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Abstract — Discontinuities at origin have been ued to better
approximate measured curves in recent papers but gerally not
explicitly and their physical validity has not always been
demonstrated. In this communication, we show that hese
discontinuities can be explained by physically acpeable
discontinuities in the real physical device. We pnpose simple
criteria to accept or reject these discontinuitiesin either passive
or active devices, depending on the order of the sliontinuity. In
addition, we show that models having such discontirities behave
differently from classical models. In particular, these
discontinuities explain non-integer dB/dB slopes oharmonic
power and intermodulation power as a function of iput power.
Recent and older measurements of intermodulation mducts in
passive devices, telephony base-station and RF tsistors show
such a behavior so that supposed lack of measurenmesannot be
used as a reason to reject discontinuities as norivysical.

Index Terms — behavioral model, Volterra model, bad-pass
limited model, Cann model, Rapp model, discontinui,
harmonics, intermodulation products.

|I. INTRODUCTION

Classical models for non-linear electronic devica®
generally based on analytic functions or their ©ayderies
development and particularly on polynomials for nogydess
models or Volterra development for memory modelkisT
implies that the model is continuous and infinitdgrivable at
origin.

However, discontinuities at origin have been usedan-
linear models for better approximation of some mesd
characteristics of devices. The user may not beewhthe
discontinuity of the model, and generally there ne
discussion on the physical validity or the effedt the
discontinuity.

Some authors have rejected these models as noicghys

because they result in behavior that cannot beaegd by the
classical theory, e.g. non-integer slopes (in dB/dBr
harmonics and intermodulation (IM) products outpatver
versus signal input power in small signal condiion

In this communication, we show that such non-ctadsi
behavior has been measured and reported by mahgrauh
measurements of intermodulation products in pashbxces,
telephony base-station and RF transistors so thmatist have
a physical explanation.

or reject these discontinuities, in either passore active
devices, depending on the order of the discongnuit

We compare the simulated results of these models wi
measurements and show that, in addition to better
approximation of device characteristics, these atiouities
are essential to explain measurements that camenexfiained
by classical theory.

Il. OVERVIEW OF CLASSICAL THEORY

Classical theory [1] for non-linear memoryless desi is
based on a polynomial expression of an input toputut
characteristic, e.g. the instantaneous voltageachetistic.

Vout = f(vin) = Z?:O aiviin (1)

When the input signal is a pure sine, the outpghai
contains DC and harmonics components in additiorthto
fundamental signal (at the same frequency as the)in

Vi = a.cos(wt + @) = a.cos(H) (2)

Vour = f(a.cos () = EiLpa; [a.cos (O)]'  (3)
Vour = f(@.cos(8)) == foa) +

+ Xm=1/m(a). cos (m0) (4)

Functionf,,(a) in (4) is the ordem Chebyshev transform
of functionf [2]. It is computed as:

fu(@) = = [*" fla.cos(6)] cos(mo)do ()

For the polynomial given in (1), the result is givey
equation (6) where degréenust have the same parityras

@ = T2 () ey ©

2 )
For i <m, the factorial of (%) is infinite and the

coefficient is 0 for the term of degréeThese transforms are
also polynomials. As can be seen, the fundamenigbud

fi(a) is a polynomial with only odd degree terms:

fi@) = X2 By ga®H @)

We show that some discontinuities at origin can be |tjs g Jow-pass equivalent (LPE) of the physicavide in a

explained by physically acceptable discontinuiae®rigin in
the real physical device. We propose simple cadtéwi accept

small bandwidth around the fundamental carrier loadidh.
Real coefficients in the model can be replaced dmpiex
coefficients to take into account the AM/PM chaeaistic



curve at fundamental centre frequency. Mathematiesililts
are formally the same and will not be repeated [3].

This LPE can be used again in a Chebyshev transform
compute the intermodulation products created wishcarrier
input signal [4]. Only odd order intermodulationogducts
exist. In small signal conditions the power of ades 2+1 IM
is a power function of input power with an exponkigther or
equal to its order. It is equal to its order if thefficient of
the corresponding degree in the polynomial is nofTbis
results generally in a small signal dB/dB slopeado the
order in a graph of IM output power versus inpuivpo

I1l. CONTRADICTING MEASUREMENTS

The conclusion in previous paragraph is true ordy f
functions that can be developed in a Taylor sexiesigin.

Measurements of intermodulation products in antsnna

filters, coaxial connectors and other passive devitave been
reported with even-integer or non-integer slopedBAdB [5,
6]. These slopes are fairly constant on a wide gawfginput
power (up to 30 dB in [5]). Such results can beragimated
in the classical theory only by using polynomials high
degree, e.g. 49 or more complicated functions [ifjese
approximations are far from perfect in the measemmange;
they diverge rapidly outside this range and gehedd not
permit to predict correctly higher order IM prodsict

Measurements on class C to A transistor amplifiéks’
products have been reported with dB/dB slopes betv2e2 to
2.8 in small signal conditions [8]. In this casenadel of the
transistor (equivalent to BSIM3 model) has beenduisea
harmonic balance simulator with results in goodeagrent
with measurements whereas computation with clastieary
gives 3 dB/dB slopes. This behavior has been tracethe
presence of a second degree term in the model3Hgd.term
has been discarded from BSIM3 as non-physical Oh [1

IV. INTRODUCTION OF DISCONTINUITY AT ORIGIN

We will now demonstrate that all these measuremestlts
can be explained by discontinuity at origin in then-
linearity.

In addition these non-linear and non-continuous ef®dan
be simple and their effect in small signal condifiocan be
computed as easily as in the polynomial case [11].

We replace the polynomial model in (1) by:

fWin) = sign(vi) Bico @iVl + Tioo Bilvinl* (8)
This function contains two parts, one odd and oremeThe

odd part will produce only odd harmonics and odd IM

products (particularly, the fundamental signal)eT@ven part

will produce only even harmonics and even products Particularly,

(particularly, the DC component and second harmjonic

In addition to the classical terms in (1), equati(8)
contains terms with even degree of the modulugmit signal
in the odd part and terms with odd degree in tfeneart.

Equation (6) must be modified by replacing factisriaith
Gamma functionn! = I'(n + 1).
For oddm, we use the odd part of (8), we have:

t r(i+1)

fn(@) = sign(a) Ti-, 2a; ) ()

a
2

)

For odd ordem and even degreerl’ (%+ 1) in (9) is no
longer infinite for i < m and the corresponding coefficient is
not O as it was in (6). The main result is thatgMducts of all
odd orders will be produced from a single term a# leven
degree multiplied byign(v;,)-

In addition, in small signal conditions, all the&& products
will have the same dB/dB slope equal to this evegree.

If more than one term exists, the slope will beatda the
lower degree in small signal conditions and to ttigher
degree in large signal conditions. In the interratslirange,
variation of slope value will depend on the relatisign of
both terms’ coefficients, as in the classical tydat.

V. GENERALIZATION OF MODEL WITH DISCONTINUITY AT ORIGIN

In equation (8), the parity of the function is wader linked
to the parity of the degree in each term. In addijtthe power
function of degred is always computed on a positive or O
term. Mathematically, we no longer need the degoelee an
integer and we can use the following more generaleh

fWin) = sign(vin) Lo @;|vin Pt + Xtz o Bilvin |9t (10)

Degreesp; andg; are fractional or real numbers. They will
result in dB/dB slopes having fractional or realues that fit
correctly passive devices IM products measurementsa
large input power range with a very small numbeteofs.

To take into account real degrees, equation (9)trbas
further modified. For odeh, we have:

pi C(pi+1)

a
ol ) )

fn(@) = sign(a) T 2a; |;

(11)

The power function of modulus with a real degreithée
multiplied by sign function or not) is an invarianf the
Chebyshev transform, like for integer degree. Tiik allow
us to compute easily the non-linear response @véecd.

The same equation will be used to compute 2-cathier
products in a second Chebyshev transform.

VI. PHYSICALLY ACCEPTABLE DISCONTINUITIES

For mathematical convergence, the real degree rest
higher than -1. However, this is not sufficient fohysical
validity. We must at least verify that there is oeation of
energy in the device.

a passive device cannot have an itefin
derivative at origin as this would give an outpotver larger

than input power. For passive devices, the realegequst be
at minimum 1.



An active device may have an infinitive derivatiigain) at Figure 3 shows one of the amplifiers measured jnl{$as
origin only if the resulting output power is finiend is lower been simulated with one term of degree 2.6 andtema of
than the power that can be provided by its powepku For  degree 3; giving the small signal IM slope of 2.B/aB.
active devices, the real degree must be at mini®um Additional terms would be needed to better apprakarthe

This is valid for both odd and even parts of thedelo curves at higher input power.

Degree 0 model is a constant for the even partaapdrfect

limiter, sign(v;,,), for the odd part. It needs a power supply. o —— //f// {
We see that the function itself is continuous kst first § - s ’
derivative (for an active device) or its second\dsive (for a for] it
passive device) may not be continuous. Higher dévies <lobe /‘_*-/ —
will then be Dirac delta functions or other distritons. 1 26dB/dB _~"order3
//( inte‘rmodulation

VIl. BEHAVIOR OF SIMPLE MODELS
A. Power functions ) ) o
Fig. 3. Measured (dots, [8]) and simulated (linbgs work) levels
We present in Fig. 1 the values of the multiplieatierm in  of carrier and third order IM product versus inpotver.
equation (11) for odd functions (and odd harmonars

products). The real degree is given in abscissa. B. Application to Volterra model
For oqld integer values, we fiqd the classical tesull We can easily apply equation (8) with integer degr® the
orders higher than the degree vanish. case of polar Volterra model presented in [13, ThJs model

was proposed as an extension of the classical Valteodel
that is suited to represent a physical device itimated
bandwidth as a low pass equivalent. The sign foncis not
defined in the complex plane but can be replacethbyratio

% that is the exponential of the imaginary phasthefinput
signal complex envelope.

If we look only at the memory-less part of the moife
[13], only one phase term remains and can be cogdbivith a
modulus of the input envelope to obtain the follogvi
simplified equation where the output signal envelggn)
results essentially from the product of the inpignal
envelopex(n) by a gain that is a function of input envelope
modulus at the same time:

Fig. 1. Relative level in dB of odd order Chebysh@ansforms
from 1 to 11 versus real degree.

For a single term of degreg the ratio of two IM products Sen) — F S SP B %P1
will depend only on the degree and on the ordebaih IM Y() = hoo +X(n) - 2p=o hp - |X(m)] (12)
products and not on the input power. A comparisopagsive There is no discontinuity at origin if tlje gainaigunction of
IM products measurements of order 3, 5 7 and 9nging12]  the square of the modulus only, that ishif:# 0 only for odd
and simulated results is shown in the followingufig integer values gp. The model has a discontinuity at origin in
all other cases: real or odd — 1) degrees.
! t The minimum degree gf = 0 is acceptable for an active

. device: it gives an infinite gain at origin but eumded output.

H

= S SRR i It could be the model of a Schmidt trigger or aeaidclipper.
U= P> For a passive device, we must have 1 to guarantee that
jroert .i;'/‘ ] the output energy will not be higher than the ingoergy. In
Emr‘;» SEL A addition the constant outps , must be 0.

P e Real degrees can certainly be used for the modeluss.

Sorterpoverom The number of variables in a kernel must obviousty an

Fig. 2. Measured (dots, [12]) and simulated (lin#sis work)  jnteger but there is no reason for the degree off @odulus

levels of IM products of orders 3, 5, 7.and 9 verput power. term to be 1. It could be an arbitrary value ocixad value e.g.
1/10 giving access to all fractional degregd0.

The phase terms must follow the rule given in [i8]an
output around fundamental frequency: the sum offictents
multiplying the phases must be 1. The sum of pasiti
coefficients (phases of the complex envelope) aedsum of

As can be seen, measured slopes are far from adhssi
values and would be difficult to simulate with anafytic
model, it would need much more terms.



negative coefficients (phases of the conjugatdefenvelope)
must differ by 1 but can be arbitrary otherwisee¥leould be
linked to the degrees of the modulus or be indepeind

C. Application to Cann and Rapp SSPA models

Rapp proposed a model [15] for solid state powepldiers
(SSPA) that is based on a modified Saleh model. \Mdjen
applied to a complex envelope, the model is:

x
J = —/—— 13
P raEEP 13)
This model is analytic provided that the parametés an
integer. However, only terms with degrees multigé2p are
present in the series development of the gain iginorAll

intermodulation products of order up2p + 1 have slopes of
2p+1 dB/dB. If the parameter is not an integer, alll4l

intermodulation products have small signal slope2mw+ 1
dB/dB. Forp = 1/2, the model is: § = —— (14)

1+|%

The small signal gain in (14) is 1 and the firstigive is
continuous at origin but the second derivativeds ihe IM
slope is 2 dB/dB, which may not be the expectedtiein.

The AM/AM curve of Cann model [17] is defined as:

_ 1 __ signe(x)
y= SM1+1/x5 or y= S[1+1/1x[S (15)

When applied to a real signal or a complex envelitpe

must be modified as:j = i/li/lljllfls = i/lflxls (16)

It is then equivalent to Rapp model with= 2p. This
model is analytic only for even integer values afgmeter.
For other values, it will gives intermodulation drats of all
orders with slope equal b+ s = 1 + 2p dB/dB.

The next figure gives examples with= 2p = 3 giving
small signal slopes of 4 dB/dB ard= 2p = 4 giving slopes
of 5 dB/dB for orders 3 and 5 and 9 dB/dB for ogdérand 9:

dB carrlefbi—= dB 3 carriér P
e T - = :
Lo 3 = : :
M3 :
; Slope
aB/dB
] 9.dB/d
ngl%P(‘e nput ppwer db : néidil/\ie input power dB
Fig. 4. Levels of carriers and intermodulation proid of orders 3,

5, 7 and 9 versus input level for Rapp models 2aw82p=4.

These models cannot be put aside by considering e
not physical, they are. However, they may not regmé
correctly measurements and typical behavior of SSPA

VIII. CONCLUSION

For correct representation of non-linear devicdassical
theory must be modified to include discontinuityoaigin in
the models. This allows for better approximationdefiices’

characteristics and explains some measurementtgethat
seemed to be non-physical in view of classical theo
Criteria for physical validity have been proposed.
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