Patch-based regularization in multiband imaging inverse problems

José M. Bioucas Dias

Instituto de Telecomunicações and Instituto Superior Técnico, Universidade de Lisboa, Portugal

Colllaborators: Mário Figueredo, Afonso Teodoro, Lina Zhuang, Milad Niknejad

TéSA, Telecommunications for Space and Aeronautics, 2018

Distinguished Lecturer Program - GRSS | IEEE

FCT, project UID/EEA/50008/2013

• III-posed/III-Conditioned Inverse Problems

- III-posed/III-Conditioned Inverse Problems
- Patch-Based Image regularization

- III-posed/III-Conditioned Inverse Problems
- Patch-Based Image regularization
- GMM priors and MMSE denoising

• III-posed/III-Conditioned Inverse Problems

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ のへの

- Patch-Based Image regularization
- GMM priors and MMSE denoising
- Plug-and-Play

- III-posed/III-Conditioned Inverse Problems
- Patch-Based Image regularization
- GMM priors and MMSE denoising
- Plug-and-Play
- Hyperspectral Image Denoising and Inpainting

- III-posed/III-Conditioned Inverse Problems
- Patch-Based Image regularization
- GMM priors and MMSE denoising
- Plug-and-Play
- Hyperspectral Image Denoising and Inpainting

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ の

• Hyperspectral Fusion

- III-posed/III-Conditioned Inverse Problems
- Patch-Based Image regularization
- GMM priors and MMSE denoising
- Plug-and-Play
- Hyperspectral Image Denoising and Inpainting

イロト イロト イヨト イヨト 三日

- Hyperspectral Fusion
- Final Remarks

Hyperspectral/multispectral image fusion

<ロト < 部 > < 言 > < 言 > 言 > うへで 3/43

Hyperspectral/multispectral image fusion

 $\mathbf{y}_h = \mathbf{A}_h \mathbf{x} + \mathbf{n}_h$ $\mathbf{y}_p = \mathbf{A}_p \mathbf{x} + \mathbf{n}_p$ $\mathbf{y}_n \in \mathbb{R}^{600 \times 400 \times 1}$ $\mathbf{y}_h \in \mathbb{R}^{150 \times 100 \times 100}$ $\mathbf{x} \in \mathbb{R}^{600 imes 400 imes 100}$ spatially blurred and

downsampled HS

spectrally blurred HS

original HS

Sentinel-2 Bands	Central Wavelength (µm)	Resolution (m	Sentinel-2 Bands	Central Wavelength (µm)	Reso	Resolution (m)	
Band 1 – Coastal aerosol	0.443	60	Band 7 – Vegetation Red Edge	0.783	20		
Band 2 – Blue	0.490	10	Band 8 – NIR	0.842	10		
Band 3 – Green	0.560	10	Band 8A – Narrow NIR	0.865	20		
Band 4 – Red	0.665	10	Band 9 – Water vapour	0.945	60		
Band 5 – Vegetation Red Edge	0.705	20	Band 10 – SWIR – Cirrus	1.375	60		
Band 6 – Vegetation Red Edge	0.740	20	Band 11 – SWIR	1.610	20		
			Band 12 – SWIR	2,190	20		

Sentinel-2 Bands	Central Wavelength (µm)	Resolution (m	Sentinel-2 Bands	Central Wavelength (µm)	Reso	Resolution (m)	
Band 1 – Coastal aerosol	0.443	60	Band 7 – Vegetation Red Edge	0.783	20		
Band 2 – Blue	0.490	10	Band 8 – NIR	0.842	10		
Band 3 – Green	0.560	10	Band 8A – Narrow NIR	0.865	20		
Band 4 – Red	0.665	10	Band 9 – Water vapour	0.945	60		
Band 5 – Vegetation Red Edge	0.705	20	Band 10 – SWIR – Cirrus	1.375	60		
Band 6 – Vegetation Red Edge	0.740	20	Band 11 – SWIR	1.610	20		
			Band 12 – SWIR	2,190	20		

イロト イポト イヨト イヨト 二日

4 / 43

(B4, B3, B2 - 10 m)

Sentinel-2 Bands	Central Wavelength (µm)	Resolution (m)		Sentinel-2 Bands	Central Wavelength (µm)	Res	Resolution (m)	
Band 1 – Coastal aerosol	0.443	60		Band 7 – Vegetation Red Edge	0.783	20		
Band 2 - Blue	0.490	10		Band 8 – NIR	0.842	10		
Band 3 – Green	0.560	10		Band 8A – Narrow NIR	0.865	20		
Band 4 – Red	0.665	10		Band 9 – Water vapour	0.945	60		
Band 5 – Vegetation Red Edge	0.705	20		Band 10 – SWIR – Cirrus	1.375	60		
Band 6 – Vegetation Red Edge	0.740	20		Band 11 – SWIR	1.610	20		
				Band 12 – SWIR	2.190	20		

(B4, B3, B2 - 10 m) (B8a, B11, B12 - 20 m)

<ロト < 団 ト < 巨 ト < 巨 ト 三 の Q () 4 / 43

Sentinel-2 Bands	Central Wavelength (µm)	Resolution (m)		Sentinel-2 Bands	Central Wavelength (µm)	Res	Resolution (m)	
Band 1 – Coastal aerosol	0.443	60		Band 7 – Vegetation Red Edge	0.783	20		
Band 2 – Blue	0.490	10		Band 8 – NIR	0.842	10		
Band 3 – Green	0.560	10		Band 8A – Narrow NIR	0.865	20		
Band 4 – Red	0.665	10		Band 9 – Water vapour	0.945	60		
Band 5 – Vegetation Red Edge	0.705	20		Band 10 - SWIR - Cirrus	1.375	60		
Band 6 – Vegetation Red Edge	0.740	20		Band 11 – SWIR	1.610	20		
				Band 12 – SWIR	2.190	20		

(B4, B3, B2 - 10 m) (B8a, B11, B12 - 20 m) (B1, B9 - 60 m)

Hyperspectral compressive sensing

< □ > < @ > < 言 > < 言 > 言 の Q (~ 5/43

Hyperspectral compressive sensing

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Golden rule for solving ill-posed/ill-conditioned inverse problems

Search for solutions which are:

Golden rule for solving ill-posed/ill-conditioned inverse problems

Search for solutions which are:

 $1. \ \mbox{compatible}$ with the observed data

Golden rule for solving ill-posed/ill-conditioned inverse problems

Search for solutions which are:

- $1. \ \mbox{compatible}$ with the observed data
- 2. satisfy additional constraints (*a priori* or prior information) coming from the (physics) problem

(日) (四) (三) (三) (三) (三)

Golden rule for solving ill-posed/ill-conditioned inverse problems

Search for solutions which are:

- $1. \ \mbox{compatible}$ with the observed data
- 2. satisfy additional constraints (*a priori* or prior information) coming from the (physics) problem

Frameworks to solve inverse problems

Golden rule for solving ill-posed/ill-conditioned inverse problems

Search for solutions which are:

- $1. \ \mbox{compatible}$ with the observed data
- 2. satisfy additional constraints (*a priori* or prior information) coming from the (physics) problem

Frameworks to solve inverse problems

• Bayesian inference: the causes are inferred by minimizing the Bayesian risk

Golden rule for solving ill-posed/ill-conditioned inverse problems

Search for solutions which are:

- 1. compatible with the observed data
- 2. satisfy additional constraints (*a priori* or prior information) coming from the (physics) problem

Frameworks to solve inverse problems

- Bayesian inference: the causes are inferred by minimizing the Bayesian risk
- Variational regularization: the causes are inferred by minimizing a cost function

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Unconstrained formulation: $\min_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}) + \tau \phi(\mathbf{x})$

Unconstrained formulation: $\min_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}) + \tau \phi(\mathbf{x})$

• $f(\mathbf{x}, \mathbf{y}) \rightarrow \text{data fidelity term:}$ measures the compatibility between \mathbf{x} and \mathbf{y} (data-term, loss function, observation model, log-likelihood, ...)

Unconstrained formulation: $\min_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}) + \tau \phi(\mathbf{x})$

- $f(\mathbf{x}, \mathbf{y}) \rightarrow \text{data fidelity term:}$ measures the compatibility between \mathbf{x} and \mathbf{y} (data-term, loss function, observation model, log-likelihood, ...)
- $\phi(\mathbf{x}) \rightarrow \text{regularizer:}$ expresses prior information about \mathbf{x}

Unconstrained formulation: $\min_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}) + \tau \phi(\mathbf{x})$

- $f(\mathbf{x}, \mathbf{y}) \rightarrow \text{data fidelity term}$: measures the compatibility between \mathbf{x} and \mathbf{y} (data-term, loss function, observation model, log-likelihood, ...)
- $\phi(\mathbf{x}) \rightarrow \text{regularizer:}$ expresses prior information about \mathbf{x}
- $\tau \rightarrow$ regularization parameter: sets the relative weight between the data term and the regularizer

イロン イロン イヨン イヨン 三日

Unconstrained formulation: $\min_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}) + \tau \phi(\mathbf{x})$

- $f(\mathbf{x}, \mathbf{y}) \rightarrow \text{data fidelity term}$: measures the compatibility between \mathbf{x} and \mathbf{y} (data-term, loss function, observation model, log-likelihood, ...)
- $\phi(\mathbf{x}) \rightarrow \text{regularizer:}$ expresses prior information about \mathbf{x}
- $\tau \to {\rm regularization\ parameter:}$ sets the relative weight between the data term and the regularizer

Proximal algorithms for solving convex inverse problems SALSA ([Afonso, B-D, Figueiredo, 09, 10]) FBPD ([Condat, 13], [Vũ,13])

Unconstrained formulation: $\min_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}) + \tau \phi(\mathbf{x})$

- $f(\mathbf{x}, \mathbf{y}) \rightarrow \text{data fidelity term}$: measures the compatibility between \mathbf{x} and \mathbf{y} (data-term, loss function, observation model, log-likelihood, ...)
- $\phi(\mathbf{x}) \rightarrow \text{regularizer:}$ expresses prior information about \mathbf{x}
- $\tau \to {\rm regularization\ parameter:}$ sets the relative weight between the data term and the regularizer

Proximal algorithms for solving convex inverse problems SALSA ([Afonso, B-D, Figueiredo, 09, 10]) FBPD ([Condat, 13], [Vũ,13])

• new class of iterative methods suited to solve large scale non-smooth convex optimization problems

Unconstrained formulation: $\min_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}) + \tau \phi(\mathbf{x})$

- $f(\mathbf{x}, \mathbf{y}) \rightarrow \text{data fidelity term:}$ measures the compatibility between \mathbf{x} and \mathbf{y} (data-term, loss function, observation model, log-likelihood, ...)
- $\phi(\mathbf{x}) \rightarrow \text{regularizer:}$ expresses prior information about \mathbf{x}
- $\tau \to {\rm regularization\ parameter:}$ sets the relative weight between the data term and the regularizer

Proximal algorithms for solving convex inverse problems SALSA ([Afonso, B-D, Figueiredo, 09, 10]) FBPD ([Condat, 13], [Vũ,13])

- new class of iterative methods suited to solve large scale non-smooth convex optimization problems
- replace a difficult problem with a sequence of simpler ones

Unconstrained formulation: $\min_{\mathbf{x}} f(\mathbf{x}, \mathbf{y}) + \tau \phi(\mathbf{x})$

- $f(\mathbf{x}, \mathbf{y}) \rightarrow \text{data fidelity term:}$ measures the compatibility between \mathbf{x} and \mathbf{y} (data-term, loss function, observation model, log-likelihood, ...)
- $\phi(\mathbf{x}) \rightarrow \text{regularizer:}$ expresses prior information about \mathbf{x}
- $\tau \rightarrow$ regularization parameter: sets the relative weight between the data term and the regularizer

Proximal algorithms for solving convex inverse problems SALSA ([Afonso, B-D, Figueiredo, 09, 10]) FBPD ([Condat, 13], [Vũ,13])

- new class of iterative methods suited to solve large scale non-smooth convex optimization problems
- replace a difficult problem with a sequence of simpler ones
- proximity operators, which may be interpreted as implicit subgradients, plays a central role in the proximal algorithms

Image regularizers and representations

Image regularizers and representations

Non-local patch(cube)-based methods

<ロト < 回 > < 直 > < 直 > < 直 > 三 の Q () 9/43
Non-local patch(cube)-based methods

• Real world images are self-similar: given an image patch (cube in volumes), there are similar patches at different locations and scales

Non-local patch(cube)-based methods

• Real world images are self-similar: given an image patch (cube in volumes), there are similar patches at different locations and scales

Non-local patch(cube)-based methods

• Real world images are self-similar: given an image patch (cube in volumes), there are similar patches at different locations and scales

 \bullet Rather than globally modeling $\mathbf{x},$ model patches: divide and conquer

 $\bullet\,$ Rather than globally modeling ${\bf x},$ model patches: divide and conquer

 \checkmark Decompose noisy image into (overlapping) patches \mathbf{y}_i

- $\bullet\,$ Rather than globally modeling ${\bf x},$ model patches: divide and conquer
 - \checkmark Decompose noisy image into (overlapping) patches \mathbf{y}_i
 - \checkmark Denoise each patch: $\hat{\mathbf{x}}_i = \frac{\mathsf{denoiser}(\mathbf{y}_i)}{\mathsf{denoiser}(\mathbf{y}_i)}$

- $\bullet\,$ Rather than globally modeling ${\bf x},$ model patches: divide and conquer
 - \checkmark Decompose noisy image into (overlapping) patches \mathbf{y}_i
 - \checkmark Denoise each patch: $\hat{\mathbf{x}}_i = \text{denoiser}(\mathbf{y}_i)$
 - ✓ Average overlapping pixel estimates

- $\bullet\,$ Rather than globally modeling ${\bf x},$ model patches: divide and conquer
 - \checkmark Decompose noisy image into (overlapping) patches \mathbf{y}_i
 - \checkmark Denoise each patch: $\hat{\mathbf{x}}_i = \mathsf{denoiser}(\mathbf{y}_i)$
 - ✓ Average overlapping pixel estimates
- Self-similarity has been exploited in various ways

- $\bullet\,$ Rather than globally modeling ${\bf x},$ model patches: divide and conquer
 - \checkmark Decompose noisy image into (overlapping) patches \mathbf{y}_i
 - \checkmark Denoise each patch: $\hat{\mathbf{x}}_i = \mathsf{denoiser}(\mathbf{y}_i)$
 - ✓ Average overlapping pixel estimates
- Self-similarity has been exploited in various ways
 - ✓ Non-local (generalized) means: x̂_i = f(y_{i1},..., y_{iP}) (y_{ik} similar patches) [Buades et al., 05; Dabov et al., 07; Chatterjee & Milanfar, 09; Maggioni et al., 12; Lebrun et al., 13, Rajwade et al., 13, ...]

- $\bullet\,$ Rather than globally modeling ${\bf x},$ model patches: divide and conquer
 - \checkmark Decompose noisy image into (overlapping) patches \mathbf{y}_i
 - \checkmark Denoise each patch: $\hat{\mathbf{x}}_i = \mathsf{denoiser}(\mathbf{y}_i)$
 - ✓ Average overlapping pixel estimates

• Self-similarity has been exploited in various ways

✓ Non-local (generalized) means: $\hat{\mathbf{x}}_i = f(\mathbf{y}_{i_1}, \dots, \mathbf{y}_{i_P})$ (\mathbf{y}_{i_k} - similar patches) [Buades et al., 05; Dabov et al., 07; Chatterjee & Milanfar, 09; Maggioni et al., 12; Lebrun et al., 13, Rajwade et al., 13, ...]

$$\begin{array}{l} \checkmark \quad \mathsf{Dictionary \ learning:} \quad & \min_{\mathbf{D}, \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_{N_p}} \sum_{i=1}^{N_p} \|\mathbf{y}_i - \mathbf{D} \boldsymbol{\alpha}_i\|_2^2 + \lambda \|\boldsymbol{\alpha}_i\|_1 \\ \\ \text{[Elad \& Aharon, 05; Mairal et. al., 08,10],} \end{array}$$

- $\bullet\,$ Rather than globally modeling ${\bf x},$ model patches: divide and conquer
 - \checkmark Decompose noisy image into (overlapping) patches \mathbf{y}_i
 - \checkmark Denoise each patch: $\hat{\mathbf{x}}_i = \mathsf{denoiser}(\mathbf{y}_i)$
 - ✓ Average overlapping pixel estimates

• Self-similarity has been exploited in various ways

✓ Non-local (generalized) means: $\hat{\mathbf{x}}_i = f(\mathbf{y}_{i_1}, \dots, \mathbf{y}_{i_P})$ (\mathbf{y}_{i_k} - similar patches) [Buades et al., 05; Dabov et al., 07; Chatterjee & Milanfar, 09; Maggioni et al., 12; Lebrun et al., 13, Rajwade et al., 13, ...]

✓ Dictionary learning:
$$\min_{\mathbf{D}, \boldsymbol{\alpha}_1, ..., \boldsymbol{\alpha}_{N_p}} \sum_{i=1}^{N_p} \|\mathbf{y}_i - \mathbf{D}\boldsymbol{\alpha}_i\|_2^2 + \lambda \|\boldsymbol{\alpha}_i\|_1$$
[Elad & Aharon, 05; Mairal et. al., 08,10],

• Gaussian mixture models (GMM) and MMSE estimates:

$$\widehat{\mathbf{x}}_i = \mathbb{E}[\mathbf{x}|\mathbf{y}_i] = \int \mathbf{x} \frac{p(\mathbf{y}_i|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y}_i)} d\mathbf{x}$$

[Zoran and Y. Weiss, 11;Yu et al., 12; Teodoro et al., 16; Houdard et al., 17]

• Questions:

• Questions:

✓ How to choose/learn a prior?

- Questions:
 - ✓ How to choose/learn a prior?
 - ✓ How to compute the expectation?

- Questions:
 - ✓ How to choose/learn a prior?
 - ✓ How to compute the expectation?
- Essentially three classes of approaches:

- Questions:
 - ✓ How to choose/learn a prior?
 - ✓ How to compute the expectation?
- Essentially three classes of approaches:
 - ✓ Non-parametric:

- Questions:
 - ✓ How to choose/learn a prior?
 - ✓ How to compute the expectation?
- Essentially three classes of approaches:
 - ✓ Non-parametric:
 - non-local means [Buades et al., 05] and its many variants/descendants;

- Questions:
 - ✓ How to choose/learn a prior?
 - ✓ How to compute the expectation?
- Essentially three classes of approaches:
 - ✓ Non-parametric:
 - non-local means [Buades et al., 05] and its many variants/descendants;
 - importance sampling [Niknejad et al., 17]

- Questions:
 - ✓ How to choose/learn a prior?
 - ✓ How to compute the expectation?
- Essentially three classes of approaches:
 - ✓ Non-parametric:
 - non-local means [Buades et al., 05] and its many variants/descendants;
 - importance sampling [Niknejad et al., 17]
 - ✓ Semi-parametric: Gaussian mixture models [Zoran and Weiss, 2011, Teodoro et al., 2015, Houdard et al., 2017]

- Questions:
 - ✓ How to choose/learn a prior?
 - ✓ How to compute the expectation?
- Essentially three classes of approaches:
 - ✓ Non-parametric:
 - non-local means [Buades et al., 05] and its many variants/descendants;
 - importance sampling [Niknejad et al., 17]
 - ✓ Semi-parametric: Gaussian mixture models [Zoran and Weiss, 2011, Teodoro et al., 2015, Houdard et al., 2017]
 - ✓ Parametric: non-local Bayesian [Lebrun et al., 13] and variants thereof [Niknejad et al., 15, Aguerrebere et al., 17]

• Classical result in linear estimation (Wiener filter)

$$\begin{array}{ll} p(\mathbf{y}|\mathbf{x}) &=& \mathcal{N}(\mathbf{y};\mathbf{x},\sigma^{2}\mathbf{I}) \\ p(\mathbf{x}) &=& \mathcal{N}(\mathbf{x};\boldsymbol{\mu},\mathbf{C}) \end{array} \right\}$$

• Classical result in linear estimation (Wiener filter)

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y};\mathbf{x},\sigma^{2}\mathbf{I}) \\ p(\mathbf{x}) = \mathcal{N}(\mathbf{x};\boldsymbol{\mu},\mathbf{C}) \end{cases} \Rightarrow \mathbb{E}[\mathbf{X}|\mathbf{y}] = \boldsymbol{\mu} + \mathbf{C}(\mathbf{C}+\sigma^{2}\mathbf{I})^{-1}(\mathbf{y}-\boldsymbol{\mu})$$

• Classical result in linear estimation (Wiener filter)

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y};\mathbf{x},\sigma^{2}\mathbf{I}) \\ p(\mathbf{x}) = \mathcal{N}(\mathbf{x};\boldsymbol{\mu},\mathbf{C}) \end{cases} \Rightarrow \mathbb{E}[\mathbf{X}|\mathbf{y}] = \boldsymbol{\mu} + \mathbf{C}(\mathbf{C}+\sigma^{2}\mathbf{I})^{-1}(\mathbf{y}-\boldsymbol{\mu})$$

ullet Basic idea: estimate $m{\mu}$ and f C from (clean or noisy) patches;

• Classical result in linear estimation (Wiener filter)

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y};\mathbf{x},\sigma^{2}\mathbf{I}) \\ p(\mathbf{x}) = \mathcal{N}(\mathbf{x};\boldsymbol{\mu},\mathbf{C}) \end{cases} \Rightarrow \mathbb{E}[\mathbf{X}|\mathbf{y}] = \boldsymbol{\mu} + \mathbf{C}(\mathbf{C}+\sigma^{2}\mathbf{I})^{-1}(\mathbf{y}-\boldsymbol{\mu})$$

- ullet Basic idea: estimate μ and f C from (clean or noisy) patches;
- In general, image patches are **not** well modelled by **one** Gaussian

• Classical result in linear estimation (Wiener filter)

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y};\mathbf{x},\sigma^{2}\mathbf{I}) \\ p(\mathbf{x}) = \mathcal{N}(\mathbf{x};\boldsymbol{\mu},\mathbf{C}) \end{cases} \Rightarrow \mathbb{E}[\mathbf{X}|\mathbf{y}] = \boldsymbol{\mu} + \mathbf{C}(\mathbf{C}+\sigma^{2}\mathbf{I})^{-1}(\mathbf{y}-\boldsymbol{\mu})$$

- Basic idea: estimate μ and ${f C}$ from (clean or noisy) patches;
- In general, image patches are not well modelled by one Gaussian
- Divide and conquer again!

• Classical result in linear estimation (Wiener filter)

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}; \mathbf{x}, \sigma^2 \mathbf{I}) \\ p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \mathbf{C}) \end{cases} \Rightarrow \mathbb{E}[\mathbf{X}|\mathbf{y}] = \boldsymbol{\mu} + \mathbf{C} (\mathbf{C} + \sigma^2 \mathbf{I})^{-1} (\mathbf{y} - \boldsymbol{\mu})$$

- Basic idea: estimate μ and ${f C}$ from (clean or noisy) patches;
- In general, image patches are not well modelled by one Gaussian
- Divide and conquer again!
 - ✓ Use only patches similar enough to the patch being denoised [Lebrun et al., 13, Niknejad et al., 15, Aguerrebere et al., 17]

• Classical result in linear estimation (Wiener filter)

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}; \mathbf{x}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \mathbf{C})$$

$$\Rightarrow \mathbb{E}[\mathbf{X}|\mathbf{y}] = \boldsymbol{\mu} + \mathbf{C}(\mathbf{C} + \sigma^2 \mathbf{I})^{-1}(\mathbf{y} - \boldsymbol{\mu})$$

- ullet Basic idea: estimate $m{\mu}$ and f C from (clean or noisy) patches;
- In general, image patches are not well modelled by one Gaussian
- Divide and conquer again!
 - ✓ Use only patches similar enough to the patch being denoised [Lebrun et al., 13, Niknejad et al., 15, Aguerrebere et al., 17]
 - ✓ Use a Gaussian mixture model (GMM)
 - learned from an external set of clean patches [Zoran and Weiss, 11]
 - ... or from the noisy patches [Teodoro et al., 15, Houdard et al., 17]

• Previous result extends to GMM priors

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{x}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{x}) = \sum_{m=1}^{K} \alpha_m \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_m, \mathbf{C}_m)$$

• Previous result extends to GMM priors

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{x}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{x}) = \sum_{m=1}^{K} \alpha_m \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_m, \mathbf{C}_m) \right\} \Rightarrow \mathbb{E}[\mathbf{X}|\mathbf{y}] = \frac{\sum_{m=1}^{K} \beta_m(\mathbf{y}) \mathbf{v}_m(\mathbf{y})}{\sum_{m=1}^{K} \beta_m(\mathbf{y})}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

13/43

• Previous result extends to GMM priors

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{x}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{x}) = \sum_{m=1}^{K} \alpha_m \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_m, \mathbf{C}_m) \right\} \Rightarrow \mathbb{E}[\mathbf{X}|\mathbf{y}] = \frac{\sum_{m=1}^{K} \beta_m(\mathbf{y}) \mathbf{v}_m(\mathbf{y})}{\sum_{m=1}^{K} \beta_m(\mathbf{y})}$$

where $eta_m(\mathbf{y})/\sum_meta_m(\mathbf{y})=$ posterior probability of component m, given \mathbf{y}

$$\beta_m(\mathbf{y}) = \alpha_m \mathcal{N}(\mathbf{y}; \boldsymbol{\mu}_m, \mathbf{C}_m + \sigma^2 \mathbf{I})$$

• Previous result extends to GMM priors

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{x}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{x}) = \sum_{m=1}^{K} \alpha_m \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_m, \mathbf{C}_m) \right\} \Rightarrow \mathbb{E}[\mathbf{X}|\mathbf{y}] = \frac{\sum_{m=1}^{K} \beta_m(\mathbf{y}) \mathbf{v}_m(\mathbf{y})}{\sum_{m=1}^{K} \beta_m(\mathbf{y})}$$

where $eta_m(\mathbf{y})/\sum_m eta_m(\mathbf{y}) =$ posterior probability of component m, given \mathbf{y}

$$\beta_m(\mathbf{y}) = \alpha_m \mathcal{N}(\mathbf{y}; \boldsymbol{\mu}_m, \mathbf{C}_m + \sigma^2 \mathbf{I})$$

and the $\mathbf{v}_m(\mathbf{y})$ are the component-wise MMSE/Wiener estimates

$$\mathbf{v}_m(\mathbf{y}) = \boldsymbol{\mu}_m + \mathbf{C}_m \left(\mathbf{C}_m + \sigma^2 \mathbf{I}\right)^{-1} \left(\mathbf{y} - \boldsymbol{\mu}_m\right)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の

• Previous result extends to GMM priors

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{x}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{x}) = \sum_{m=1}^{K} \alpha_m \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_m, \mathbf{C}_m) \right\} \Rightarrow \mathbb{E}[\mathbf{X}|\mathbf{y}] = \frac{\sum_{m=1}^{K} \beta_m(\mathbf{y}) \mathbf{v}_m(\mathbf{y})}{\sum_{m=1}^{K} \beta_m(\mathbf{y})}$$

where $eta_m(\mathbf{y})/\sum_m eta_m(\mathbf{y}) =$ posterior probability of component m, given \mathbf{y}

$$\beta_m(\mathbf{y}) = \alpha_m \mathcal{N}(\mathbf{y}; \boldsymbol{\mu}_m, \mathbf{C}_m + \sigma^2 \mathbf{I})$$

and the $\mathbf{v}_m(\mathbf{y})$ are the component-wise MMSE/Wiener estimates

$$\mathbf{v}_m(\mathbf{y}) = \boldsymbol{\mu}_m + \mathbf{C}_m (\mathbf{C}_m + \sigma^2 \mathbf{I})^{-1} (\mathbf{y} - \boldsymbol{\mu}_m)$$

 Interestingly, the MAP estimate is hard to find: it is not the mode of the most probable component [Carreira-Perpiñán, 02]

• Previous result extends to GMM priors

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{x}, \sigma^2 \mathbf{I})$$

$$p(\mathbf{x}) = \sum_{m=1}^{K} \alpha_m \, \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_m, \mathbf{C}_m) \right\} \Rightarrow \mathbb{E}[\mathbf{X}|\mathbf{y}] = \frac{\sum_{m=1}^{K} \beta_m(\mathbf{y}) \, \mathbf{v}_m(\mathbf{y})}{\sum_{m=1}^{K} \beta_m(\mathbf{y})}$$

where $eta_m(\mathbf{y})/\sum_meta_m(\mathbf{y})=$ posterior probability of component m, given \mathbf{y}

$$\beta_m(\mathbf{y}) = \alpha_m \, \mathcal{N}(\mathbf{y}; \boldsymbol{\mu}_m, \mathbf{C}_m + \sigma^2 \mathbf{I})$$

and the $\mathbf{v}_m(\mathbf{y})$ are the component-wise MMSE/Wiener estimates

$$\mathbf{v}_m(\mathbf{y}) = \boldsymbol{\mu}_m + \mathbf{C}_m (\mathbf{C}_m + \sigma^2 \mathbf{I})^{-1} (\mathbf{y} - \boldsymbol{\mu}_m)$$

- Interestingly, the MAP estimate is hard to find: it is not the mode of the most probable component [Carreira-Perpiñán, 02]
- Can also get var $[x_i|y]$: use (inverse) as weight in assembling the image estimate from the patch estimates

• Learning the GMM:

• Learning the GMM:

✓ From external set of clean images: trivial via EM [Zoran and Weiss, 2011]

• Learning the GMM:

✓ From external set of clean images: trivial via EM [Zoran and Weiss, 2011]

 \checkmark Directly from the noisy patches

$$\begin{split} (\hat{\alpha}_m, \hat{\boldsymbol{\mu}}_m, \hat{\mathbf{C}}_m)_{m=1,...,K} = \arg \max \sum_{i=1}^M \log \sum_{m=1}^K \alpha_m \, \mathcal{N}(\mathbf{y}_i; \boldsymbol{\mu}_m, \mathbf{C}_m + \sigma^2 \mathbf{I}) \\ \text{subject to } \mathbf{C}_m \succeq \mathbf{0} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

14/43
- Learning the GMM:
 - ✓ From external set of clean images: trivial via EM [Zoran and Weiss, 2011]
 - $\checkmark\,$ Directly from the noisy patches

$$(\hat{\alpha}_m, \hat{\boldsymbol{\mu}}_m, \hat{\mathbf{C}}_m)_{m=1,...,K} = \arg \max \sum_{i=1}^M \log \sum_{m=1}^K \alpha_m \, \mathcal{N}(\mathbf{y}_i; \boldsymbol{\mu}_m, \mathbf{C}_m + \sigma^2 \mathbf{I})$$

subject to $\mathbf{C}_m \succeq 0$

✓ Standard EM for GMM, with a simple change in the covariance updates (eigenvalue thresholding) [Teodoro et al., 15]

- Learning the GMM:
 - ✓ From external set of clean images: trivial via EM [Zoran and Weiss, 2011]
 - $\checkmark\,$ Directly from the noisy patches

$$(\hat{\alpha}_m, \hat{\boldsymbol{\mu}}_m, \hat{\mathbf{C}}_m)_{m=1,...,K} = \arg \max \sum_{i=1}^M \log \sum_{m=1}^K \alpha_m \, \mathcal{N}(\mathbf{y}_i; \boldsymbol{\mu}_m, \mathbf{C}_m + \sigma^2 \mathbf{I})$$

subject to $\mathbf{C}_m \succeq 0$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへの

14/43

- ✓ Standard EM for GMM, with a simple change in the covariance updates (eigenvalue thresholding) [Teodoro et al., 15]
- ✓ May include other constraints: *e.g.*, Toeplitz for shift-invariance

- Learning the GMM:
 - ✓ From external set of clean images: trivial via EM [Zoran and Weiss, 2011]
 - Directly from the noisy patches

$$\begin{split} \hat{(\alpha_m, \hat{\boldsymbol{\mu}}_m, \hat{\mathbf{C}}_m)_{m=1,...,K}} = \arg \max \sum_{i=1}^M \log \sum_{m=1}^K \alpha_m \, \mathcal{N}(\mathbf{y}_i; \boldsymbol{\mu}_m, \mathbf{C}_m + \sigma^2 \mathbf{I}) \\ \text{subject to } \mathbf{C}_m \succeq \mathbf{0} \end{split}$$

- ✓ Standard EM for GMM, with a simple change in the covariance updates (eigenvalue thresholding) [Teodoro et al., 15]
- ✓ May include other constraints: e.g., Toeplitz for shift-invariance
- Automatically selects the rank of each covariance: dimension of each subspace (a generalization of MPPCA [Tipping and Bishop, 99])

- Learning the GMM:
 - ✓ From external set of clean images: trivial via EM [Zoran and Weiss, 2011]
 - \checkmark Directly from the noisy patches

$$(\hat{\alpha}_m, \hat{\boldsymbol{\mu}}_m, \hat{\mathbf{C}}_m)_{m=1,...,K} = \arg \max \sum_{i=1}^M \log \sum_{m=1}^K \alpha_m \, \mathcal{N}(\mathbf{y}_i; \boldsymbol{\mu}_m, \mathbf{C}_m + \sigma^2 \mathbf{I})$$

subject to $\mathbf{C}_m \succeq 0$

- ✓ Standard EM for GMM, with a simple change in the covariance updates (eigenvalue thresholding) [Teodoro et al., 15]
- ✓ May include other constraints: *e.g.*, Toeplitz for shift-invariance
- Automatically selects the rank of each covariance: dimension of each subspace (a generalization of MPPCA [Tipping and Bishop, 99])
- Choosing K: model selection for mixtures [Figueiredo. and Jain, 02]

GMM-based denoising

• Further tricks are need to reach state-of-the-art: "Secrets of image denoising cuisine" [Lebrun et al., 12]

GMM-based denoising

- Further tricks are need to reach state-of-the-art: "Secrets of image denoising cuisine" [Lebrun et al., 12]
- E.g., treat flat patches separately, treat DC separately, repeat, ...

GMM-based denoising

- Further tricks are need to reach state-of-the-art: "Secrets of image denoising cuisine" [Lebrun et al., 12]
- E.g., treat flat patches separately, treat DC separately, repeat, ...
- Denoising experiments [Teodoro et al., 15]

original

noisy (σ=30)

BM3D (28.64dB) GMM (28.66dB)

σ		Lena (5	12×512)	Cameraman (256×256)				
	BM3D	K-SVD	Basic	Improved	BM3D	K-SVD	Basic	Improved	
5	38.72	38.53	38.86	38.86	38.29	37.97	38.57	38.58	
10	35.93	35.55	35.88	35.88	34.18	33.76	34.44	34.49	
15	34.27	33.74	34.11	34.11	31.91	31.54	32.15	32.21	
20	33.05	32.40	32.83	32.84	30.48	30.07	30.64	30.70	
25	32.08	31.34	31.81	31.82	29.45	28.94	29.50	29.58	
30	31.26	30.46	30.99	31.00	28.64	28.12	28.58	28.66	

√)Q(\ 15/43

< □ > < ⑦ > < 言 > < 言 > 言 → ○へ (~ 16/43

• HSIs are low-rank: $\mathbf{Z} = \mathbf{E}\mathbf{X} \in \mathbb{R}^{L \times N}$, $\mathbf{E} \in \mathbb{R}^{L \times p}$, $\mathbf{X} \in \mathbb{R}^{p \times N}$, p << L

- HSIs are low-rank: $\mathbf{Z} = \mathbf{E}\mathbf{X} \in \mathbb{R}^{L \times N}$, $\mathbf{E} \in \mathbb{R}^{L \times p}$, $\mathbf{X} \in \mathbb{R}^{p \times N}$, p << L
- E may be estimated from the noisy data [B-D, Nascimento, 08])

- HSIs are low-rank: $\mathbf{Z} = \mathbf{E}\mathbf{X} \in \mathbb{R}^{L \times N}$, $\mathbf{E} \in \mathbb{R}^{L \times p}$, $\mathbf{X} \in \mathbb{R}^{p \times N}$, p << L
- E may be estimated from the noisy data [B-D, Nascimento, 08])
- HSIs are self-similar $\Rightarrow \mathbf{X}$ (eigen-images) are self-similar

- HSIs are low-rank: $\mathbf{Z} = \mathbf{E}\mathbf{X} \in \mathbb{R}^{L \times N}$, $\mathbf{E} \in \mathbb{R}^{L \times p}$, $\mathbf{X} \in \mathbb{R}^{p \times N}$, p << L
- E may be estimated from the noisy data [B-D, Nascimento, 08])
- HSIs are self-similar \Rightarrow X (eigen-images) are self-similar
- FastHyDe HSI denoiser] [Zhuang, B-D, 16]

$$\widehat{\mathbf{Z}} = \arg\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{E}\mathbf{X} - \mathbf{Y}\|_{F}^{2} + \lambda \phi(\mathbf{X}), \qquad \mathbf{E}^{T}\mathbf{E} = \mathbf{I}$$
$$= \arg\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{X} - \mathbf{E}^{T}\mathbf{Y}\|_{F}^{2} + \lambda \phi(\mathbf{X})$$

16/43

- HSIs are low-rank: $\mathbf{Z} = \mathbf{E}\mathbf{X} \in \mathbb{R}^{L \times N}$, $\mathbf{E} \in \mathbb{R}^{L \times p}$, $\mathbf{X} \in \mathbb{R}^{p \times N}$, p << L
- E may be estimated from the noisy data [B-D, Nascimento, 08])
- HSIs are self-similar \Rightarrow X (eigen-images) are self-similar
- FastHyDe HSI denoiser] [Zhuang, B-D, 16]

$$\widehat{\mathbf{Z}} = \arg\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{E}\mathbf{X} - \mathbf{Y}\|_{F}^{2} + \lambda \phi(\mathbf{X}), \qquad \mathbf{E}^{T}\mathbf{E} = \mathbf{I}$$
$$= \arg\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{X} - \mathbf{E}^{T}\mathbf{Y}\|_{F}^{2} + \lambda \phi(\mathbf{X})$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─�

• Regularizer ϕ is decoupled: $\phi(\mathbf{X}) = \sum_{i=1}^{p} \phi_i(\mathbf{x}^i)$

- HSIs are low-rank: $\mathbf{Z} = \mathbf{E}\mathbf{X} \in \mathbb{R}^{L \times N}$, $\mathbf{E} \in \mathbb{R}^{L \times p}$, $\mathbf{X} \in \mathbb{R}^{p \times N}$, p << L
- E may be estimated from the noisy data [B-D, Nascimento, 08])
- HSIs are self-similar $\Rightarrow \mathbf{X}$ (eigen-images) are self-similar
- FastHyDe HSI denoiser] [Zhuang, B-D, 16]

$$\widehat{\mathbf{Z}} = \arg\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{E}\mathbf{X} - \mathbf{Y}\|_{F}^{2} + \lambda \phi(\mathbf{X}), \qquad \mathbf{E}^{T}\mathbf{E} = \mathbf{I}$$
$$= \arg\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{X} - \mathbf{E}^{T}\mathbf{Y}\|_{F}^{2} + \lambda \phi(\mathbf{X})$$

• Regularizer ϕ is decoupled: $\phi(\mathbf{X}) = \sum_{i=1}^{p} \phi_i(\mathbf{x}^i)$ $\widehat{\mathbf{X}} = \operatorname{prox}_{\lambda\phi}(\mathbf{E}^T\mathbf{Y}) = \begin{bmatrix} \operatorname{prox}_{\lambda\phi_1}(\mathbf{e}_1^T\mathbf{Y}) \\ \vdots \\ \operatorname{prox}_{\lambda\phi_k}(\mathbf{e}_k^T\mathbf{Y}) \end{bmatrix}$

Hyperspectral denoising ($prox_{\lambda\phi} \equiv BM3D$)

< □ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 볼 ∽) < 은 17/43

0

150 200

Bands

Case 1 (Gaussian i.i.d. noise)

100 150 200 0

Bands

Case 1 (Gaussian i.i.d. noise)

0.2

100 150 200

Bands

Case 1 (Gaussian i.i.d. noise)

200

Bands

Case 1 (Gaussian i.i.d. noise)

Clean

FastHvDe

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ のへで 18/43

$$\widehat{\mathbf{X}} = \arg\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{M}\operatorname{vec}(\mathbf{E}\mathbf{X}) - \mathbf{y}\|_F^2 + \lambda \phi(\mathbf{X})$$

< □ > < 部 > < 言 > < 言 > 三 の Q (~ 18/43

$$\widehat{\mathbf{X}} = rg\min_{\mathbf{X}} rac{1}{2} \|\mathbf{M}\operatorname{vec}(\mathbf{E}\mathbf{X}) - \mathbf{y}\|_F^2 + \lambda \phi(\mathbf{X})$$

 $\checkmark~\mathbf{M}$ is selection matrix

$$\widehat{\mathbf{X}} = \arg\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{M} \operatorname{vec}(\mathbf{E}\mathbf{X}) - \mathbf{y}\|_F^2 + \lambda \phi(\mathbf{X})$$

\checkmark M is selection matrix

Quantitative assessment of different inpainting algorithms applied to Washington DC Mall.

	Index	Noisy Image	PDE	UBD	LRTV	FastDyIn
	MPSNR	19.90	20.01	34.52	35.53	38.58
Case 1	MSSIM	0.4794	0.4831	0.9575	0.9535	0.9802
	Time	-	26	23	210	12
	MPSNR	28.43	28.63	35.46	41.88	51.63
Case 2	MSSIM	0.7414	0.7466	0.9648	0.9853	0.9987
	Time	-	35	23	210	13
	MPSNR	26.80	26.99	37.18	40.78	43.21
Case 3	MSSIM	0.7952	0.7996	0.9780	0.9831	0.9919
	Time	-	26	26	179	24

18/43

• General inverse problems (non-additive, non-Gaussian, non-diagonal)

$$f(\mathbf{x}, \mathbf{y}) \neq \alpha \|\mathbf{y} - \mathbf{x}\|^2$$

• Questions:

• General inverse problems (non-additive, non-Gaussian, non-diagonal)

$$f(\mathbf{x}, \mathbf{y}) \neq \alpha \|\mathbf{y} - \mathbf{x}\|^2$$

- Questions:
 - ✓ How to choose/learn a patch-based prior/regularizer?

• General inverse problems (non-additive, non-Gaussian, non-diagonal)

$$f(\mathbf{x}, \mathbf{y}) \neq \alpha \|\mathbf{y} - \mathbf{x}\|^2$$

イロト イヨト イヨト イヨト 三日

- Questions:
 - ✓ How to choose/learn a patch-based prior/regularizer?
 - ✓ How to compute the estimates?

• General inverse problems (non-additive, non-Gaussian, non-diagonal)

$$f(\mathbf{x}, \mathbf{y}) \neq \alpha \|\mathbf{y} - \mathbf{x}\|^2$$

- Questions:
 - ✓ How to choose/learn a patch-based prior/regularizer?
 - ✓ How to compute the estimates?
- Research directions:
 - ✓ Class-adapted patch-based prior/regularizer
 - ✓ Scene-adapted patch-based prior/regularizer
 - $\checkmark\,$ Plug-and-Play: plug a denoiser into the iterations of an iterative solver

• Spectral-spatial resolution trade-off:

Multi-spectral: high spatial resolution low spectral resolution

Hyper-spectral: low spatial resolution high spectral resolution

• Spectral-spatial resolution trade-off:

Multi-spectral: high spatial resolution low spectral resolution

Hyper-spectral: low spatial resolution high spectral resolution

• Fuse MS and HS data:

high spatial & spectral resolutions

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• Spectral-spatial resolution trade-off:

Multi-spectral: high spatial resolution low spectral resolution

Hyper-spectral: low spatial resolution high spectral resolution

• Fuse MS and HS data:

high spatial & spectral resolutions

• Extreme case: pansharpening (panchromatic rather than MS image).

• Spectral-spatial resolution trade-off:

Multi-spectral: high spatial resolution low spectral resolution

Hyper-spectral: low spatial resolution high spectral resolution

• Fuse MS and HS data:

high spatial & spectral resolutions

• Extreme case: pansharpening (panchromatic rather than MS image).

• Observation model [Simões et al., 14]

$$\begin{array}{rcl} \mathbf{Y}_h &=& \overbrace{\mathbf{EX}}^{\mathbf{Z}} \mathbf{BM} + \mathbf{N}_h \\ \mathbf{Y}_m &=& \mathbf{R} \underbrace{\mathbf{EX}}_{\mathbf{Z}} + \mathbf{N}_m \end{array}$$

hyperspectral data $\in \mathbb{R}^{L_h \times n_h}$ multispectral data $\in \mathbb{R}^{L_m \times n_m}$

 $L_h > L_m$ and $n_h < n_m$

• Observation model [Simões et al., 14]

$$\mathbf{Y}_h = \widetilde{\mathbf{EX}} \mathbf{BM} + \mathbf{N}_h$$

 $\mathbf{Y}_m = \mathbf{R} \underbrace{\mathbf{EX}}_{\mathbf{Z}} + \mathbf{N}_m$

hyperspectral data $\in \mathbb{R}^{L_h \times n_h}$ multispectral data $\in \mathbb{R}^{L_m \times n_m}$

 $L_h > L_m$ and $n_h < n_m$

 $\checkmark \mathbf{Z} \in \mathbb{R}^{L_h imes n_m}$: the fused image to be recovered

< □ > < 部 > < E > < E > E の Q (~ 21 / 43

• Observation model [Simões et al., 14]

$$\mathbf{Y}_h = \widetilde{\mathbf{EX}} \mathbf{BM} + \mathbf{N}_h$$

 $\mathbf{Y}_m = \mathbf{R} \underbrace{\mathbf{EX}}_{\mathbf{Z}} + \mathbf{N}_m$

hyperspectral data $\in \mathbb{R}^{L_h \times n_h}$ multispectral data $\in \mathbb{R}^{L_m \times n_m}$

 $L_h > L_m$ and $n_h < n_m$

 $\checkmark~\mathbf{Z} \in \mathbb{R}^{L_{m{h}} imes n_{m{m}}}$: the fused image to be recovered

 $\checkmark \mathbf{E} \in \mathbb{R}^{L_h imes p}$: the p-dimensional subspace containing the fused image \mathbf{Z}

• Observation model [Simões et al., 14]

$$\mathbf{Y}_h = \widetilde{\mathbf{EX}} \mathbf{BM} + \mathbf{N}_h$$

 $\mathbf{Y}_m = \mathbf{R} \underbrace{\mathbf{EX}}_{\mathbf{Z}} + \mathbf{N}_m$

hyperspectral data $\in \mathbb{R}^{L_h \times n_h}$ multispectral data $\in \mathbb{R}^{L_m \times n_m}$

 $L_h > L_m$ and $n_h < n_m$

 $\checkmark~\mathbf{Z} \in \mathbb{R}^{L_{m{h}} imes n_{m{m}}}$: the fused image to be recovered

 $\checkmark~\mathbf{E} \in \mathbb{R}^{L_h imes p}$: the p-dimensional subspace containing the fused image \mathbf{Z}

 $\checkmark \mathbf{X} \in \mathbb{R}^{p \times n_h}$: the corresponding coefficients $(p \ll L_h)$

• Observation model [Simões et al., 14]

$$\mathbf{Y}_h = \widetilde{\mathbf{EX}} \mathbf{BM} + \mathbf{N}_h$$

 $\mathbf{Y}_m = \mathbf{R} \underbrace{\mathbf{EX}}_{\mathbf{Z}} + \mathbf{N}_m$

hyperspectral data $\in \mathbb{R}^{L_h \times n_h}$ multispectral data $\in \mathbb{R}^{L_m \times n_m}$

 $L_h > L_m$ and $n_h < n_m$

- $\checkmark~\mathbf{Z} \in \mathbb{R}^{L_{h} imes n_{m}}$: the fused image to be recovered
- $\checkmark~\mathbf{E} \in \mathbb{R}^{L_h imes p}$: the p-dimensional subspace containing the fused image \mathbf{Z}
- $\checkmark \mathbf{X} \in \mathbb{R}^{p imes n_h}$: the corresponding coefficients $(p \ll L_h)$
- \checkmark $(\mathbf{B}\,\mathbf{M}) \in \mathbb{R}^{n_m imes n_h}$: spatial convolution & subsampling

• Observation model [Simões et al., 14]

$$\mathbf{Y}_h = \widetilde{\mathbf{EX}} \mathbf{BM} + \mathbf{N}_h$$

 $\mathbf{Y}_m = \mathbf{R} \underbrace{\mathbf{EX}}_{\mathbf{Z}} + \mathbf{N}_m$

hyperspectral data $\in \mathbb{R}^{L_h \times n_h}$ multispectral data $\in \mathbb{R}^{L_m \times n_m}$

 $L_h > L_m$ and $n_h < n_m$

- $\checkmark \ \mathbf{Z} \in \mathbb{R}^{L_h imes n_m}$: the fused image to be recovered
- $\checkmark~\mathbf{E} \in \mathbb{R}^{L_h imes p}$: the p-dimensional subspace containing the fused image \mathbf{Z}
- $\checkmark \mathbf{X} \in \mathbb{R}^{p \times n_h}$: the corresponding coefficients $(p \ll L_h)$
- \checkmark $(\mathbf{B}\,\mathbf{M}) \in \mathbb{R}^{n_m imes n_h}$: spatial convolution & subsampling
- $\checkmark \mathbf{R} \in \mathbb{R}^{L_m imes L_h}$: spectral responses of the MS sensors

• Observation model [Simões et al., 14]

$$\mathbf{Y}_h = \widetilde{\mathbf{EX}} \mathbf{BM} + \mathbf{N}_h$$

 $\mathbf{Y}_m = \mathbf{R} \underbrace{\mathbf{EX}}_{\mathbf{Z}} + \mathbf{N}_m$

hyperspectral data $\in \mathbb{R}^{L_h \times n_h}$ multispectral data $\in \mathbb{R}^{L_m \times n_m}$

 $L_h > L_m$ and $n_h < n_m$

 $\checkmark \ \mathbf{Z} \in \mathbb{R}^{L_h imes n_m}$: the fused image to be recovered

 $\checkmark~\mathbf{E} \in \mathbb{R}^{L_h imes p}$: the p-dimensional subspace containing the fused image \mathbf{Z}

 \checkmark $\mathbf{X} \in \mathbb{R}^{p imes n_h}$: the corresponding coefficients $(p \ll L_h)$

 \checkmark $(\mathbf{B}\,\mathbf{M}) \in \mathbb{R}^{n_m imes n_h}$: spatial convolution & subsampling

 $\checkmark~\mathbf{R} \in \mathbb{R}^{L_m imes L_h}$: spectral responses of the MS sensors

 \checkmark \mathbf{N}_h and \mathbf{N}_m : noise

Scene adaptation: dictionary-based regularization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
• Hyperspectral-multispectral fusion dictionary-based regularization

- Hyperspectral-multispectral fusion dictionary-based regularization
- Motivation: patch-based dictionaries learned from the (high spatial resolution) MS bands fit very well the HS bands

イロト イヨト イヨト イヨト 三日

- Hyperspectral-multispectral fusion dictionary-based regularization
- Motivation: patch-based dictionaries learned from the (high spatial resolution) MS bands fit very well the HS bands
 MS band

- Hyperspectral-multispectral fusion dictionary-based regularization
- Motivation: patch-based dictionaries learned from the (high spatial resolution) MS bands fit very well the HS bands
 MS band

- Hyperspectral-multispectral fusion dictionary-based regularization
- Motivation: patch-based dictionaries learned from the (high spatial resolution) MS bands fit very well the HS bands
 MS band

• A path \mathbf{z}_i of the a HS band is well approximated by the dictionary atoms \mathbf{d}_i for $i \in \mathcal{S}_i$

$$\mathbf{z}_i \simeq \sum_{i \in \mathcal{S}_i} a_i \mathbf{d}_i \qquad \Rightarrow \qquad \mathbf{Z} \simeq \mathcal{L}(\mathbf{D}, \mathbf{A}, \mathcal{S})$$

< □ > < ⑦ > < 言 > < 言 > 言 → ○ < ♡ < ♡ 23 / 43

• HS-MS image fusion based on a sparse representation (HFSR) [Wei et al., 15] $\min_{\mathbf{X},\mathbf{A}} (1/2) \|\mathbf{Y}_h - \mathbf{EXBM}\|_{Q_h}^2 + (1/2) \|\mathbf{Y}_m - \mathbf{REX}\|_{Q_m}^2 + \tau \phi_{\mathsf{DL}}(\mathbf{X}, \mathbf{A})$

• HS-MS image fusion based on a sparse representation (HFSR) [Wei et al., 15] $\min_{\mathbf{X},\mathbf{A}} (1/2) \|\mathbf{Y}_h - \mathbf{EXBM}\|_{Q_h}^2 + (1/2) \|\mathbf{Y}_m - \mathbf{REX}\|_{Q_m}^2 + \tau \phi_{\mathsf{DL}}(\mathbf{X}, \mathbf{A})$

 $\checkmark~{f A}$ is the code for ${f X}$ with respect to the dictionary ${f D}$

• HS-MS image fusion based on a sparse representation (HFSR) [Wei et al., 15] $\min_{\mathbf{X},\mathbf{A}} (1/2) \|\mathbf{Y}_h - \mathbf{EXBM}\|_{Q_h}^2 + (1/2) \|\mathbf{Y}_m - \mathbf{REX}\|_{Q_m}^2 + \tau \phi_{\mathsf{DL}}(\mathbf{X}, \mathbf{A})$

 $\checkmark~{\bf A}$ is the code for ${\bf X}$ with respect to the dictionary ${\bf D}$

$$\phi_{\mathsf{DL}}(\mathbf{X}, \mathbf{A}) := \left\| \mathbf{E} \mathbf{X} - \mathcal{L}(\mathbf{D}, \mathbf{A}, \mathcal{S}) \right\|_{F}^{2}$$

イロン イヨン イヨン イヨン ヨーク

23/43

- HS-MS image fusion based on a sparse representation (HFSR) [Wei et al., 15] $\min_{\mathbf{X},\mathbf{A}} (1/2) \|\mathbf{Y}_h - \mathbf{EXBM}\|_{Q_h}^2 + (1/2) \|\mathbf{Y}_m - \mathbf{REX}\|_{Q_m}^2 + \tau \phi_{\mathsf{DL}}(\mathbf{X}, \mathbf{A})$
 - $\checkmark~{\bf A}$ is the code for ${\bf X}$ with respect to the dictionary ${\bf D}$

$$\phi_{\mathsf{DL}}(\mathbf{X}, \mathbf{A}) := \left\| \mathbf{E} \mathbf{X} - \mathcal{L}(\mathbf{D}, \mathbf{A}, \mathcal{S}) \right\|_{F}^{2}$$

イロン イヨン イヨン イヨン ヨーク

 $\checkmark~\mathcal{S}$ is the support of the code learned from the MS images

• HS-MS image fusion based on a sparse representation (HFSR) [Wei et al., 15] $\min_{\mathbf{X},\mathbf{A}} (1/2) \|\mathbf{Y}_h - \mathbf{EXBM}\|_{Q_h}^2 + (1/2) \|\mathbf{Y}_m - \mathbf{REX}\|_{O_m}^2 + \tau \phi_{\mathsf{DL}}(\mathbf{X},\mathbf{A})$

 $\checkmark~{f A}$ is the code for ${f X}$ with respect to the dictionary ${f D}$

$$\phi_{\mathsf{DL}}(\mathbf{X}, \mathbf{A}) := \left\| \mathbf{E} \mathbf{X} - \mathcal{L}(\mathbf{D}, \mathbf{A}, \mathcal{S}) \right\|_{F}^{2}$$

 $\checkmark~\mathcal{S}$ is the support of the code learned from the MS images

Algorithm 6: HFSR

Learn the dictionary using online learning [Mairal et al., 09] Compute the support Sfor $k = 0, 1, \dots$ do optimize wrt X using SALSA [Afonso et al., 11] use gradient descent wrt A

Camargue performance indexes [Loncan et al. , 15]

Camargue performance indexes [Loncan et al. , 15]

Camargue data set <u>_SFIM</u> _MTF_GLP_HPM 3000 2500 BayesSparse 2000 RMSE 1500 1000 QUALITY MEASURES FOR THE CAMARGUE DATASET 500 0 2.0×10 5.0×10 1.0×10^b 1.5×10^b Pixel number

method	CC	SAM	RMSE	ERGAS
SFIM	0.91886	4.2895	637.1451	3.4159
MTF-GLP	0.92397	4.3378	622.4711	3.2666
MTF-GLP-HPM	0.92599	4.2821	611.9161	3.2497
GS	0.91262	4.4982	665.0173	3.5490
GSA	0.92826	4.1950	587.1322	3.1940
PCA	0.90350	5.1637	710.3275	3.8680
GFPCA	0.89042	4.8472	745.6006	4.0001
CNMF	0.9300	4.4187	591.3190	3.1762
Bayesian Naive	0.95195	3.6428	489.5634	2.6286
Bayesian Sparse	0.95882	3.3345	448.1721	2.4712
HySure	0.9465	3.8767	511.8525	2.8181/4

Original and fused images [Loncan et al., 15]

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ のへで 25/43

Original and fused images [Loncan et al., 15]

Details of original and fused Camargue dataset HS image in the Fig. 6. visible domain. (a) reference image, (b) interpolated HS image, (c) SFIM, (d) MTF-GLP-HPM, (e) GSA, (f) PCA, (g) GFPCA, (h) CNMF, (i) Bayesian Sparse, (j) HySure

< □ > < ⑦ > < 言 > < 言 > 言 → ○ < ♡ < ♡ 26/43

< □ > < ⑦ > < 言 > < 言 > 言 → ○ < ♡ < ♡ 26/43

• Variational/MAP criterion (assuming Gaussian noise):

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2\lambda} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \phi(\mathbf{x})$$

where ϕ is a (hopefully convex) regularizer

• Variational/MAP criterion (assuming Gaussian noise):

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2\lambda} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \phi(\mathbf{x})$$

where ϕ is a (hopefully convex) regularizer

• Usually tackled by some iterative algorithm (IST, SpaRSA, TwIST, FISTA, ADMM, DRS, PD, ...). All require the proximity operator of ϕ

$$\operatorname{prox}_{\Phi}(\mathbf{v}) = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|_{2}^{2} + \phi(\mathbf{x})$$

イロン イヨン イヨン イヨン ヨーク

• Variational/MAP criterion (assuming Gaussian noise):

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2\lambda} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \phi(\mathbf{x})$$

where ϕ is a (hopefully convex) regularizer

• Usually tackled by some iterative algorithm (IST, SpaRSA, TwIST, FISTA, ADMM, DRS, PD, ...). All require the proximity operator of ϕ

$$\operatorname{prox}_{\Phi}(\mathbf{v}) = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|_{2}^{2} + \phi(\mathbf{x})$$

イロト イロト イヨト イヨト 三日

26/43

• Clearly, the prox is a denoising operator

• Variational/MAP criterion (assuming Gaussian noise):

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2\lambda} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \phi(\mathbf{x})$$

where ϕ is a (hopefully convex) regularizer

• Usually tackled by some iterative algorithm (IST, SpaRSA, TwIST, FISTA, ADMM, DRS, PD, ...). All require the proximity operator of ϕ

$$\operatorname{prox}_{\Phi}(\mathbf{v}) = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|_{2}^{2} + \phi(\mathbf{x})$$

- Clearly, the prox is a denoising operator
- Plug-and-play (PnP) approach: replace $prox_{\phi}$ with a state-of-the-art denoiser [Venkatakrishnan et al., 13]

• Variational/MAP criterion (assuming Gaussian noise):

$$\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2\lambda} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \phi(\mathbf{x})$$

where ϕ is a (hopefully convex) regularizer

• Usually tackled by some iterative algorithm (IST, SpaRSA, TwIST, FISTA, ADMM, DRS, PD, ...). All require the proximity operator of ϕ

$$\operatorname{prox}_{\Phi}(\mathbf{v}) = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|_{2}^{2} + \phi(\mathbf{x})$$

- Clearly, the prox is a denoising operator
- Plug-and-play (PnP) approach: replace $prox_{\phi}$ with a state-of-the-art denoiser [Venkatakrishnan et al., 13]
- Another strategy: regularization by denoising (ReD) [Romano et al., 16]

• Optimization problem: $\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \phi(\mathbf{x})$

- Optimization problem: $\hat{\mathbf{x}} \in \arg \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} \mathbf{y}\|_2^2 + \lambda \phi(\mathbf{x})$
- ADMM directly applied to this problem has the form

$$\begin{aligned} \mathbf{x}_{k+1} &= \left(\mathbf{A}^T \mathbf{A} + \rho \mathbf{I}\right)^{-1} \left(\mathbf{A}^T \mathbf{y} + \rho(\mathbf{z}_k + \mathbf{u}_k)\right) \\ \mathbf{z}_{k+1} &= \mathsf{prox}_{\lambda\phi/\rho} \left(\mathbf{x}_{k+1} - \mathbf{u}_k\right) \qquad (\text{denoiser}) \\ \mathbf{u}_{k+1} &= \mathbf{u}_{k+1} - \mathbf{x}_{k+1} + \mathbf{z}_{k+1} \end{aligned}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─�

- Optimization problem: $\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} \mathbf{y}\|_2^2 + \lambda \phi(\mathbf{x})$
- ADMM directly applied to this problem has the form

$$\begin{aligned} \mathbf{x}_{k+1} &= \left(\mathbf{A}^T \mathbf{A} + \rho \mathbf{I}\right)^{-1} \left(\mathbf{A}^T \mathbf{y} + \rho(\mathbf{z}_k + \mathbf{u}_k)\right) \\ \mathbf{z}_{k+1} &= \mathsf{prox}_{\lambda\phi/\rho} \left(\mathbf{x}_{k+1} - \mathbf{u}_k\right) \qquad (\text{denoiser}) \\ \mathbf{u}_{k+1} &= \mathbf{u}_{k+1} - \mathbf{x}_{k+1} + \mathbf{z}_{k+1} \end{aligned}$$

 Most state-of-the-art denoisers do not have the form of a prox (at least, explicitly)

- Optimization problem: $\hat{\mathbf{x}} \in \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} \mathbf{y}\|_2^2 + \lambda \phi(\mathbf{x})$
- ADMM directly applied to this problem has the form

$$\begin{aligned} \mathbf{x}_{k+1} &= \left(\mathbf{A}^T \mathbf{A} + \rho \mathbf{I}\right)^{-1} \left(\mathbf{A}^T \mathbf{y} + \rho(\mathbf{z}_k + \mathbf{u}_k)\right) \\ \mathbf{z}_{k+1} &= \mathsf{prox}_{\lambda\phi/\rho} \left(\mathbf{x}_{k+1} - \mathbf{u}_k\right) \qquad (\text{denoiser}) \\ \mathbf{u}_{k+1} &= \mathbf{u}_{k+1} - \mathbf{x}_{k+1} + \mathbf{z}_{k+1} \end{aligned}$$

- Most state-of-the-art denoisers do not have the form of a prox (at least, explicitly)
- PnP-ADMM: plug a state-of-the-art denoiser instead of the prox:
- ✓ Collaborative filtering ([Dabov et al., 07])
- ✓ Non-local Bayes [Lebrun et al., 13]
- ✓ Deep neural networks [Burger et al., 12, Xie et al., 2012, Zhang et al., 17]
- ✓ Patch-based GMM-MMSE [Teodoro et al., 15, 16]
- Global Local Factorization [Zhuang, B-D, 17]

Plug-and-Play ADMM

• Plug a black-box denoiser into ADMM [Venkatakrishnan et al., 13

$$\mathbf{x}_{k+1} = \left(\mathbf{A}^T \mathbf{A} + \rho \mathbf{I}\right)^{-1} \left(\mathbf{A}^T \mathbf{y} + \rho(\mathbf{z}_k + \mathbf{u}_k)\right)$$
$$\mathbf{z}_{k+1} = \mathsf{denoiser}(\mathbf{x}_{k+1} - \mathbf{u}_k, 1/\rho)$$
$$\mathbf{u}_{k+1} = \mathbf{u}_{k+1} - \mathbf{x}_{k+1} + \mathbf{z}_{k+1}$$

where $\operatorname{\mathsf{denoiser}}(\cdot,\tau)$ assumes noise variance τ

Plug-and-Play ADMM

• Plug a black-box denoiser into ADMM [Venkatakrishnan et al., 13

$$\mathbf{x}_{k+1} = \left(\mathbf{A}^T \mathbf{A} + \rho \mathbf{I}\right)^{-1} \left(\mathbf{A}^T \mathbf{y} + \rho(\mathbf{z}_k + \mathbf{u}_k)\right)$$
$$\mathbf{z}_{k+1} = \text{denoiser}\left(\mathbf{x}_{k+1} - \mathbf{u}_k, 1/\rho\right)$$
$$\mathbf{u}_{k+1} = \mathbf{u}_{k+1} - \mathbf{x}_{k+1} + \mathbf{z}_{k+1}$$

where $\operatorname{denoiser}(\cdot, \tau)$ assumes noise variance τ

- If denoiser = $prox_{\phi}$, for convex ϕ , convergence is well-known [Eckstein and Bertsekas, 1992, Boyd et al., 11]..
- ...what about convergence of PnP-ADMM? [Sreehari et al., 16, Teodoro et al., 17b, Chan et al., 17] More later...

Plug-and-Play ADMM

• Plug a black-box denoiser into ADMM [Venkatakrishnan et al., 13

$$\mathbf{x}_{k+1} = \left(\mathbf{A}^T \mathbf{A} + \rho \mathbf{I}\right)^{-1} \left(\mathbf{A}^T \mathbf{y} + \rho(\mathbf{z}_k + \mathbf{u}_k)\right)$$
$$\mathbf{z}_{k+1} = \mathsf{denoiser}(\mathbf{x}_{k+1} - \mathbf{u}_k, 1/\rho)$$
$$\mathbf{u}_{k+1} = \mathbf{u}_{k+1} - \mathbf{x}_{k+1} + \mathbf{z}_{k+1}$$

where $\operatorname{denoiser}(\cdot, \tau)$ assumes noise variance τ

- If denoiser = $prox_{\phi}$, for convex ϕ , convergence is well-known [Eckstein and Bertsekas, 1992, Boyd et al., 11]..
- ...what about convergence of PnP-ADMM? [Sreehari et al., 16, Teodoro et al., 17b, Chan et al., 17] More later...
- Empirical results: competitive!

Plug-and-Play ADMM: Experiments

Plug-and-Play ADMM: Experiments

ISNR (dB)

Image:	Cameraman					House						
Experiment:	1	2	3	4	5	6	1	2	3	4	5	6
BSNR	31.87	25.85	40.00	18.53	29.19	17.76	29.16	23.14	40.00	15.99	26.61	15.15
Input PSNR	22.23	22.16	20.76	24.62	23.36	29.82	25.61	25.46	24.11	28.06	27.81	29.98
IDD-BM3D	8.85	7.12	10.45	3.98	4.31	4.89	9.95	8.55	12.89	5.79	5.74	7.13
ADMM-GMM	8.34	6.39	9.73	3.49	4.18	4.90	9.84	8.40	12.87	5.57	5.55	6.65
ADMM-BM3D	8.18	6.13	9.58	3.26	3.93	4.88	9.64	8.02	12.95	5.23	5.06	7.37
Image:	Lena				Barbara							
Experiment:	1	2	3	4	5	6	1	2	3	4	5	6
BSNR	29.89	23.87	40.00	16.47	27.18	15.52	30.81	24.79	40.00	17.35	28.07	16.59
Input PSNR	27.25	27.04	25.84	28.81	29.16	30.03	23.34	23.25	22.49	24.22	23.77	29.78
IDD-BM3D	7.97	6.61	8.91	4.97	4.85	6.34	7.64	3.96	6.05	1.88	1.16	5.45
ADMM-GMM	8.01	6.53	8.95	4.93	4.81	6.09	5.91	2.19	5.37	1.42	1.24	5.14
ADMM-BM3D	8.00	6.56	9.00	4.88	4.67	6.42	7.32	2.99	6.05	1.55	1.40	5.76

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

29/43

Class-Adapted GMM-based restoration

• Beating state-of-the-art general-purpose denoisers: divide and conquer, i.e., learn class-adapted denoisers.

Class-Adapted GMM-based restoration

- Beating state-of-the-art general-purpose denoisers: divide and conquer, i.e., learn class-adapted denoisers.
- Learn a GMM for a class of images; use the corresponding patch-based MMSE denoiser [Teodoro et al., 16]

original	blurred	IDD-BM3D	ADMM-GMM
procedure de	procedure de	procedure de	procedure de
etermine the (tiornine the o	etermine the c	etermine the c
means algorit	means algoriti	means algorit	means algorit
erimental resu	minential new	erimental resu	erimental resu

Class-Adapted GMM-based restoration

- Beating state-of-the-art general-purpose denoisers: divide and conquer, i.e., learn class-adapted denoisers.
- Learn a GMM for a class of images; use the corresponding patch-based MMSE denoiser [Teodoro et al., 16]

original	blurred	IDD-BM3D	ADMM-GMM
procedure de	procedure de	procedure de	procedure de
etermine the c	tiornine the o	etermine the c	etermine the c
means algorit	means algoriti	means algorit	means algorit
erimental resu	minorial res	erimental resu	erimental resu

Image class:	Text					Face						
Experiment:	1	2	3	4	5	6	1	2	3	4	5	6
BSNR	26.07	20.05	40.00	15.95	24.78	18.11	28.28	22.26	40.00	15.89	26.22	15.37
Input PSNR	14.14	14.13	12.13	16.83	14.48	28.73	25.61	22.54	20.71	26.49	24.79	30.03
IDD-BM3D	11.97	8.91	16.29	5.88	6.81	4.87	13.66	11.16	14.96	7.31	10.33	6.18
ADMM-GMM	16.24	11.55	23.11	8.88	10.77	8.34	15.05	12.59	17.28	8.84	11.69	7.32

୬ ୦ ୦ 30 / 43

Convergence

• PnP-ADMM with a denoiser

$$\mathbf{x}_{k+1} = \left(\mathbf{A}^T \mathbf{A} + \rho \mathbf{I}\right)^{-1} \left(\mathbf{A}^T \mathbf{y} + \rho(\mathbf{z}_k + \mathbf{u}_k)\right)$$
$$\mathbf{z}_{k+1} = \text{denoiser}\left(\mathbf{x}_{k+1} - \mathbf{u}_k, 1/\rho\right)$$
$$\mathbf{u}_{k+1} = \mathbf{u}_{k+1} - \mathbf{x}_{k+1} + \mathbf{z}_{k+1}$$

Convergence

• PnP-ADMM with a denoiser

$$\mathbf{x}_{k+1} = \left(\mathbf{A}^T \mathbf{A} + \rho \mathbf{I}\right)^{-1} \left(\mathbf{A}^T \mathbf{y} + \rho(\mathbf{z}_k + \mathbf{u}_k)\right)$$
$$\mathbf{z}_{k+1} = \text{denoiser}\left(\mathbf{x}_{k+1} - \mathbf{u}_k, 1/\rho\right)$$
$$\mathbf{u}_{k+1} = \mathbf{u}_{k+1} - \mathbf{x}_{k+1} + \mathbf{z}_{k+1}$$

• denoiser is the prox of a convex function \Rightarrow convergence.
Convergence

PnP-ADMM with a denoiser

$$\mathbf{x}_{k+1} = (\mathbf{A}^T \mathbf{A} + \rho \mathbf{I})^{-1} (\mathbf{A}^T \mathbf{y} + \rho(\mathbf{z}_k + \mathbf{u}_k))$$
$$\mathbf{z}_{k+1} = \mathsf{denoiser} (\mathbf{x}_{k+1} - \mathbf{u}_k, 1/\rho)$$
$$\mathbf{u}_{k+1} = \mathbf{u}_{k+1} - \mathbf{x}_{k+1} + \mathbf{z}_{k+1}$$

• denoiser is the prox of a convex function \Rightarrow convergence.

- From [Moreau 1965]: some map $p: \mathbb{R}^n \to \mathbb{R}^n$ is the prox of a convex function if and only if:
 - a) p is non-expansive, i.e., $\forall \, {\bf x}, {\bf x}', \; \| p({\bf x}) p({\bf x}') \| \leq \| {\bf x} {\bf x}' \|$

イロト イロト イヨト イヨト 三日

b) and p is subgradient of a convex function, *i.e.*, $\exists \phi : \mathbb{R}^n \to \mathbb{R} : p(\mathbf{x}) \in \partial \phi(\mathbf{x}), \forall \mathbf{x}$

Convergence

• PnP-ADMM with a denoiser

$$\begin{aligned} \mathbf{x}_{k+1} &= \left(\mathbf{A}^T \mathbf{A} + \rho \mathbf{I}\right)^{-1} \left(\mathbf{A}^T \mathbf{y} + \rho(\mathbf{z}_k + \mathbf{u}_k)\right) \\ \mathbf{z}_{k+1} &= \mathsf{denoiser} \left(\mathbf{x}_{k+1} - \mathbf{u}_k, 1/\rho\right) \\ \mathbf{u}_{k+1} &= \mathbf{u}_{k+1} - \mathbf{x}_{k+1} + \mathbf{z}_{k+1} \end{aligned}$$

• denoiser is the prox of a convex function \Rightarrow convergence.

- From [Moreau 1965]: some map $p: \mathbb{R}^n \to \mathbb{R}^n$ is the prox of a convex function if and only if:
 - a) p is non-expansive, i.e., $\forall\, {\bf x}, {\bf x}', \; \|p({\bf x}) p({\bf x}')\| \leq \|{\bf x} {\bf x}'\|$

b) and p is subgradient of a convex function, *i.e.*, $\exists \phi : \mathbb{R}^n \to \mathbb{R} : p(\mathbf{x}) \in \partial \phi(\mathbf{x}), \forall \mathbf{x}$

• Most state-of-the-art denoisers do no satisfy these conditions

• Is the patch-based GMM-MMSE denoiser non-expansive?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Is the patch-based GMM-MMSE denoiser non-expansive?
- No! A simple univariate counter-example:
 - ✓ Spike-and-slab-type prior: $p(x) = \frac{1}{2}\mathcal{N}(x;0,\tau_1) + \frac{1}{2}\mathcal{N}(x;0,\tau_2), \ \tau_2 \gg \tau_1$

- Is the patch-based GMM-MMSE denoiser non-expansive?
- No! A simple univariate counter-example:
 - ✓ Spike-and-slab-type prior: $p(x) = \frac{1}{2}\mathcal{N}(x;0,\tau_1) + \frac{1}{2}\mathcal{N}(x;0,\tau_2), \ \tau_2 \gg \tau_1$
 - ✓ MMSE estimate under Gaussian noise of unit variance:

$$\hat{x} = \mathbb{E}[X|y] = \frac{\frac{\tau_1 y}{\tau_1 + 1} \beta_1(y) + \frac{\tau_2 y}{\tau_2 + 1} \beta_2(y)}{\beta_1(y) + \beta_2(y)}, \quad \text{ where } \beta_i(y) = \mathcal{N}(y; 0, \tau_i + 1)$$

・ロト ・日ト ・ヨト ・ヨト

- Is the patch-based GMM-MMSE denoiser non-expansive?
- No! A simple univariate counter-example:
 - ✓ Spike-and-slab-type prior: $p(x) = \frac{1}{2}\mathcal{N}(x;0,\tau_1) + \frac{1}{2}\mathcal{N}(x;0,\tau_2), \ \tau_2 \gg \tau_1$
 - ✓ MMSE estimate under Gaussian noise of unit variance:

$$\hat{x} = \mathbb{E}[X|y] = \frac{\frac{\tau_1 y}{\tau_1 + 1} \beta_1(y) + \frac{\tau_2 y}{\tau_2 + 1} \beta_2(y)}{\beta_1(y) + \beta_2(y)}, \quad \text{ where } \beta_i(y) = \mathcal{N}(y; 0, \tau_i + 1)$$

• With β_i fixed: $\hat{x} = y \left(\beta_1 \frac{\tau_1}{\tau_1 + 1} + \beta_2 \frac{\tau_2}{\tau_2 + 1} \right) / (\beta_1 + \beta_2)$

• Freeze the weights (β_m) after a certain number of iterations.

- Freeze the weights (β_m) after a certain number of iterations.
- Patch estimate:

$$\hat{\mathbf{x}}_i = \sum_{m=1}^K \beta_m^i \, \mathbf{C}_m \left(\mathbf{C}_m + \sigma^2 \, \mathbf{I} \right)^{-1} \mathbf{y}_i$$

- Freeze the weights (β_m) after a certain number of iterations.
- Patch estimate:

$$\hat{\mathbf{x}}_i = \sum_{m=1}^K \beta_m^i \, \mathbf{C}_m \left(\mathbf{C}_m + \sigma^2 \, \mathbf{I} \right)^{-1} \mathbf{y}_i = \mathbf{F}_i(\sigma^2) \, \mathbf{y}_i$$

- Freeze the weights (β_m) after a certain number of iterations.
- Patch estimate:

$$\hat{\mathbf{x}}_i = \sum_{m=1}^K \beta_m^i \, \mathbf{C}_m \left(\mathbf{C}_m + \sigma^2 \, \mathbf{I} \right)^{-1} \mathbf{y}_i = \mathbf{F}_i(\sigma^2) \, \mathbf{y}_i = \mathbf{F}_i(\sigma^2) \, \mathbf{P}_i \, \mathbf{y}$$

 \mathbf{P}_i is the operator (binary matrix) that extracts the *i*-th patch

- Freeze the weights (β_m) after a certain number of iterations.
- Patch estimate:

$$\hat{\mathbf{x}}_i = \sum_{m=1}^K \beta_m^i \, \mathbf{C}_m \left(\mathbf{C}_m + \sigma^2 \, \mathbf{I} \right)^{-1} \mathbf{y}_i = \mathbf{F}_i(\sigma^2) \, \mathbf{y}_i = \mathbf{F}_i(\sigma^2) \, \mathbf{P}_i \, \mathbf{y}_i$$

 \mathbf{P}_i is the operator (binary matrix) that extracts the *i*-th patch (weights are normalized, to simplify the notation: $\beta_m^i \leftarrow \beta_m^i / \sum_i \beta_i^i$)

- Freeze the weights (β_m) after a certain number of iterations.
- Patch estimate:

$$\hat{\mathbf{x}}_i = \sum_{m=1}^K \beta_m^i \, \mathbf{C}_m \left(\mathbf{C}_m + \sigma^2 \, \mathbf{I} \right)^{-1} \mathbf{y}_i = \mathbf{F}_i(\sigma^2) \, \mathbf{y}_i = \mathbf{F}_i(\sigma^2) \, \mathbf{P}_i \, \mathbf{y}_i$$

 \mathbf{P}_i is the operator (binary matrix) that extracts the *i*-th patch (weights are normalized, to simplify the notation: $\beta_m^i \leftarrow \beta_m^i / \sum_j \beta_j^i$)

Global image estimate: aggregate the patch estimates:

$$\hat{\mathbf{x}} = \frac{1}{n_p} \sum_{i=1}^{N} \mathbf{P}_i^T \mathbf{F}_i(\sigma^2) \mathbf{P}_i \ \mathbf{y} = \mathbf{W}(\sigma^2) \ \mathbf{y}$$

イロト イヨト イヨト イヨト 三日

- Freeze the weights (β_m) after a certain number of iterations.
- Patch estimate:

$$\hat{\mathbf{x}}_i = \sum_{m=1}^K \beta_m^i \, \mathbf{C}_m \left(\mathbf{C}_m + \sigma^2 \, \mathbf{I} \right)^{-1} \mathbf{y}_i = \mathbf{F}_i(\sigma^2) \, \mathbf{y}_i = \mathbf{F}_i(\sigma^2) \, \mathbf{P}_i \, \mathbf{y}_i$$

 \mathbf{P}_i is the operator (binary matrix) that extracts the *i*-th patch (weights are normalized, to simplify the notation: $\beta_m^i \leftarrow \beta_m^i / \sum_j \beta_j^i$)

• Global image estimate: aggregate the patch estimates:

$$\hat{\mathbf{x}} = \frac{1}{n_p} \sum_{i=1}^{N} \mathbf{P}_i^T \mathbf{F}_i(\sigma^2) \mathbf{P}_i \ \mathbf{y} = \mathbf{W}(\sigma^2) \ \mathbf{y}$$

• Key properties of W [Teodoro et al., 17c]: for any $\sigma^2 > 0$,

$$\mathbf{W}(\sigma^2) = \mathbf{W}(\sigma^2)^T, \qquad \mathbf{W}(\sigma^2) \succeq 0, \qquad \lambda_{\max}\left(\mathbf{W}(\sigma^2)\right) < 1$$

イロト イヨト イヨト イヨト 三日

• Freezing the weights (β_m) after a certain number of iterations,

 $\operatorname{\mathsf{denoiser}}(\mathbf{y},\sigma^2) = \mathbf{W}(\sigma^2)\mathbf{y}$

• Freezing the weights (β_m) after a certain number of iterations,

 $\operatorname{\mathsf{denoiser}}(\mathbf{y},\sigma^2) = \mathbf{W}(\sigma^2)\mathbf{y}$

- Recalling Moreau's corollary, this is a proximity operator:
 - It is non-expansive: $\mathbf{W}(\sigma^2)$ is symmetric with $\lambda_{\max}(\mathbf{W}(\sigma^2)) < 1$
 - It is the gradient of a convex function: $\mathbf{W}(\sigma^2)\mathbf{y} = \nabla_{\mathbf{y}} \left(\frac{1}{2}\mathbf{y}^T \mathbf{W}(\sigma^2)\mathbf{y}\right)$

• Freezing the weights (β_m) after a certain number of iterations,

denoiser $(\mathbf{y}, \sigma^2) = \mathbf{W}(\sigma^2)\mathbf{y}$

- Recalling Moreau's corollary, this is a proximity operator:
 - It is non-expansive: $\mathbf{W}(\sigma^2)$ is symmetric with $\lambda_{\max}(\mathbf{W}(\sigma^2)) < 1$
 - It is the gradient of a convex function: $\mathbf{W}(\sigma^2)\mathbf{y} = \nabla_{\mathbf{y}}\left(\frac{1}{2}\mathbf{y}^T\mathbf{W}(\sigma^2)\mathbf{y}\right)$
- Corollary:

frozen weights \Rightarrow PnP-ADMM converges

• Assuming Gaussian noise:

$$\widehat{\mathbf{X}} \in \arg\min_{\mathbf{X} \in \mathbb{R}^{p \times n_h}} \frac{1}{2} \|\mathbf{E}\mathbf{X}\mathbf{B}\mathbf{M} - \mathbf{Y}_h\|_F^2 + \frac{\lambda_m}{2} \|\mathbf{R}\mathbf{E}\mathbf{X} - \mathbf{Y}_m\|_F^2 + \mathbf{\phi}(\mathbf{X})^{"}$$

• Assuming Gaussian noise:

$$\widehat{\mathbf{X}} \in \arg\min_{\mathbf{X} \in \mathbb{R}^{p \times n_h}} \frac{1}{2} \|\mathbf{E}\mathbf{X}\mathbf{B}\mathbf{M} - \mathbf{Y}_h\|_F^2 + \frac{\lambda_m}{2} \|\mathbf{R}\mathbf{E}\mathbf{X} - \mathbf{Y}_m\|_F^2 + ``\phi(\mathbf{X})"$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─�

35 / 43

• We use an instance of ADMM: SALSA [Afonso et al., 11]

• Assuming Gaussian noise:

$$\widehat{\mathbf{X}} \in \arg\min_{\mathbf{X} \in \mathbb{R}^{p \times n_h}} \frac{1}{2} \|\mathbf{E}\mathbf{X}\mathbf{B}\mathbf{M} - \mathbf{Y}_h\|_F^2 + \frac{\lambda_m}{2} \|\mathbf{R}\mathbf{E}\mathbf{X} - \mathbf{Y}_m\|_F^2 + ``\phi(\mathbf{X})"$$

- We use an instance of ADMM: SALSA [Afonso et al., 11]
- PnP: instead of $prox_{\phi}$, use patch-based GMM denoiser

• Assuming Gaussian noise:

$$\widehat{\mathbf{X}} \in \arg\min_{\mathbf{X} \in \mathbb{R}^{p \times n_h}} \frac{1}{2} \|\mathbf{E}\mathbf{X}\mathbf{B}\mathbf{M} - \mathbf{Y}_h\|_F^2 + \frac{\lambda_m}{2} \|\mathbf{R}\mathbf{E}\mathbf{X} - \mathbf{Y}_m\|_F^2 + \text{``}\phi(\mathbf{X})\text{''}$$

- We use an instance of ADMM: SALSA [Afonso et al., 11]
- PnP: instead of $prox_{\phi}$, use patch-based GMM denoiser
- The GMM is learned from patches of \mathbf{Y}_m (high spatial resolution)

• Assuming Gaussian noise:

$$\widehat{\mathbf{X}} \in \arg\min_{\mathbf{X} \in \mathbb{R}^{p \times n_h}} \frac{1}{2} \|\mathbf{E}\mathbf{X}\mathbf{B}\mathbf{M} - \mathbf{Y}_h\|_F^2 + \frac{\lambda_m}{2} \|\mathbf{R}\mathbf{E}\mathbf{X} - \mathbf{Y}_m\|_F^2 + \text{``}\phi(\mathbf{X})\text{''}$$

- We use an instance of ADMM: SALSA [Afonso et al., 11]
- PnP: instead of $prox_{\phi}$, use patch-based GMM denoiser
- The GMM is learned from patches of \mathbf{Y}_m (high spatial resolution)
- The weights (β_m) are kept fixed: scene adaptation

• Assuming Gaussian noise:

$$\widehat{\mathbf{X}} \in \arg\min_{\mathbf{X} \in \mathbb{R}^{p \times n_h}} \frac{1}{2} \|\mathbf{E}\mathbf{X}\mathbf{B}\mathbf{M} - \mathbf{Y}_h\|_F^2 + \frac{\lambda_m}{2} \|\mathbf{R}\mathbf{E}\mathbf{X} - \mathbf{Y}_m\|_F^2 + \text{``}\phi(\mathbf{X})\text{''}$$

- We use an instance of ADMM: SALSA [Afonso et al., 11]
- PnP: instead of $prox_{\phi}$, use patch-based GMM denoiser
- The GMM is learned from patches of \mathbf{Y}_m (high spatial resolution)
- The weights (β_m) are kept fixed: scene adaptation
- \Rightarrow convergence [Teodoro et al., 17a]

ADMM/SALSA

• Variable splitting reformulation

$$\begin{split} \widehat{\mathbf{X}}, \widehat{\mathbf{V}}_1, \widehat{\mathbf{V}}_2, \widehat{\mathbf{V}}_3 \in & \underset{\mathbf{X}, \mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3}{\operatorname{argmin}} \quad \frac{1}{2} \| \mathbf{E} \mathbf{V}_1 \mathbf{M} - \mathbf{Y}_h \|_F^2 + \frac{\lambda_m}{2} \| \mathbf{R} \mathbf{E} \mathbf{V}_2 - \mathbf{Y}_m \|_F^2 + \lambda_\phi \phi(\mathbf{V}_3) \\ & \text{subject to} & \mathbf{V}_1 = \mathbf{X} \mathbf{B}, \quad \mathbf{V}_2 = \mathbf{X}, \quad \mathbf{V}_3 = \mathbf{X} \end{split}$$

ADMM/SALSA

• Variable splitting reformulation

$$\begin{split} \widehat{\mathbf{X}}, \widehat{\mathbf{V}}_1, \widehat{\mathbf{V}}_2, \widehat{\mathbf{V}}_3 \in & \underset{\mathbf{X}, \mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{E} \mathbf{V}_1 \mathbf{M} - \mathbf{Y}_h \|_F^2 + \frac{\lambda_m}{2} \| \mathbf{R} \mathbf{E} \mathbf{V}_2 - \mathbf{Y}_m \|_F^2 + \lambda_\phi \phi(\mathbf{V}_3) \\ & \text{subject to} & \mathbf{V}_1 = \mathbf{X} \mathbf{B}, \quad \mathbf{V}_2 = \mathbf{X}, \quad \mathbf{V}_3 = \mathbf{X} \end{split}$$

• SALSA/ADMM: solve sequence of simpler sub-problems (e.g. using ADMM)

イロト イヨト イヨト イヨト ヨー わらの

36/43

$$\begin{split} \mathbf{X}^{k+1} &= \operatorname*{argmin}_{\mathbf{X}} \| \mathbf{X}\mathbf{B} - \mathbf{V}_1 - \mathbf{D}_1 \|_F^2 + \| \mathbf{X} - \mathbf{V}_2 - \mathbf{D}_2 \|_F^2 + \| \mathbf{X} - \mathbf{V}_3 - \mathbf{D}_3 \|_F^2, \\ \mathbf{V}_1^{k+1} &= \operatorname*{argmin}_{\mathbf{V}_1} \ \frac{1}{2} \| \mathbf{E} \mathbf{V}_1 \mathbf{M} - \mathbf{Y}_h \|_F^2 + \frac{\rho}{2} \| \mathbf{X}^{k+1} \mathbf{B} - \mathbf{V}_1 - \mathbf{D}_1^k \|_F^2, \\ \mathbf{V}_2^{k+1} &= \operatorname*{argmin}_{\mathbf{V}_2} \ \frac{\lambda_m}{2} \| \mathbf{R} \mathbf{E} \mathbf{V}_2 - \mathbf{Y}_m \|_F^2 + \frac{\rho}{2} \| \mathbf{X}^{k+1} - \mathbf{V}_2 - \mathbf{D}_2^k \|_F^2, \\ \mathbf{V}_3^{k+1} &= \operatorname{denoise} \left(\mathbf{X}^{k+1} - \mathbf{D}_3^k, \frac{\lambda_\phi}{\rho} \right) \end{split}$$

Algorithm

<ロト<回ト<重ト<重ト<重ト 37/43

Hyperspectral Fusion: Synthetic Example

Hyperspectral Fusion: Synthetic Example

		Exp	. 1 (PAN	Ŋ	Exp	xp. 2 (PAN)		Exp. 3 (R,G,B,N-IR)			Exp. 4 (R,G,B,N-IR)		
Dataset	Metric	ERGAS	SAM	SRE	ERGAS	SAM	SRE	ERGAS	SAM	SRE	ERGAS	SAM	SRE
	Dictionary	1.99	3.28	22.64	2.05	3.16	22.32	0.47	0.85	34.60	0.85	(R,G,B,N SAM 1.47 1.65 1.42 3.21 3.37 2.90	29.66
Rosis	GMM	1.75	2.89	23.67	1.92	2.92	22.85	0.48	0.87	34.32	0.91	1.65	29.05
	Modified GMM	1.65	2.75	24.17	1.81	2.76	23.31	0.49	0.87	34.59	0.80	(R,G,B,N SAM 1.47 1.65 1.42 3.21 3.37 2.90	30.14
	Dictionaries	2.67	4.18	20.28	2.74	4.20	20.05	1.85	2.72	23.58	2.12	3.21	22.25
Moffett	GMM	2.66	4.24	20.26	2.78	4.27	19.87	1.81	2.68	23.81	2.30	3.37	21.63
	Modified GMM	2.54	4.06	20.66	2.65	4.10	20.28	1.73	2.58	24.18	1.97	2.90	22.94

• Metrics: ERGAS = erreur relative globale adimensionnelle de synthèse

SAM = spectral angle mapper (low is good)

SRE = signal to reconstruction error (dB, high is good)

38 / 43

Spectral Prior

• Leverage spectral information, as well as spatial

Spectral Prior

- Leverage spectral information, as well as spatial
- Dual regularization approach

$$\begin{split} \widehat{\mathbf{X}} \in & \underset{\mathbf{X}}{\operatorname{argmin}} \quad \frac{1}{2} \| \mathbf{E}\mathbf{X}\mathbf{B}\mathbf{M} - \mathbf{Y}_{h} \|_{F}^{2} + \frac{\lambda_{m}}{2} \| \mathbf{R}\mathbf{E}\mathbf{X} - \mathbf{Y}_{m} \|_{F}^{2} + \\ & + \lambda_{\operatorname{spatial}} \phi_{\operatorname{spatial}}(\mathbf{X}) + \lambda_{\operatorname{spectral}} \phi_{\operatorname{spectral}}(\mathbf{X}^{T}) \end{split}$$

Spectral Prior

- Leverage spectral information, as well as spatial
- Dual regularization approach

$$\begin{split} \widehat{\mathbf{X}} \in \underset{\mathbf{X}}{\operatorname{argmin}} & \quad \frac{1}{2} \| \mathbf{E} \mathbf{X} \mathbf{B} \mathbf{M} - \mathbf{Y}_h \|_F^2 + \frac{\lambda_m}{2} \| \mathbf{R} \mathbf{E} \mathbf{X} - \mathbf{Y}_m \|_F^2 + \\ & \quad + \lambda_{\operatorname{spatial}} \phi_{\operatorname{spatial}}(\mathbf{X}) + \lambda_{\operatorname{spectral}} \phi_{\operatorname{spectral}}(\mathbf{X}^T) \end{split}$$

- Plug-and-play with two denoisers
 - ✓ A GMM spatial prior, learned from the MS image(s)
 - ✓ A GMM spectral prior learned from HS bands, *i.e.*, spectra of each HS pixel

Algorithm

Improving Hyperspectral Fusion Results

• Orthonormal subspace obtained with SVD

Method	Spatial				Spectra	1	Spatial-Spectral		
Dataset	PSNR	SAM	ERGAS	PSNR	SAM	ERGAS	PSNR	SAM	ERGAS
AVIRIS Indian Pines	43.10	0.60	0.31	43.22	0.61	0.31	42.77	0.61	0.32
AVIRIS Cuprite	43.97	0.50	0.23	42.66	0.59	0.28	44.09	0.48	0.23
AVIRIS Moffett Field	34.67	1.95	5.23	34.38	1.85	5.28	36.28	1.50	4.49
HYDICE W. DC Mall	34.59	3.44	4.66	34.19	1.75	6.20	37.16	1.53	3.94
HyperSpec Chikusei	44.70	1.49	1.53	41.34	1.70	1.98	44.76	1.39	1.48
ROSIS-3 Univ. Pavia	39.35	4.49	1.29	37.99	3.20	1.34	40.84	3.01	0.97
CASI Univ. Houston	44.86	2.17	1.65	41.32	2.01	2.16	44.65	1.89	1.59
Average	40.75	2.09	2.13	39.30	1.67	2.51	41.51	1.49	1.86

Improving Hyperspectral Fusion Results

• Orthonormal subspace obtained with SVD

Method		Spatial			Spectra	1	Spatial-Spectral		
Dataset	PSNR	SAM	ERGAS	PSNR	SAM	ERGAS	PSNR	SAM	ERGAS
AVIRIS Indian Pines	43.10	0.60	0.31	43.22	0.61	0.31	42.77	0.61	0.32
AVIRIS Cuprite	43.97	0.50	0.23	42.66	0.59	0.28	44.09	0.48	0.23
AVIRIS Moffett Field	34.67	1.95	5.23	34.38	1.85	5.28	36.28	1.50	4.49
HYDICE W. DC Mall	34.59	3.44	4.66	34.19	1.75	6.20	37.16	1.53	3.94
HyperSpec Chikusei	44.70	1.49	1.53	41.34	1.70	1.98	44.76	1.39	1.48
ROSIS-3 Univ. Pavia	39.35	4.49	1.29	37.99	3.20	1.34	40.84	3.01	0.97
CASI Univ. Houston	44.86	2.17	1.65	41.32	2.01	2.16	44.65	1.89	1.59
Average	40.75	2.09	2.13	39.30	1.67	2.51	41.51	1.49	1.86

• Subspace obtained with HySime [B-D, Nascimento, 08]

Method		Spatia	l		Spectra	d	Spatial-Spectral		
Dataset	PSNR	SAM	ERGAS	PSNR	SAM	ERGAS	PSNR	SAM	ERGAS
AVIRIS Indian Pines	42.52	0.59	0.32	41.70	0.65	0.35	42.34	0.60	0.33
AVIRIS Cuprite	43.91	0.48	0.22	42.83	0.55	0.25	44.38	0.48	0.22
AVIRIS Moffett Field	36.14	1.62	4.66	35.92	1.89	4.70	36.28	1.62	4.65
HYDICE W. DC Mall	37.91	1.83	3.60	37.82	1.87	3.62	37.95	1.80	3.65
HyperSpec Chikusei	46.06	1.22	1.56	40.89	1.37	1.63	46.05	1.22	1.57
ROSIS-3 Univ Pavia	41.75	2.70	0.80	38.47	2.73	0.83	42.71	2.70	0.80
CASIUniv Houston	47.29	1.47	1.13	43.49	1.47	1.14	47.28	1.45	1.12
Average	42.23	1.42	1.76	40.16	1.50	1.79	42.43	1.41	1.76

41 / 43

Final Remarks

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ♪ ↓ ■ かへで
42 / 43

Final Remarks

• Image patches: effective low-dimensional image representation

Final Remarks

- Image patches: effective low-dimensional image representation
- GMM for MMSE patch estimation: a flexible tool/model
- Image patches: effective low-dimensional image representation
- GMM for MMSE patch estimation: a flexible tool/model
- Specialize to image classes

- Image patches: effective low-dimensional image representation
- GMM for MMSE patch estimation: a flexible tool/model
- Specialize to image classes
- Tighter adaptation: scene-adapted for hyperspectral denoising, destripping, superresolution, fusion, compressive sensing
- Tool: plug-and-play ADMM

- Image patches: effective low-dimensional image representation
- GMM for MMSE patch estimation: a flexible tool/model
- Specialize to image classes
- Tighter adaptation: scene-adapted for hyperspectral denoising, destripping, superresolution, fusion, compressive sensing
- Tool: plug-and-play ADMM
- Convergence guarantee (GMM with fixed weights, BM3D with fixed groups)

- Image patches: effective low-dimensional image representation
- GMM for MMSE patch estimation: a flexible tool/model
- Specialize to image classes
- Tighter adaptation: scene-adapted for hyperspectral denoising, destripping, superresolution, fusion, compressive sensing
- Tool: plug-and-play ADMM
- Convergence guarantee (GMM with fixed weights, BM3D with fixed groups)
- Ongoing work: non-Gaussian noise

- Image patches: effective low-dimensional image representation
- GMM for MMSE patch estimation: a flexible tool/model
- Specialize to image classes
- Tighter adaptation: scene-adapted for hyperspectral denoising, destripping, superresolution, fusion, compressive sensing
- Tool: plug-and-play ADMM
- Convergence guarantee (GMM with fixed weights, BM3D with fixed groups)
- Ongoing work: non-Gaussian noise
- Ongoing work: PnP with other algorithms (DNNs)

Current research

4日 > 4日 > 4日 > 4日 > 4日 > 4日 > 50 Q (~ 43/43)