimation (Wiener filter)

plylx) = N(y;x,0°I)

= C(C + o> -1 _
o) = N(xmC) }:>]E[X|Y] p+C(C+o%1) (y - p)

@ Basic idea: estimate p and C from (clean or noisy) patches;
@ In general, image patches are not well modelled by one Gaussian

@ Divide and conquer again!

V" Use only patches similar enough to the patch being denoised
[Lebrun et al., 13, Niknejad et al., 15, Aguerrebere et al., 17]



Patch MMSE Denoising: Gaussian Prior
@ Classical result in linear estimation (Wiener filter)

p(y[x) = N(y;x,0°I) } L E[Xly) = it C(C 4 0%T) "y — )
px) = NxpC) e yoH

@ Basic idea: estimate p and C from (clean or noisy) patches;
@ In general, image patches are not well modelled by one Gaussian

@ Divide and conquer again!

V" Use only patches similar enough to the patch being denoised
[Lebrun et al., 13, Niknejad et al., 15, Aguerrebere et al., 17]

v" Use a Gaussian mixture model (GMM)
e learned from an external set of clean patches [Zoran and Weiss, 11]

e ... or from the noisy patches [Teodoro et al., 15, Houdard et al., 17]
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=

pylx) = N(x,0%)

S Bn(y) Vi ()

};‘E[XM: SN

K
Z amN(X§ 225 Cm)

m=1

p(x)

where 81 (y)/ >, Bm(y) = posterior probability of component m, given y
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@ Previous result extends to GMM priors

plylx) = N(x,0°T)
K } = E[X|y] = Z7Kn:1Kﬂm(Y) Vi (y)
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Patch MMSE denoising: GMM prior

@ Previous result extends to GMM priors

x,0°T)

=

S Bn(y) Vi ()
ZTKn:l Bm (y)

plylx) =

K } = EXly] =
Z amN(X§ 225 Cm)

m=1

p(x)
where 81 (y)/ >, Bm(y) = posterior probability of component m, given y
Bn(y) = m N (¥ iy, Cr + 0°T)
and the v, (y) are the component-wise MMSE /Wiener estimates
Vi (¥) =ty + Cn (Cr + 1) " (y — p1,,)

o Interestingly, the MAP estimate is hard to find: it is not the mode of the most
probable component [Carreira-Perpifian, 02]

o Can also get var[z;|y]: use (inverse) as weight in assembling the image
estimate from the patch estimates
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@ Learning the GMM:

v' From external set of clean images: trivial via EM [Zoran and Weiss, 2011]

v Directly from the noisy patches

M K
(Gms Bopys Cm)m=1,...,.k =arg maleog Z am N (yi; th,,, Com + 0°1)
=1 m=1
subject to C,,, = 0

v Standard EM for GMM, with a simple change in the covariance updates
(eigenvalue thresholding) [Teodoro et al., 15]

v" May include other constraints: e.g., Toeplitz for shift-invariance

o Automatically selects the rank of each covariance: dimension of each subspace
(a generalization of MPPCA [Tipping and Bishop, 99])

@ Choosing K: model selection for mixtures [Figueiredo. and Jain, 02]



GMM-based denoising

o Further tricks are need to reach state-of-the-art: “Secrets of image denoising
cuisine"[Lebrun et al., 12]



GMM-based denoising

o Further tricks are need to reach state-of-the-art: “Secrets of image denoising
cuisine"[Lebrun et al., 12]

o E. g, treat flat patches separately, treat DC separately, repeat, ...



GMM-based denoising

o Further tricks are need to reach state-of-the-art: “Secrets of image denoising
cuisine"[Lebrun et al., 12]

o E. g, treat flat patches separately, treat DC separately, repeat, ...

@ Denoising experiments [Teodoro et al., 15]

) g

)

original

Lena (512 x512) Cameraman (256 x 256)
BM3D K-SVD Basic Improved | BM3D K-SVD Basic Improved
5| 3872 3853  38.86 38.86 38.29 37.97 3857 38.58
10 | 35.93 3555 3588 35.88 34.18 3376  34.44 34.49
15 | 34.27 3374  34.11 34.11 31.91 31.54 3215 32.21
20 | 33.05 3240  32.83 32.84 30.48 30.07  30.64 30.70
25 | 32.08 31.34  31.81 31.82 29.45 2894 29.50 29.58
30 | 31.26 3046 30.99 31.00 28.64 28.12  28.58 28.66
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Hyperspectral denoising
e HSIs are low-rank: Z =EX ¢ REXN | EeRLP. X e RPN p<< L

@ E may be estimated from the noisy data [B-D,Nascimento, 08])

@ HSls are self-similar = X (eigen-images) are self-similar

FastHyDe HSI denoiser] [Zhuang, B-D, 16]
zzargrr%%n%HEX—YHQF—i—)\cﬁ(X), E'E=1
= argmin £ X — 7Y} + A6(X)
p

Regularizer ¢ is decoupled: ¢(X) = Z(ﬁi(xi)

i=1

Proxe, (elY)
X = prox)\(b(ETY) = :
proxy, (e;Y)
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original HST
256 x 256 x 191
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Case 1
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Hyperspectral denoising + inpainting

S 1
X = argmin [ Mvec(EX) — yl% + Ap(X)

v" M is selection matrix

Case 1
LRTV FastHyln

Noisy image with stripes PDE

Quantitative assessment of different inpainting algorithms applied to Washington DC Mall.
Index Noisy Image ~ PDE UBD  LRTV  FastDyln

MPSNR 19.90 20.01 3452 3553 38.58
Case | MSSIM 0.4794 0.4831 09575 09535  0.9802
Time - 26 23 210 12
MPSNR 2843 28.63 3546  41.88 51.63
Case 2 MSSIM 0.7414 0.7466  0.9648  0.9853 0.9987
Time - 35 23 210 13
MPSNR 26.80 2699  37.18  40.78 43.21

Case 3 MSSIM 0.7952 0.7996 09780 0.9831 0.9919
Time - 26 26 179 24
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Patch-based: general inverse problems

o General inverse problems (non-additive, non-Gaussian, non-diagonal)

fx,y) # ally — x|

@ Questions:
v How to choose/learn a patch-based prior/regularizer?

v" How to compute the estimates?

@ Research directions:
V" Class-adapted patch-based prior/regularizer

v' Scene-adapted patch-based prior/regularizer

v Plug-and-Play: plug a denoiser into the iterations of an iterative solver
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Scene adaptation: hyperspectral fusion

@ Spectral-spatial resolution trade-off:

Multi-spectral: Hyper-spectral:
high spatial resolution ow spatial resolution
low spectral resolution high spectral resolution

@ Fuse MS and HS data:

high spatial & spectral resolutions

00 = teica |
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zZ
~ =
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Hyperspectral fusion: formulation

@ Observation model [Sim&es et al., 14]

zZ
~ =
Y, = EXBM+N, hyperspectral data € RE»> "
Yn = REX+N, multispectral data € R "m
——

Z
Lh > Lm and np < Ny

Z € RE»X"m: the fused image to be recovered

E € RE»*P: the p-dimensional subspace containing the fused image Z
X € RP*™: the corresponding coefficients (p < L)

(BM) € R"™ "™ gpatial convolution & subsampling

R € REm*Ln: spectral responses of the MS sensors

N N YR NEEN

Ny, and N,,,: noise
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Scene adaptation: dictionary-based regularization

o Hyperspectral-multispectral fusion dictionary-based regularization

e Motivation: patch-based dictionaries learned from the (high spatial resolution)
MS bands fit very well the HS bands
MS band

patchy; D=di,...,dg]

Yi~ Y ad;

i€S;

@ A path z; of the a HS band is well approximated by the dictionary atoms d;
forieS;

zi~ Y a;d; = Z~ L(D,A,S)
i€S;
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Hyperspectral fusion

@ HS-MS image fusion based on a sparse representation (HFSR) [Wei et al., 15]

1}1(17%(1/2)”3{,1 - EXBMHQQh +(1/2)[|Ym — REXHZm + 7épL(X, A)

v' A is the code for X with respect to the dictionary D
¢oL(X, A) := |[EX — £(D,A,S)|%

v' S is the support of the code learned from the MS images

Algorithm 6: HFSR

Learn the dictionary using online learning [Mairal et al., 09]
Compute the support S
for k=0,1,... do
optimize wrt X using SALSA [Afonso et al., 11]
L use gradient descent wrt A
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[Loncan et al. , 15]
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2500
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RMSE
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Camargue data set
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T I_CNMF

|_BayesSparse
I_HySure

QUALITY MEASURES FOR THE CAMARGUE DATASET

I
5.0x10%

1 1
1.0x10° 1.5x10
Pixel number

1
2.0x10°

method cC SAM RMSE | ERGAS
SFIM 0.91886 | 4.2895 | 637.1451 | 3.4159
MTE-GLP 0.92397 | 4.3378 | 6224711 | 3.2666
MTF-GLP-HPM | 0.92599 | 4.2821 | 611.9161 | 3.2497
GS 0.91262 | 4.4982 | 665.0173 | 3.5490
—_.OSA __ 1092826 | 41950 | 387.1322 | 3.1940 |

PCA 0.90350 | 5.1637 | 710.3275 | 3.8680
GFPCA 0.89042 | 4.8472 | 745.6006 | 4.0001

1 CNMF 0.9300 | 4.4187 | 591.3190 | 3.1762
Bayesian Naive | 0.95195 | 3.6428 | 489.5634 | 2.6286
Bayesian Sparse | 0.95882 | 3.3345 | 448.1721 24712
HySure 0.9465 | 3.8767 | 511.8525 | 2.8I8]
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Original and fused images
[Loncan et al. , 15]

Fig. 6. Details of original and fused Camargue dataset HS image in the
visible domain. (a) reference image, (b) interpolated HS image, (c) SFIM,
(d) MTE-GLP-HPM, (e) GSA, (f) PCA, (g) GFPCA, (h) CNMF, (i) Bayesian
Sparse, (j) HySure
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Inverse problems: Plug-and-Play approach

o Variational/MAP criterion (assuming Gaussian noise):
N o1 2
x € argmin o~ [ Ax — y |3 + é(x)

where ¢ is a (hopefully convex) regularizer
@ Usually tackled by some iterative algorithm (IST, SpaRSA, TwIST, FISTA,
ADMM, DRS, PD, ...). All require the proximity operator of ¢

1
proxg (v) = argmin 2 [[x — v[3 + ¢(x)

o Clearly, the prox is a denoising operator

@ Plug-and-play (PnP) approach: replace prox, with a state-of-the-art denoiser
[Venkatakrishnan et al., 13]

@ Another strategy: regularization by denoising (ReD) [Romano et al., 16]
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PnP-ADMM

1
e Optimization problem: X € arg min EHAX —yl3 + Ap(x)

o ADMM directly applied to this problem has the form

-1

X1 = (ATA +pI) " (ATy + p(zi + up))

Zi1 = Proxyg, (Xes1 — uy) (denoiser)
Ug41 = Ug41 — Xg41 + Zg41

@ Most state-of-the-art denoisers do not have the form of a prox
(at least, explicitly)

@ PnP-ADMM: plug a state-of-the-art denoiser instead of the prox:

v Collaborative filtering ([Dabov et al., 07])

v" Non-local Bayes [Lebrun et al., 13]

v Deep neural networks [Burger et al., 12, Xie et al., 2012, Zhang et al., 17]
v Patch-based GMM-MMSE [Teodoro et al., 15, 16]

o Global Local Factorization [Zhuang, B-D, 17]
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@ Plug a black-box denoiser into ADMM [Venkatakrishnan et al., 13

Xyl = (ATA + pI)f1 (ATy + p(zr + uk))
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Plug-and-Play ADMM

@ Plug a black-box denoiser into ADMM [Venkatakrishnan et al., 13

Xyl = (ATA + pI)f1 (ATy + p(zr + uk))
Zi41 = denoiser (xp41 — uy, 1/p)

Ug41 = Ug41 — Xg41 + Zk41
where denoiser (-, 7) assumes noise variance T

o If denoiser = prox., for convex ¢, convergence is well-known
[Eckstein and Bertsekas, 1992, Boyd et al., 11]..

@ ...what about convergence of PnP-ADMM?
[Sreehari et al., 16, Teodoro et al., 17b, Chan et al., 17] More later...

@ Empirical results: competitive!



Plug-and-Play ADMM: Experiments

original blurred IDD-BM3D ADMM-GMM




Plug-and-Play ADMM:

original

blurred

Experiments

IDD-BM3D

ADMM-GMM

ISNR (dB)
Image: Cameraman House
Experiment: 1 2 3 4 5 6 1 2 3 4 5 6
BSNR 31.87 | 25.85 | 40.00 | 18.53 | 29.19 | 17.76 | 29.16 | 23.14 | 40.00 | 15.99 | 26.61 | 15.15
Input PSNR 2223 | 22,16 | 20.76 | 24.62 | 23.36 | 29.82 | 25.61 | 25.46 | 24.11 | 28.06 | 27.81 | 29.98
IDD-BM3D 8.85 712 | 1045 | 398 | 431 | 489 | 995 | 855 | 1289 | 579 | 574 | 7.13
ADMM-GMM | 834 | 639 | 9.73 349 | 418 | 490 | 9.84 | 840 | 1287 | 557 | 555 | 6.65
ADMM-BM3D | 8.18 | 6.13 | 9.58 | 326 | 393 | 488 | 9.64 | 8.02 | 1295 | 523 | 5.06 | 7.37
Image: Lena Barbara
Experiment: 1 2 3 4 5 6 1 2 3 4 5 6
BSNR 29.89 | 23.87 | 40.00 | 16.47 | 27.18 | 15.52 | 30.81 | 24.79 | 40.00 | 17.35 | 28.07 | 16.59
Input PSNR 27.25 | 27.04 | 25.84 | 28.81 | 29.16 | 30.03 | 23.34 | 23.25 | 22.49 | 2422 | 23.77 | 29.78
IDD-BM3D 797 | 661 | 891 | 497 | 485 | 634 | 7.64 | 396 | 605 | 1.88 | 1.16 | 545
ADMM-GMM | 8.01 | 6.53 | 895 | 493 | 481 6.09 | 591 219 | 537 1.42 1.24 | 5.14
ADMM-BM3D | 8.00 6.56 9.00 4.88 4.67 6.42 7.32 2.99 6.05 1.55 1.40 5.76
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@ Learn a GMM for a class of images; use the corresponding patch-based MMSE
denoiser [Teodoro et al., 16]
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Class-Adapted GMM-based restoration

@ Beating state-of-the-art general-purpose denoisers: divide and conquer, i.e.,
learn class-adapted denoisers.

@ Learn a GMM for a class of images; use the corresponding patch-based MMSE
denoiser [Teodoro et al., 16]

original blurred IDD-BM3D ADMM-GMM
procedure de s i W procedure de procedure de
>termine the ¢ e B 1 ctermine the ¢ >termine the ¢
means algoritl e Gt means algoritt means algorit!
rrimental rest it o erimental rest :rimental rest

"L

Tmage class: Text Face

Experiment: 1 2 3 4 5 6 1 2 3 4 5 6
BSNR 26.07 | 20.05 | 40.00 | 15.95 | 24.78 | 18.11 | 28.28 | 22.26 | 40.00 [ 15.89 | 26.22 | 15.37

Input PSNR 14.14 | 14.13 | 12.13 | 16.83 | 1448 | 28.73 | 25.61 | 22.54 | 20.71 | 26.49 | 24.79 | 30.03

IDD-BM3D | 1197 | 891 | 1629 | 5.88 | 681 | 4.87 | 13.66 | 1116 | 1496 | 731 | 1033 | 618
ADMM-GMM | 16.24 | 1155 | 23.11 | 8.88 | 10.77 | 834 | 15.05 | 12.59 | 17.28 | 884 | 11.69 | 7.32
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o PnP-ADMM with a denoiser

xir1 = (ATA 4+ p1) " (ATy + p(zy, + uy))
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xir1 = (ATA 4+ p1) " (ATy + p(zy, + uy))
Zi41 = denoiser (X1 — uy, 1/p)
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Convergence

o PnP-ADMM with a denoiser

-1

Xpt1 = (ATA+pI) " (ATy + p(zi + i)
Ziy1 = denoiser(xk+1 — Ug, 1/P)

Ug41 = Ugyl — Xg41 + Zk+1

@ denoiser is the prox of a convex function = convergence.

e From [Moreau 1965]: some map p : R™ — R™ is the prox of a convex function
if and only if:

a) p is non-expansive, i.e., Vx,x', ||[p(x) — p(x')|| < ||x — x|
b) and p is subgradient of a convex function, i.e.,
J¢:R” - R: p(x) € 0p(x), Vx

@ Most state-of-the-art denoisers do no satisfy these conditions
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Convergence: GMM-MMSE denoiser
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Convergence: GMM-MMSE denoiser
@ |s the patch-based GMM-MMSE denoiser non-expansive?
@ No! A simple univariate counter-example:
v Spike-and-slab-type prior: p(z) = s N (2;0,71) + s N (2;0,72), 72> 71
v MMSE estimate under Gaussian noise of unit variance:
TLE Bi(y) + 75 Ba(y)

z =E[X|y] = AOETA0) ,  where B;(y) = N(y;0,7: + 1)

o With g; fixed: & = y(61 785 + B2 :27) /(b1 + B2)

ily)) Fixed 4

—— Reference (siope = 1) —— Reference (siope = 1)
04{-| ——Fixed / (slope < 1, v y)

0.4 | ——Non-linear (3 y : slope > 1)

MMSE estimate &
MMSE estimate &

0T 0 o
Noisy input-y
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Convergence: GMM-MMSE denoiser

o Freeze the weights (3,,) after a certain number of iterations.

o Patch estimate:
K 1
%= Y B Cn(Cn+0°1) yi =File?)yi = Fi(o") Piy
m=1

P, is the operator (binary matrix) that extracts the i-th patch
(weights are normalized, to simplify the notation: 3}, - 8,/ >, %)

o Global image estimate: aggregate the patch estimates:
1N
x=—% PIFi(c")Piy=W(")y
"

e Key properties of W [Teodoro et al., 17c|: for any o2 > 0,

W(o?) = W(o?)T, W(s?) = 0, Amac (W (0?)) < 1
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Convergence: GMM-MMSE denoiser (2)

o Freezing the weights (3,,) after a certain number of iterations,
denoiser(y, 0?) = W(o?)y
@ Recalling Moreau's corollary, this is a proximity operator:
o It is non-expansive: W (o) is symmetric with Amax (W(c?)) < 1
o It is the gradient of a convex function: W(o?)y = Vy (3y" W(c?)y)

o Corollary:
frozen weights = PnP-ADMM converges
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Hyperspectral Fusion via PnP-ADMM

Assuming Gaussian noise:

o 1 Am o
X €arg min §||EXBM7Yh||%+7||REX7Ym||%+ B(X)

X ERPX "k
@ We use an instance of ADMM: SALSA [Afonso et al., 11]
@ PnP: instead of proxg4, use patch-based GMM denoiser

@ The GMM is learned from patches of Y, (high spatial resolution)

The weights (8,,,) are kept fixed: scene adaptation

@ = convergence [Teodoro et al., 17a]
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X, Vi,Vo,Va e argmin LEVIM — Y, |2 + 22 |REVs — Y, |2 + As0(V3)
X,V1,Vy, V3
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ADMM /SALSA

@ Variable splitting reformulation

X, Vi, Vs, Vs € argmin %HEVlM—YhH%—&-%
X, V1. Vs, Vs

subjectto V;=XB, V=X, V3=X

REV2 - Ym“%“ + )‘¢¢(V3)

o SALSA/ADMM: solve sequence of simpler sub-problems (e.g. using ADMM)
Xk = arg)r(nin [XB-V;—D1|% + || X=V2—Dy|% + || X-V;3-Ds]3,
vhtl = argmin %HEVlM Y%+ guxk“B ~V, - D¥||2,
.
VEH = argmin %’"HREW O [ gnx’““ ~V, - DE|2,
2

A
VAT = denoise(X*! — Df, 7¢)



Algorithm

Scene-adapted prior

e ] GMM parameters |
xpectation- 0 = {Cy,...,Ck, |

Maximization

Bl,...,B%}

Model Learning

Input HS

Quadratic
sub-problems

Denoising step

ADMM Loop



Hyperspectral Fusion: Synthetic Example




Hyperspectral Fusion: Synthetic Example

Exp. 1 (PAN) Exp. 2 (PAN) Exp. 3 (R.G,BN-IR) Exp. 4 (R.G,BN-IR)
Datasel Metric ERGAS | SAM | SRE || ERGAS | SAM | SRE || ERGAS | SAM | SRE || ERGAS | SAM | SRE
Dictionary 199 | 3.28 | 2264 || 205 | 3.16 | 2232 || 047 | 0.85 | 34.60 | 085 | 147 | 29.66
Rosis GMM 175 | 2.89 | 23.67 192 | 292 | 2285 || 048 | 0.87 | 3432 || 091 165 | 29.05
Modified GMM || 1.65 | 2.75 | 24.07 || 181 | 2.76 | 2331 || 049 | 0.87 | 3450 || 0.80 | 1.42 | 30.14
Dictionaries 2.67 | 4.18 | 2028 || 2.4 | 4.20 | 20.05 185 | 2.72 | 23.58 || 212 | 321 | 22.35
Moffett GMM 266 | 424 | 2026 || 278 | 427 | 1987 T81 | 2.68 | 2381 || 230 | 3.37 | 21.63
Modified GMM || 2.54 | 4.06 | 20.66 || 2.65 | 4.10 | 20.28 || 1.73 | 2.58 | 24.18 || 1.97 | 2.90 | 22.94

@ Metrics: ERGAS = erreur relative globale adimensionnelle de synthése

SAM = spectral angle mapper (low is good)

SRE = signal to reconstruction error (dB, high is good)
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Spectral Prior

o Leverage spectral information, as well as spatial
@ Dual regularization approach
X cargmin = L|EXBM — Y, |2 + 22 |REX — Y[ +
X

+)\spatial (bspatial(X) + )\spectral ¢spectraI(XT)

@ Plug-and-play with two denoisers

v" A GMM spatial prior, learned from the MS image(s)

v" A GMM spectral prior learned from HS bands, i.e., spectra of each HS pixel



Algorithm

Expectation-

Maximization

Spatial Model Learning

Scene-adapted prior

GMM parameters
Ospatial =

{C1,...,Ck,
BL,....Bx}

0
it

denaising step

Quadratic Spatial Spectral
sub-problems denaising step

ADMM Loop

Expectation-

Maximization

Spectral Model Learning

GMM parameters

Ospectral =
{Ci,....Ck,
iy, ...k}

Spectral prior




Improving Hyperspectral Fusion Results

@ Orthonormal subspace obtained with SVD

Method Spatial Spectral Spatial-Spectral
Dataset PSNR SAM ERGAS | PSNR SAM ERGAS | PSNR SAM ERGAS
AVIRIS Indian Pines | 4310 0.60 0.31 | 43.22 0.61 0.31 4277 061 0.32
AVIRIS Cuprite 4397 050 0.23 4266 0.59 0.28 | 44.09 048 0.23
AVIRIS Moffett Field | 34.67 1.95 5.23 3438 1.85 5.28 36.28 1.50 4.49
HYDICE W. DC Mall | 34.59 3.44 4.66 3419 1.75 6.20 37.16 1.53 3.94
HyperSpec Chikusei 44.70 1.49 1.53 4134 170 1.98 44,76 1.39 1.48
ROSIS-3 Univ. Pavia | 39.35 4.49 1.29 3799 320 134 | 40.84 3.01 097
CASI Univ. Houston | 44.86 2.17 1.65 4132 201 2.16 4465 1.89 1.59
Average 40.75  2.09 213 3930 1.67 251 41.51 1.49 1.86




Improving Hyperspectral Fusion Results

@ Orthonormal subspace obtained with SVD

Method Spatial Spectral Spatial-Spectral
Dataset PSNR SAM ERGAS | PSNR SAM ERGAS | PSNR SAM ERGAS
AVIRIS Indian Pines | 4310 0.60 0.31 | 43.22 0.61 0.31 4277 061 0.32
AVIRIS Cuprite 4397 050 0.23 4266 0.59 0.28 | 44.09 048 0.23
AVIRIS Moffett Field | 34.67 1.95 5.23 3438 1.85 5.28 36.28 1.50 4.49
HYDICE W. DC Mall | 34.59 3.44 4.66 3419 1.75 6.20 37.16 1.53 3.94
HyperSpec Chikusei 44.70 1.49 1.53 4134 170 1.98 44,76 1.39 1.48
ROSIS-3 Univ. Pavia | 39.35 4.49 1.29 3799 320 134 | 40.84 3.01 097
CASI Univ. Houston | 44.86 2.17 1.65 4132 201 2.16 4465 1.89 1.59
Average 40.75  2.09 213 3930 1.67 251 41.51 1.49 1.86

@ Subspace obtained with HySime [B-D,

Nascimento, 08]

Method Spatial Spectral Spatial-Spectral
Dataset PSNR SAM ERGAS | PSNR SAM ERGAS | PSNR SAM ERGAS
AVIRIS Indian Pines | 42,52 0.59  0.32 4170 0.65 0.35 4234 0.60 0.33
AVIRIS Cuprite 4391 0.48 0.22 | 4283 0.55 0.25 | 4438 0.48 0.22
AVIRIS Moffett Field | 36.14 1.62 4.66 3592 1.89 470 | 36.28 1.62 4.65
HYDICE W. DC Mall | 37.91 1.83 3.60 | 3782 187 362 | 3795 1.80 365
HyperSpec Chikusei | 46.06 1.22 1.56 4089 1.37 1.63 46.05 1.22 157
ROSIS-3 Univ. Pavia | 41.75 2.70  0.80 | 3847 273 0.83 | 42,71 2.70  0.80
CASI Univ. Houston | 47.29 147 1.13 4349 147 1.14 47.28 1.45 1,12
Average 4223 142 1.76 40.16 150 179 | 4243 141 1,76
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Final Remarks

o Image patches: effective low-dimensional image representation
o GMM for MMSE patch estimation: a flexible tool/model
@ Specialize to image classes

o Tighter adaptation: scene-adapted for hyperspectral denoising, destripping,
superresolution, fusion, compressive sensing

@ Tool: plug-and-play ADMM
o Convergence guarantee (GMM with fixed weights, BM3D with fixed groups)
@ Ongoing work: non-Gaussian noise

@ Ongoing work: PnP with other algorithms (DNNs)



Current research

[Data fidelity £: X x Y > R |

L: data fidelity, J: observed data, X: target images

KIIP DIIP
Data fidelity Traning examples
L:XxY—>R D= {(y1,x1);---,(yn:xn)}
Regularizer /prior Hypothesis set
H={f(10),0 €6}

( b: X R

algorithm

‘/\

Learning
algorithm

Estimator
y = %= f(y:0)

KDITP

Inference/learning
algorithm
A(L,¢,#,D)

Estimator
y X =A(Ly,¢,H,D)



