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Hyperspectral/multispectral image fusion
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Multispectral multiresolution imaging (Sentinel 2)
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Hyperspectral compressive sensing
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Curing Ill-posed/Ill-conditioned inverse problems

Golden rule for solving ill-posed/ill-conditioned inverse problems

Search for solutions which are:

1. compatible with the observed data

2. satisfy additional constraints (a priori or prior information) coming from the
(physics) problem

Frameworks to solve inverse problems

Bayesian inference: the causes are inferred by minimizing the Bayesian risk

Variational regularization: the causes are inferred by minimizing a cost function
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Variational regularization framework

Unconstrained formulation: min
x
f(x,y) + τφ(x)

f(x,y)→ data �delity term: measures the compatibility between x and y
(data-term, loss function, observation model, log-likelihood, ...)

φ(x)→ regularizer: expresses prior information about x

τ → regularization parameter: sets the relative weight between the data term
and the regularizer

Proximal algorithms for solving convex inverse problems
SALSA ([Afonso, B-D, Figueiredo, 09, 10]) FBPD ([Condat, 13 ], [V�u,13])

new class of iterative methods suited to solve large scale non-smooth convex
optimization problems

replace a di�cult problem with a sequence of simpler ones

proximity operators, which may be interpreted as implicit subgradients, plays a
central role in the proximal algorithms
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Image regularizers and representations
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Non-local patch(cube)-based methods

Real world images are self-similar: given an image patch (cube in volumes),
there are similar patches at di�erent locations and scales
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Patch-based denoising
Rather than globally modeling x, model patches: divide and conquer

X Decompose noisy image into (overlapping) patches yi

X Denoise each patch: x̂i = denoiser(yi)

X Average overlapping pixel estimates

Self-similarity has been exploited in various ways

X Non-local (generalized) means: x̂i = f(yi1 , . . . ,yiP ) (yik� similar patches)
[Buades et al., 05; Dabov et al., 07; Chatterjee & Milanfar, 09; Maggioni et al.,
12; Lebrun et al., 13, Rajwade et al., 13, ...]

X Dictionary learning: min
D,α1,...,αNp

Np∑
i=1

‖yi −Dαi‖22 + λ‖αi‖1

[Elad & Aharon, 05; Mairal et. al., 08,10],

Gaussian mixture models (GMM) and MMSE estimates:

x̂i = E[x|yi] =
∫

x
p(yi|x)p(x)

p(yi)
dx

[Zoran and Y. Weiss, 11;Yu et al., 12; Teodoro et al., 16; Houdard et al., 17]
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Patch MMSE denoising

Questions:

X How to choose/learn a prior?

X How to compute the expectation?

Essentially three classes of approaches:

X Non-parametric:

• non-local means [Buades et al., 05] and its many variants/descendants;

• importance sampling [Niknejad et al., 17]

X Semi-parametric: Gaussian mixture models
[Zoran and Weiss, 2011, Teodoro et al., 2015, Houdard et al., 2017]

X Parametric: non-local Bayesian [Lebrun et al., 13] and variants thereof
[Niknejad et al., 15, Aguerrebere et al., 17]
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Patch MMSE Denoising: Gaussian Prior

Classical result in linear estimation (Wiener �lter)

p(y|x) = N (y;x, σ2I)

p(x) = N (x;µ,C)

}

⇒ E[X|y] = µ+C
(
C+ σ2I

)−1(
y − µ

)

Basic idea: estimate µ and C from (clean or noisy) patches;

In general, image patches are not well modelled by one Gaussian

Divide and conquer again!

X Use only patches similar enough to the patch being denoised
[Lebrun et al., 13, Niknejad et al., 15, Aguerrebere et al., 17]

X Use a Gaussian mixture model (GMM)

• learned from an external set of clean patches [Zoran and Weiss, 11]

• ... or from the noisy patches [Teodoro et al., 15, Houdard et al., 17]

12 / 43



Patch MMSE Denoising: Gaussian Prior

Classical result in linear estimation (Wiener �lter)

p(y|x) = N (y;x, σ2I)

p(x) = N (x;µ,C)

}
⇒ E[X|y] = µ+C

(
C+ σ2I

)−1(
y − µ

)

Basic idea: estimate µ and C from (clean or noisy) patches;

In general, image patches are not well modelled by one Gaussian

Divide and conquer again!

X Use only patches similar enough to the patch being denoised
[Lebrun et al., 13, Niknejad et al., 15, Aguerrebere et al., 17]

X Use a Gaussian mixture model (GMM)

• learned from an external set of clean patches [Zoran and Weiss, 11]

• ... or from the noisy patches [Teodoro et al., 15, Houdard et al., 17]

12 / 43



Patch MMSE Denoising: Gaussian Prior

Classical result in linear estimation (Wiener �lter)

p(y|x) = N (y;x, σ2I)

p(x) = N (x;µ,C)

}
⇒ E[X|y] = µ+C

(
C+ σ2I

)−1(
y − µ

)

Basic idea: estimate µ and C from (clean or noisy) patches;

In general, image patches are not well modelled by one Gaussian

Divide and conquer again!

X Use only patches similar enough to the patch being denoised
[Lebrun et al., 13, Niknejad et al., 15, Aguerrebere et al., 17]

X Use a Gaussian mixture model (GMM)

• learned from an external set of clean patches [Zoran and Weiss, 11]

• ... or from the noisy patches [Teodoro et al., 15, Houdard et al., 17]

12 / 43



Patch MMSE Denoising: Gaussian Prior

Classical result in linear estimation (Wiener �lter)

p(y|x) = N (y;x, σ2I)

p(x) = N (x;µ,C)

}
⇒ E[X|y] = µ+C

(
C+ σ2I

)−1(
y − µ

)

Basic idea: estimate µ and C from (clean or noisy) patches;

In general, image patches are not well modelled by one Gaussian

Divide and conquer again!

X Use only patches similar enough to the patch being denoised
[Lebrun et al., 13, Niknejad et al., 15, Aguerrebere et al., 17]

X Use a Gaussian mixture model (GMM)

• learned from an external set of clean patches [Zoran and Weiss, 11]

• ... or from the noisy patches [Teodoro et al., 15, Houdard et al., 17]

12 / 43



Patch MMSE Denoising: Gaussian Prior

Classical result in linear estimation (Wiener �lter)

p(y|x) = N (y;x, σ2I)

p(x) = N (x;µ,C)

}
⇒ E[X|y] = µ+C

(
C+ σ2I

)−1(
y − µ

)

Basic idea: estimate µ and C from (clean or noisy) patches;

In general, image patches are not well modelled by one Gaussian

Divide and conquer again!

X Use only patches similar enough to the patch being denoised
[Lebrun et al., 13, Niknejad et al., 15, Aguerrebere et al., 17]

X Use a Gaussian mixture model (GMM)

• learned from an external set of clean patches [Zoran and Weiss, 11]

• ... or from the noisy patches [Teodoro et al., 15, Houdard et al., 17]

12 / 43



Patch MMSE Denoising: Gaussian Prior

Classical result in linear estimation (Wiener �lter)

p(y|x) = N (y;x, σ2I)

p(x) = N (x;µ,C)

}
⇒ E[X|y] = µ+C

(
C+ σ2I

)−1(
y − µ

)

Basic idea: estimate µ and C from (clean or noisy) patches;

In general, image patches are not well modelled by one Gaussian

Divide and conquer again!

X Use only patches similar enough to the patch being denoised
[Lebrun et al., 13, Niknejad et al., 15, Aguerrebere et al., 17]

X Use a Gaussian mixture model (GMM)

• learned from an external set of clean patches [Zoran and Weiss, 11]

• ... or from the noisy patches [Teodoro et al., 15, Houdard et al., 17]

12 / 43



Patch MMSE Denoising: Gaussian Prior

Classical result in linear estimation (Wiener �lter)

p(y|x) = N (y;x, σ2I)

p(x) = N (x;µ,C)

}
⇒ E[X|y] = µ+C

(
C+ σ2I

)−1(
y − µ

)

Basic idea: estimate µ and C from (clean or noisy) patches;

In general, image patches are not well modelled by one Gaussian

Divide and conquer again!

X Use only patches similar enough to the patch being denoised
[Lebrun et al., 13, Niknejad et al., 15, Aguerrebere et al., 17]

X Use a Gaussian mixture model (GMM)

• learned from an external set of clean patches [Zoran and Weiss, 11]

• ... or from the noisy patches [Teodoro et al., 15, Houdard et al., 17]

12 / 43



Patch MMSE denoising: GMM prior

Previous result extends to GMM priors

p(y|x) = N (x, σ2I)

p(x) =

K∑
m=1

αmN (x;µm,Cm)

}

⇒ E[X|y] =
∑K
m=1 βm(y)vm(y)∑K

m=1 βm(y)

where βm(y)/
∑
m βm(y) = posterior probability of component m, given y

βm(y) = αmN (y;µm,Cm + σ2I)

and the vm(y) are the component-wise MMSE/Wiener estimates

vm(y) = µm +Cm

(
Cm + σ2I

)−1(
y − µm

)
Interestingly, the MAP estimate is hard to �nd: it is not the mode of the most
probable component [Carreira-Perpiñán, 02]

Can also get var[xi|y]: use (inverse) as weight in assembling the image
estimate from the patch estimates
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Patch MMSE Denoising: GMM Prior

Learning the GMM:

X From external set of clean images: trivial via EM [Zoran and Weiss, 2011]

X Directly from the noisy patches

(α̂m, µ̂m, Ĉm)m=1,...,K =argmax

M∑
i=1

log

K∑
m=1

αmN (yi;µm,Cm + σ2I)

subject to Cm � 0

X Standard EM for GMM, with a simple change in the covariance updates
(eigenvalue thresholding) [Teodoro et al., 15]

X May include other constraints: e.g., Toeplitz for shift-invariance

Automatically selects the rank of each covariance: dimension of each subspace
(a generalization of MPPCA [Tipping and Bishop, 99])

Choosing K: model selection for mixtures [Figueiredo. and Jain, 02]
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GMM-based denoising
Further tricks are need to reach state-of-the-art: �Secrets of image denoising
cuisine"[Lebrun et al., 12]

E.g., treat �at patches separately, treat DC separately, repeat, ...

Denoising experiments [Teodoro et al., 15]

original noisy (σ=30) BM3D (28.64dB) GMM (28.66dB) 
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Hyperspectral denoising

HSIs are low-rank: Z = EX ∈ RL×N , E ∈ RL×p, X ∈ Rp×N , p << L

E may be estimated from the noisy data [B-D,Nascimento, 08])

HSIs are self-similar ⇒ X (eigen-images) are self-similar

FastHyDe HSI denoiser] [Zhuang, B-D, 16]

Ẑ = argmin
X

1

2
‖EX−Y‖2F + λφ(X), ETE = I

= argmin
X

1

2
‖X−ETY‖2F + λφ(X)

Regularizer φ is decoupled: φ(X) =

p∑
i=1

φi(x
i)

X̂ = proxλφ(E
TY) =

 proxλφ1
(eT1 Y)
...

proxλφk
(eTkY)
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Ẑ = argmin
X

1

2
‖EX−Y‖2F + λφ(X), ETE = I

= argmin
X

1

2
‖X−ETY‖2F + λφ(X)

Regularizer φ is decoupled: φ(X) =

p∑
i=1

φi(x
i)

X̂ = proxλφ(E
TY) =

 proxλφ1
(eT1 Y)
...

proxλφk
(eTkY)



16 / 43



Hyperspectral denoising

HSIs are low-rank: Z = EX ∈ RL×N , E ∈ RL×p, X ∈ Rp×N , p << L

E may be estimated from the noisy data [B-D,Nascimento, 08])

HSIs are self-similar ⇒ X (eigen-images) are self-similar

FastHyDe HSI denoiser] [Zhuang, B-D, 16]
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Ẑ = argmin
X

1

2
‖EX−Y‖2F + λφ(X), ETE = I

= argmin
X

1

2
‖X−ETY‖2F + λφ(X)

Regularizer φ is decoupled: φ(X) =

p∑
i=1

φi(x
i)

X̂ = proxλφ(E
TY) =

 proxλφ1
(eT1 Y)
...

proxλφk
(eTkY)



16 / 43



Hyperspectral denoising

HSIs are low-rank: Z = EX ∈ RL×N , E ∈ RL×p, X ∈ Rp×N , p << L

E may be estimated from the noisy data [B-D,Nascimento, 08])

HSIs are self-similar ⇒ X (eigen-images) are self-similar

FastHyDe HSI denoiser] [Zhuang, B-D, 16]
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Hyperspectral denoising (proxλφ ≡ BM3D)
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Hyperspectral denoising + inpainting

X̂ = argmin
X

1

2
‖M vec(EX)− y‖2F + λφ(X)

X M is selection matrix

X y = vec(Y)
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Patch-based: general inverse problems

General inverse problems (non-additive, non-Gaussian, non-diagonal)

f(x,y) 6= α‖y − x‖2

Questions:

X How to choose/learn a patch-based prior/regularizer?

X How to compute the estimates?

Research directions:

X Class-adapted patch-based prior/regularizer

X Scene-adapted patch-based prior/regularizer

X Plug-and-Play: plug a denoiser into the iterations of an iterative solver
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Scene adaptation: hyperspectral fusion

Spectral-spatial resolution trade-o�:

Hyper-spectral:

low spatial resolution

high spectral resolution

Multi-spectral:

high spatial resolution

low spectral resolution

Fuse MS and HS data:

high spatial & spectral resolutions

Extreme case: pansharpening (panchromatic rather than MS image).
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Hyperspectral fusion: formulation

Observation model [Simões et al., 14]

Yh =

Z︷︸︸︷
EX BM+Nh hyperspectral data ∈ RLh×nh

Ym = R EX︸︷︷︸
Z

+Nm multispectral data ∈ RLm×nm

Lh > Lm and nh < nm

X Z ∈ RLh×nm : the fused image to be recovered

X E ∈ RLh×p: the p-dimensional subspace containing the fused image Z

X X ∈ Rp×nh : the corresponding coe�cients (p� Lh)

X (BM) ∈ Rnm×nh : spatial convolution & subsampling

X R ∈ RLm×Lh : spectral responses of the MS sensors

X Nh and Nm: noise
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Scene adaptation: dictionary-based regularization

Hyperspectral-multispectral fusion dictionary-based regularization

Motivation: patch-based dictionaries learned from the (high spatial resolution)
MS bands �t very well the HS bands

A path zi of the a HS band is well approximated by the dictionary atoms di
for i ∈ Si

zi '
∑
i∈Si

aidi ⇒ Z ' L(D,A,S)
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Hyperspectral fusion

HS-MS image fusion based on a sparse representation (HFSR) [Wei et al., 15]

min
X,A

(1/2)
∥∥Yh −EXBM

∥∥2

Qh
+ (1/2)

∥∥Ym −REX
∥∥2

Qm
+ τφDL(X,A)

X A is the code for X with respect to the dictionary D

φDL(X,A) :=
∥∥EX− L(D,A,S)

∥∥2
F

X S is the support of the code learned from the MS images

Algorithm 1: HFSR

Learn the dictionary using online learning [Mairal et al., 09]
Compute the support S
for k = 0, 1, . . . do

optimize wrt X using SALSA [Afonso et al., 11]
use gradient descent wrt A
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X S is the support of the code learned from the MS images

Algorithm 3: HFSR

Learn the dictionary using online learning [Mairal et al., 09]
Compute the support S
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F

X S is the support of the code learned from the MS images

Algorithm 4: HFSR

Learn the dictionary using online learning [Mairal et al., 09]
Compute the support S
for k = 0, 1, . . . do

optimize wrt X using SALSA [Afonso et al., 11]
use gradient descent wrt A
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X A is the code for X with respect to the dictionary D

φDL(X,A) :=
∥∥EX− L(D,A,S)

∥∥2
F

X S is the support of the code learned from the MS images

Algorithm 6: HFSR

Learn the dictionary using online learning [Mairal et al., 09]
Compute the support S
for k = 0, 1, . . . do

optimize wrt X using SALSA [Afonso et al., 11]
use gradient descent wrt A
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Camargue performance indexes
[Loncan et al. , 15]
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Original and fused images
[Loncan et al. , 15]
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Inverse problems: Plug-and-Play approach

Variational/MAP criterion (assuming Gaussian noise):

x̂ ∈ argmin
x

1

2λ
‖Ax− y‖22 + φ(x)

where φ is a (hopefully convex) regularizer

Usually tackled by some iterative algorithm (IST, SpaRSA, TwIST, FISTA,
ADMM, DRS, PD, ...). All require the proximity operator of φ

proxΦ(v) = argmin
x

1

2
‖x− v‖22 + φ(x)

Clearly, the prox is a denoising operator

Plug-and-play (PnP) approach: replace proxφ with a state-of-the-art denoiser
[Venkatakrishnan et al., 13]

Another strategy: regularization by denoising (ReD) [Romano et al., 16]
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PnP-ADMM

Optimization problem: x̂ ∈ argmin
x

1

2
‖Ax− y‖22 + λφ(x)

ADMM directly applied to this problem has the form

xk+1 =
(
ATA+ ρI

)−1(
ATy + ρ(zk + uk)

)
zk+1 = proxλφ/ρ

(
xk+1 − uk

)
(denoiser)

uk+1 = uk+1 − xk+1 + zk+1

Most state-of-the-art denoisers do not have the form of a prox
(at least, explicitly)

PnP-ADMM: plug a state-of-the-art denoiser instead of the prox:

X Collaborative �ltering ([Dabov et al., 07])
X Non-local Bayes [Lebrun et al., 13]
X Deep neural networks [Burger et al., 12, Xie et al., 2012, Zhang et al., 17]
X Patch-based GMM-MMSE [Teodoro et al., 15, 16]

Global Local Factorization [Zhuang, B-D, 17]
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Plug-and-Play ADMM

Plug a black-box denoiser into ADMM [Venkatakrishnan et al., 13

xk+1 =
(
ATA+ ρI

)−1(
ATy + ρ(zk + uk)

)
zk+1 = denoiser

(
xk+1 − uk, 1/ρ

)
uk+1 = uk+1 − xk+1 + zk+1

where denoiser
(
·, τ
)
assumes noise variance τ

If denoiser = proxφ, for convex φ, convergence is well-known
[Eckstein and Bertsekas, 1992, Boyd et al., 11]..

...what about convergence of PnP-ADMM?
[Sreehari et al., 16, Teodoro et al., 17b, Chan et al., 17] More later...

Empirical results: competitive!
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Plug-and-Play ADMM: Experiments

29 / 43



Plug-and-Play ADMM: Experiments

29 / 43



Class-Adapted GMM-based restoration
Beating state-of-the-art general-purpose denoisers: divide and conquer, i.e.,
learn class-adapted denoisers.

Learn a GMM for a class of images; use the corresponding patch-based MMSE
denoiser [Teodoro et al., 16]
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Convergence

PnP-ADMM with a denoiser

xk+1 =
(
ATA+ ρI

)−1(
ATy + ρ(zk + uk)

)
zk+1 = denoiser

(
xk+1 − uk, 1/ρ

)
uk+1 = uk+1 − xk+1 + zk+1

denoiser is the prox of a convex function ⇒ convergence.

From [Moreau 1965]: some map p : Rn → Rn is the prox of a convex function
if and only if:

a) p is non-expansive, i.e., ∀x,x′, ‖p(x)− p(x′)‖ ≤ ‖x− x′‖

b) and p is subgradient of a convex function, i.e.,
∃φ : Rn → R : p(x) ∈ ∂φ(x), ∀x

Most state-of-the-art denoisers do no satisfy these conditions
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Convergence: GMM-MMSE denoiser
Is the patch-based GMM-MMSE denoiser non-expansive?

No! A simple univariate counter-example:

X Spike-and-slab-type prior: p(x) = 1
2
N (x; 0, τ1) +

1
2
N (x; 0, τ2), τ2 � τ1

X MMSE estimate under Gaussian noise of unit variance:

x̂ = E[X|y] =
τ1 y
τ1+1

β1(y) +
τ2 y
τ2+1

β2(y)

β1(y) + β2(y)
, where βi(y) = N (y; 0, τi + 1)

With βi �xed: x̂ = y
(
β1

τ1
τ1+1 + β2

τ2
τ2+1

)
/(β1 + β2)
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Convergence: GMM-MMSE denoiser
Freeze the weights (βm) after a certain number of iterations.

Patch estimate:

x̂i =

K∑
m=1

βim Cm

(
Cm + σ2 I

)−1

yi

= Fi(σ
2)yi = Fi(σ

2)Pi y

Pi is the operator (binary matrix) that extracts the i-th patch

(weights are normalized, to simplify the notation: βim ← βim/
∑
j β

i
j)

Global image estimate: aggregate the patch estimates:

x̂ =
1

np

N∑
i=1

PTi Fi(σ
2)Pi y = W(σ2) y

Key properties of W [Teodoro et al., 17c]: for any σ2 > 0,

W(σ2) = W(σ2)T , W(σ2) � 0, λmax

(
W(σ2)

)
< 1
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Convergence: GMM-MMSE denoiser (2)

Freezing the weights (βm) after a certain number of iterations,

denoiser(y, σ2) = W(σ2)y

Recalling Moreau's corollary, this is a proximity operator:

It is non-expansive: W(σ2) is symmetric with λmax

(
W(σ2)

)
< 1

It is the gradient of a convex function: W(σ2)y = ∇y

(
1
2
yTW(σ2)y

)
Corollary:

frozen weights ⇒ PnP-ADMM converges
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Hyperspectral Fusion via PnP-ADMM

Assuming Gaussian noise:

X̂ ∈ arg min
X∈Rp×nh

1

2
‖EXBM−Yh‖2F +

λm
2
‖REX−Ym‖2F + �φ(X)�

We use an instance of ADMM: SALSA [Afonso et al., 11]

PnP: instead of proxφ, use patch-based GMM denoiser

The GMM is learned from patches of Ym (high spatial resolution)

The weights (βm) are kept �xed: scene adaptation

⇒ convergence [Teodoro et al., 17a]
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ADMM/SALSA

Variable splitting reformulation

X̂, V̂1, V̂2, V̂3 ∈ argmin
X,V1,V2,V3

1
2‖EV1M−Yh‖2F + λm

2 ‖REV2 −Ym‖2F + λφφ(V3)

subject to V1 = XB, V2 = X, V3 = X

SALSA/ADMM: solve sequence of simpler sub-problems (e.g. using ADMM)

Xk+1 = argmin
X

‖XB−V1−D1‖2F + ‖X−V2−D2‖2F + ‖X−V3−D3‖2F ,

Vk+1
1 = argmin

V1

1

2
‖EV1M−Yh‖2F +

ρ

2
‖Xk+1B−V1 −Dk

1‖2F ,

Vk+1
2 = argmin

V2

λm
2
‖REV2 −Ym‖2F +

ρ

2
‖Xk+1 −V2 −Dk

2‖2F ,

Vk+1
3 = denoise

(
Xk+1 −Dk

3 ,
λφ
ρ

)
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Algorithm

Expectation-
Maximization

Input MS

GMM parameters
θ = {C1, . . . ,CK ,

β1
1 , . . . , β

n
K}

Scene-adapted prior

Model Learning

Quadratic

sub-problems
Denoising step

Input HS
Output

ADMM Loop
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Hyperspectral Fusion: Synthetic Example

Metrics: ERGAS = erreur relative globale adimensionnelle de synthèse

SAM = spectral angle mapper (low is good)

SRE = signal to reconstruction error (dB, high is good)
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Spectral Prior

Leverage spectral information, as well as spatial

Dual regularization approach

X̂ ∈ argmin
X

1
2‖EXBM−Yh‖2F + λm

2 ‖REX−Ym‖2F +

+λspatial φspatial(X) + λspectral φspectral(X
T )

Plug-and-play with two denoisers

X A GMM spatial prior, learned from the MS image(s)

X A GMM spectral prior learned from HS bands, i.e., spectra of each HS pixel
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Algorithm

Expectation-
Maximization

Input MS

GMM parameters
θspatial =
{C1, . . . ,CK ,
β1

1 , . . . , β
n
K}

Scene-adapted prior

Spatial Model Learning

Expectation-
Maximization

Input HS

GMM parameters
θspectral =
{C1, . . . ,CK ,
α1, . . . , αK}
Spectral prior

Spectral Model Learning

Quadratic

sub-problems

Spatial

denoising step

Spectral

denoising step

Output

ADMM Loop
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Improving Hyperspectral Fusion Results

Orthonormal subspace obtained with SVD

Method Spatial Spectral Spatial-Spectral
Dataset PSNR SAM ERGAS PSNR SAM ERGAS PSNR SAM ERGAS

AVIRIS Indian Pines 43.10 0.60 0.31 43.22 0.61 0.31 42.77 0.61 0.32

AVIRIS Cuprite 43.97 0.50 0.23 42.66 0.59 0.28 44.09 0.48 0.23

AVIRIS Mo�ett Field 34.67 1.95 5.23 34.38 1.85 5.28 36.28 1.50 4.49

HYDICE W. DC Mall 34.59 3.44 4.66 34.19 1.75 6.20 37.16 1.53 3.94

HyperSpec Chikusei 44.70 1.49 1.53 41.34 1.70 1.98 44.76 1.39 1.48

ROSIS-3 Univ. Pavia 39.35 4.49 1.29 37.99 3.20 1.34 40.84 3.01 0.97

CASI Univ. Houston 44.86 2.17 1.65 41.32 2.01 2.16 44.65 1.89 1.59

Average 40.75 2.09 2.13 39.30 1.67 2.51 41.51 1.49 1.86

Subspace obtained with HySime [B-D, Nascimento, 08]

Method Spatial Spectral Spatial-Spectral
Dataset PSNR SAM ERGAS PSNR SAM ERGAS PSNR SAM ERGAS

AVIRIS Indian Pines 42.52 0.59 0.32 41.70 0.65 0.35 42.34 0.60 0.33

AVIRIS Cuprite 43.91 0.48 0.22 42.83 0.55 0.25 44.38 0.48 0.22

AVIRIS Mo�ett Field 36.14 1.62 4.66 35.92 1.89 4.70 36.28 1.62 4.65

HYDICE W. DC Mall 37.91 1.83 3.60 37.82 1.87 3.62 37.95 1.80 3.65

HyperSpec Chikusei 46.06 1.22 1.56 40.89 1.37 1.63 46.05 1.22 1.57

ROSIS-3 Univ. Pavia 41.75 2.70 0.80 38.47 2.73 0.83 42.71 2.70 0.80

CASI Univ. Houston 47.29 1.47 1.13 43.49 1.47 1.14 47.28 1.45 1.12

Average 42.23 1.42 1.76 40.16 1.50 1.79 42.43 1.41 1.76
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Final Remarks

Image patches: e�ective low-dimensional image representation

GMM for MMSE patch estimation: a �exible tool/model

Specialize to image classes

Tighter adaptation: scene-adapted for hyperspectral denoising, destripping,
superresolution, fusion, compressive sensing

Tool: plug-and-play ADMM

Convergence guarantee (GMM with �xed weights, BM3D with �xed groups)

Ongoing work: non-Gaussian noise

Ongoing work: PnP with other algorithms (DNNs)
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