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Introduction

Systèmes GNSS

Bien que le système de positionnement global (GPS) fût initialement destiné à l’usage
militaire en 1994, la décision de donner libre accès aux utilisateurs civils a motivé son usage
dans une large gamme d’applications allant des plus pointilleuses, à l’instar de l’aviation civile,
aux applications « grand public ». Ainsi, ces systèmes de navigation par satellites (GNSS)
sont considérés comme la solution préférée pour la localisation et la navigation dans diverses
applications.

GNSS est une technologie de radionavigation par satellites qui permet aux utilisateurs du
monde entier, équipés d’un récepteur dédié, de se localiser, de naviguer et d’avoir un moyen
de synchronisation par rapport à une référence temporelle commune. Une constellation de
satellites transmet des signaux spécifiques dont les temps de propagation peuvent être estimés
précisément. Ces derniers sont appelés les mesures pseudo-distances (PR). Elles sont entachées
par diverses sources d’erreurs telles que des retards supplémentaires sur la propagation à la
traversé des couches ionosphérique et troposphérique.

La position de l’utilisateur peut être estimée par le principe de triangulation à partir d’au
minimum trois mesures pseudo-distances. Cependant, une mesure satellitaire supplémentaire
s’avère nécessaire pour résoudre le problème de synchronisation entre l’horloge du récepteur
GNSS et les horloges satellitaires.

Un système GNSS est généralement séparé en 3 segments principaux, à savoir le segment
spatial, le segment de contrôle au sol et le segment utilisateur. Le segment spatial consiste en
une constellation de satellites gravitant autour de la Terre tout en transmettant des signaux
radio aux utilisateurs. Le segment de contrôle au sol dispose d’un réseau de stations de
surveillance sur terre. En général, ce segment de contrôle surveille et maintient les opérations
des satellites, telles que la génération des messages de navigation. Enfin, le segment utilisateur
est simplement constitué des récepteurs GNSS, dont la fonction est de recevoir et de traiter
les signaux GNSS pour obtenir la solution position, vitesse, temps (PVT).

Les systèmes GNSS englobent de nombreux systèmes opérationnels tels que le GPS amé-
ricain, le GLONASS russe et le GALILEO européen, et prévoient des améliorations consi-
dérables des performances et des services à l’horizon de 2020. En effet, a ce jour, plusieurs
systèmes GNSS existent et sont en cours de développement. Le système américain NAVS-
TAR (couramment appelé GPS - Global Positioning System) et le système russe GLONASS
font partie des systèmes établis. L’Europe a déjà mis en place sa propre constellation GNSS
connue sous le nom de Galileo et le système BeiDou chinois est déjà mondialisé. Outre ces
systèmes, il existe également des systèmes régionaux tels que le système japonais de satellites
Quasi-Zenith (QZSS) et le système régional indien de navigation par satellite (IRNSS).
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Les systèmes de navigation par satellites (GNSS) sont considérés comme la solution préfé-
rée pour la localisation et la navigation dans de nombreuses applications. Considérée comme
la solution la plus accessible pour le positionnement en environnement urbain, le nombre
de services à base de géolocalisation par GNSS est en forte croissance. Cependant, même
avec cette augmentation de la disponibilité des satellites, ces services souffrent d’un manque
de robustesse du service final de géolocalisation dans de tels environnements en raison d’un
certain nombre de problèmes techniques persistants. De l’autre côté, avec l’augmentation
exponentielle des applications basées sur la géolocalisation, les attentes et les exigences des
utilisateurs, en terme de précision et de fiabilité, sont de plus en plus difficiles à satisfaire par
les technologies de géolocalisation existantes.

Challenges GNSS en zones urbaines

Bien qu’il y ait une augmentation exponentielle des applications des systèmes de naviga-
tion par satellites (GNSS) en milieux urbains, ces services souffrent de manque de robustesse
dans la géolocalisation dans des tels environnements. La principale raison de cet écart entre
les attentes et les exigences des utilisateurs d’un côté, et les technologies de géolocalisation
existantes de l’autre côté, c’est que ces milieux présentent des défis importants pour le po-
sitionnement par satellites. Pour satisfaire l’accroissement des exigences des utilisateurs en
termes de disponibilité, de précision et d’intégrité de la solution de navigation, les services
GNSS doivent offrir des performances minimales à l’aide des nouveaux algorithmes plus ro-
bustes aux phénomènes physiques qui apparaissent dans ces environnements.

Plusieurs défis présents dans les environnements urbains constituent un frein au déve-
loppement de certaines applications modernes du GNSS. La forte densité des immeubles de
grande hauteur, la présence de nombreux obstacles et le blocage des signaux transmis par les
satellites posent des problèmes techniques très difficiles pour l’acquisition, la poursuite et la
modélisation des signaux GNSS. En outre, l’interaction avec l’environnement se traduit géné-
ralement par une superposition de divers signaux qui ont suivi des chemins différents appelés
signaux Multitrajets (Multi-Path en anglais (MP)). Ces interactions peuvent aboutir à trois
grands types de phénomènes physiques, chacun répondant à des lois physiques différentes et
qui peuvent se combiner entre elles :
— La réflexion spéculaire.
— La diffraction sur des arêtes.
— La diffusion sur des surfaces rugueuses.
Aussi, les hauts bâtiments ainsi que les autres objets entourant l’antenne réceptrice peuvent

bloquer le signal direct dit signal Line-Of-Sight (LOS) de nombreux satellites. Ceci engendre
la réception d’un signal après réflexion sans la réception du signal direct. Cette situation est
appelé situation Non-Line-Of-Sight (NLOS).

Tous ces phénomènes réduisent la visibilité des satellites, ce qui engendrent un problème
de disponibilité du service ou bien des valeurs élevés de DOP (Dilution of Precision) affectant
ainsi la précision de la solution de navigation malgré l’exploitation de plusieurs constellations
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pour le calcul de la position dans ces environnements. Les signaux MP et NLOS produisent
un retard additionnel sur les mesures Pseudo-distance (PR), ce qui impacte la précision des
algorithmes de positionnement. Dans ces conditions, le récepteur GNSS peut se trouver en
situation d’incapacité de calculer sa position ou de délivrer une position biaisée par plusieurs
mètres voire dizaine de mètres d’erreur. Dans tous ces cas, le récepteur se trouve dans une
situation d’incapacité de produire une solution fiable de positionnement à transmettre à la
couche application du système basé sur la géolocalisation.

Motivation de la thèse

Cette thèse est une synthèse des travaux de recherche menés depuis 2014 sur les méthodes
de positionnement robuste utilisant des mesures GNSS en présence de réflexions MP et NLOS,
dans le but d’améliorer les performances GNSS dans des environnements contraints (canyons
urbains, urbains ou périurbains, forêts et zones montagneuses...). Les motivations de ces
travaux de recherche sont énumérées ci-dessous :

1. Demandes accrues en zones urbaines : L’application des systèmes GNSS pour la
navigation terrestre a gagné en popularité dans les zones urbaines pour son accessi-
bilité libre et sa précision appropriée. Motivé par les développements importants des
techniques basées sur les GNSS, le positionnement par satellite devrait avoir un large
éventail d’applications dans les domaines de la navigation terrestre, des systèmes de
transport intelligents (ITS), des robots/drones, des services basés sur la localisation
(LBS) et des réseaux de capteurs sans fil (WSN). Aussi, pour les applications de mar-
ché de masse, l’utilisation des systèmes GNSS par le grand public, en particulier par
les téléphones intelligents équipés de chipsets GNSS, devient de plus en plus fréquents
dans les zones urbaines. Avec cette demande accrue, les utilisateurs en milieu urbain
attendent une précision de positionnement supérieure à celle obtenue en zones rurales,
ce qui constitue une des motivations de ces travaux de recherche.

2. Valeur ajoutée d’un positionnement fiable : Les exigences des utilisateurs dans
les zones urbaines peuvent être très strictes et dépendent des applications spécifiques.
Par exemple, la fiabilité GNSS est obligatoire, en particulier pour les applications ayant
des incidences sur les aspects financiers, la légalité ou la sécurité de la vie, telles que le
repérage spécifique d’une voiture ou la tarification des usagers de la route. Certaines de
ces applications sont critiques, car, par exemple, les usagers de la route devraient être
facturés de manière juste, précise et sécurisée dans les applications road user charging
(RUC). En cas de positionnement non fiable du GNSS, les opérateurs sont responsables
de tout acte répréhensible tel que surtaxe ou surcharge. Ainsi, parallèlement à l’appa-
rition et à l’innovation de nouvelles applications terrestres, de nombreuses demandes
proviennent des environnements urbains, où les besoins en localisation précise et fiable
sont beaucoup plus complexes que dans les environnements à ciel ouvert. Ce facteur a
motivé nos recherches scientifiques visant à améliorer les performances GNSS dans ces
domaines afin de répondre aux exigences et aux attentes des utilisateurs.

3. Performances GNSS dégradées dans les zones urbaines : les progrès continus des
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applications GNSS en navigation terrestre ne sont pas sans obstacles majeurs dans leur
développement. En effet, même avec l’augmentation de la disponibilité des satellites et
l’amélioration de la géométrie de la constellation, le positionnement du GNSS dans les
zones urbaines souffre de performances dégradées en raison de plusieurs problèmes qui
persistent. Fondamentalement, le processus d’urbanisation rapide dans de nombreuses
villes entrave les performances des technologies de positionnement basées sur le GNSS
pour trois raisons principales : masquage et atténuation du signal des satellites, réflexions
des signaux GNSS et géométrie dégradée des satellites. Face à de tels défis techniques,
il est urgent de remédier aux dégradations des performances GNSS : c’est l’une des
principales motivations de ce travail de recherche.

Objectifs et réalisation de la thèse

L’objectif principal de cette thèse de recherche est de développer des méthodes de posi-
tionnement robuste utilisant des mesures GNSS en présence de réflexions MP et NLOS, en
intégrant des informations assistées sur l’environnement du récepteur. Par conséquent, les
questions suivantes sont posées et ont été traitées dans ces travaux :

1. Quel est le niveau de précision de positionnement maximum atteignable par le posi-
tionnement GNSS en présence des erreurs MP/NLOS, en cas de non utilisation d’in-
formations externes ? Pour répondre à cette question, nous avons proposé une famille
de bornes inférieures sur les performances de localization GNSS dans les conditions
MP/NLOS, permettant de calculer les meilleures performances d’estimation GNSS en
présence d’un environnement non gaussien, sans utilisation d’informations externes pour
aider les systèmes GNSS.

2. Un simulateur GNSS 3D, c’est-à-dire des informations externes sur l’environnement de
réception du récepteur, peut-il être utilisé de manière constructive pour aider le GNSS
dans les situations MP/NLOS ? Ces informations supplémentaires sont essentielles dans
le cas d’une très faible disponibilité du signal GNSS. Les points suivants ont été abordés
dans cette recherche :
— Quel est le niveau de réalisme requis des informations fournies par la simulation

3D pour être utilisé de manière constructive pour le positionnement GNSS ? Quel
est l’intérêt d’utiliser un simulateur GNSS 3D?

— Comment les informations du simulateur GNSS 3D pourraient-elles être utilisées
pour améliorer les performances de positionnement ? A quel niveau de l’architecture
du récepteur faut-il utiliser ces informations ?

Les principales contributions de cette thèse sont :
1. Le mérite d’utiliser des informations provenant d’un simulateur de propagation des

signaux GNSS pour aider le GNSS dans les conditions MP/NLOS :
Nous avons étudié le niveau de réalisme minimum requis et souhaité pour un simulateur
GNSS. Le simulateur, ou tout outil fournissant des informations sur le biais MP/NLOS,
doit être intégré pour aider le positionnement GNSS. C’est l’objet du chapitre 3.
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2. Utilisation d’informations externes provenant d’un simulateur de propagation de signaux
GNSS 3D pour améliorer le positionnement GNSS dans des conditions MP/NLOS :
Différentes méthodes ont été proposées pour l’intégration de ces informations 3D au
récepteur GNSS, au niveau du module PVT en se positionnant sur une grille de posi-
tions candidates ou sur le bloc de navigation en corrigeant les mesures de pseudorange
dégradées. C’est l’objet du chapitre 3.

3. Dérivation des limites inférieures des performances GNSS en présence d’un environne-
ment non-gaussien :
Evaluation des performances de positionnement GNSS maximales pouvant être atteintes
en présence de signaux MP/NLOS utilisant uniquement des techniques d’estimation
avancées, sans informations externes. La présence de réflexions MP et NLOS ne permet
plus d’obtenir une forme analytique de la fonction de densité de probabilité marginale
des observations GNSS, ce qui empêche d’utiliser les bornes inférieures déterministes
standard connues sur l’erreur quadratique moyenne (MSE). Nous avons donc introduit
une famille générale de bornes inférieures modifiées (MLB) dans le cadre d’une estima-
tion déterministe non standard, bornes moins précises (au sens de plus opimistes, "less
tight") que les bornes standard, mais qui ont le mérite d’être calculables. C’est l’objet
du chapitre 4.
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1.1 General Introduction : Development of Navigation and
Positioning

Since the Middle Ages, man’s desire to be able to locate itself and to master time and
space have always been a necessity and a great scientific challenge. To do that, from the early
astronomical surveyors to the present satellite geodesists, men moved from a rough navigation
based on stars observation to suitable accurate navigation by means of electromagnetic-wave-
broadcasting satellites. Despite this huge technological advance, the role of these surveyors or
navigators in society has remained unchanged since the dawn of civilization ; that is to deter-
mine land boundaries, provide maps of his environments and use the scientific advancement
to foster everyday life.

Until the 20th century, the term “navigation” have been laid for mariners and referred
mainly to sailing directions determination to guide ships across the seas. Indeed, the word
“navigate” comes from the Latin navis (meaning “ship”) and agere (meaning “to move or
direct”). Hence, the basis of localisation using scientific instruments such as the mariner’s
astrolabe, first occurred in the Mediterranean during the Middle Ages. Modern navigation
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reap the rewards of this chain of technical developments from the early celestial observation to
the current satellite-based positioning. Therefore, today, the term “navigation” encompasses
the determination of positions of observing sites on land or at sea, in the air, and in inner
and outer space.

Among all major navigation breakthroughs along the whole history, we have decided in
this introduction to devote few lines to a huge human discovery, which has revolutionized the
navigation field : the first clock sufficiently accurate to be used to determine longitude for
navigation. This precise clock was created by John Harrison, which was a historical introduc-
tion of time in the navigation problem. Indeed, for navigating at sea, observing the landmarks
and coast’s phares visible from the coast has long been the only repository for maritime na-
vigation. Because of this cumbersome and limited method, thousands of maritime shipwrecks
have occurred during the 16th and 17th Century, including goods loss and sailors death.

Determining latitude was relatively easy in that it could be found from the altitude of the
sun at noon with the aid of a table giving the sun’s declination for the day. For longitude,
early ocean navigators had to rely on dead reckoning. This was inaccurate on long voyages out
of sight of land, which sometimes ended in tragedy as a result. The longitude of a location is
directly related to the difference between the local time and the time at another place of known
longitude at that very same moment (longitude ambiguity). The local time can conveniently
be fixed by a noon sighting of the Sun, but the time at any other location requires a reliable
clock, or some other way of distant time synchronization. Thus, there was necessary to build
precise clocks. Hence, the British government formed in 1714 to administer a scheme of prizes
intended to encourage innovators to solve this problem, popularly called Board of Longitude.
A practical solution came from a gifted carpenter, John Harrison, who solved one of the most
difficult problems of his time by creating an accurate chronometer [4].

After four decades of perfecting, the humble carpenter John Harrison invented four ver-
sions of mechanical clocks that helped navigators to find an accurate way of determining
longitude. The final solution, called clock H4, won the prize established by the British go-
vernment, and beyond the recognition and appreciation of all scientists of all time (Fig. 1.1).

Inspired by Harrisson’s invention, current satellite-based navigation is based on a more
modernized version of these chronometers setting at the heart of satellites moving in the sky
(called atomic clocks)...

Figure 1.1 – John Harrisson’s final maritime chronometer : H4 (1755-1759)
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1.2 Thesis Background : GNSS System Overview

Over time, the use of electromagnetic waves has allowed the development of radio-navigation
to revolutionize the means of navigation and time measurement. Widely developed during the
second world war to localize aircrafts, systems using these waves are limited in particular by
their range, which imposes a relatively high cost when it comes to implementing a system
with significant coverage. However, systems like DECCA, LORAN C, OMEGA have been
used for aviation and maritime navigation. The major breakthrough toward the use of ar-
tificial satellites for navigation has occurred after the discovery of the ability to exploit the
Doppler shift in a broadcast signal for positioning [5].

First conceived and developed for military purposes, the immediate predecessors of the
present positioning systems are the American Navy Navigation Satellite System, commonly
called Transit [6], and the Russian Tsikada. These early systems share nearly the same prin-
ciple, which is the use of satellites and spacecraft for ranging, and suffer both from the same
shortcomings, namely low navigation accuracy (about 25 meters of navigator’s error at a fixed
site [7] and about 400 meters for moving ships [8] for the TRANSIT system) and poor system
continuity (six used satellites : three for positioning and three as spares [9]).

To follow this concept of using a constellation of satellites and to overcome the limita-
tions of the TRANSIT system, the American military have developed the Global Positioning
System (GPS) for both military and civil use [10]. Popularized first through receivers for
road navigation, and over the last few years by the integration of affordable receiver chipsets
in smartphones, these systems have experienced huge evolutions making the possibility of
knowing his position anywhere and anytime as an essential part of the daily life of the gene-
ral public [11]. For their free accessibility and suitable accuracy, these GNSSs are nowadays
considered as the preferred solution for location and timing in a very wide and growing range
of applications.

Free availability and considerable progress of GNSS during recent years have paved the
way for providing more and more reliable geolocation solutions essential for a broad range
of technologies. Nowadays, the use of satellite-based positioning systems is becoming more
widespread all over the world in a plethora of fields that have been grouped into three broad
categories cited in [12] : navigation, surveying and scientific applications.

Navigation applications encompass basically transportation, defense, aviation, maritime
and rail. As an illustration, a high precision use of GNSS within aviation is Localiser Perfor-
mance with Vertical guidance (LPV) runway approaches. Besides, GNSS provides guidance to
aircraft above the runway, which allows them to safely approach and land. Road navigation is
the most widespread GNSS application, providing turn-by-turn indications to drivers through
portable navigation devices. Enabled by the uptake of modern automotive connectivity so-
lutions, connected vehicles represent the evolution towards integrated platforms capable of
supporting, thanks to GNSS, smart mobility services and a range of safety applications. GNSS,
together with other technologies, is a key answer to autonomous vehicles, which need pre-
cise sub-meter positioning combined with guaranteed reliability of localisation. In summary,
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applications in the Road and LBS segments dominate all other market segments in terms
of cumulative revenue for GNSS related industry, according to the European GNSS Agency
(GSA) latest report [11].

1.2.1 GNSS Operational Systems

Nowadays, the GNSS implies two fully operational systems, the American GPS and the
Russian GLObal’naya Navigasionnay Sputnikovaya Sistema (GLONASS), and several un-
der development systems or regional systems mainly like the European Galileo, the Chinese
Beidou, the Japanese Quasi-Zenith Satellite System (QZSS) and the Indian Indian Regio-
nal Navigational Satellite System (IRNSS). In addition, these systems are supplemented
by Space-Based Augmentation Systems (SBAS) or Ground-Based Augmentation Systems
(GBAS). SBAS encompass various systems such as the American Wide-Area Augmentation
System (WAAS), the European Geostationary Navigation Overlay Service (EGNOS) and the
Indian GPS Aided Geo Augmented Navigation system (GAGAN). Fig. 1.2 gives an exhaus-
tive overview to the current development plans for each satellite navigation system over the
next five years by detailing the signal sets, status and number of satellites.

Figure 1.2 – GNSS Operational Systems Overview [1]

Despite the difference between different GNSS systems in terms of signal structure, control
and space segments, they contain the same three main segments namely, the Space Segment,
the Ground Control Segment and the User Segment. The Space Segment is composed of a
satellite constellation, with a sufficient number for full earth coverage. Equipped with atomic
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clocks among others, the satellite follows a precise orbit around the earth and broadcasts radio
signals to users necessary for ranging. Using a network of monitoring stations on earth, the
Control Segment is responsible for steering and monitoring of the whole system. In particular,
it is responsible for producing the navigation messages transmitted via uplink then broadcast
to users. Finally, the User Segment is the GNSS receivers, able to receive and process the
emitted GNSS signals from the Space Segment to determine the user position by means of
range differences measured to satellites.

Some brief descriptions of the principal GNSS systems are as follows :
1. Global Positioning System (GPS) : Considered as the oldest and most widely used

GNSS system, GPS was first conceived by the United States Department of Defence (U S
DoD) as a space-based navigation system for the American military forces to accurately
navigate during missions. Promoted next for civil use, GPS became fully operational
in 1995 and is always under continuous enhancement and modernization. The present
Space segment consist of 30 operational Medium Earth Orbit (MEO) satellites deployed
in six orbital spaced planes with 55◦ degrees inclination at an altitude of about 20200 km.
This configuration provides a global coverage of more than four satellites simultaneously
observable above 15◦ elevation at any time of day, except in the polar regions.
With a fleet of various types of satellite, the GPS Space Segment transmit two BPSK
navigation signals on two carrier frequencies of the L band : L1 (1575.42 MHz) and L2
(1227.6 MHz). The modernization of GPS encompasses an additional carrier frequency
L5 (1176.45 MHz). The L1 signal consists of two pseudo-random navigation (PRN)
codes with a phase quadrature modulation : unencrypted C/A (Coarse Acquisition)
code conceived for the civil use, encrypted P(Y) code dedicated to military applications.
The encrypted P(Y) code is transmitted on both the L1 and L2 frequencies and requires
a decoding key to be able to be used. Finally, these two signals are modulated by the
navigation massage, with a bit rate of 50 bits/sec, and carries the satellite ephemeris
data, which are information about GPS satellites location plus timing and "health" data.
The GPS ground control segment consists of a calculation center located in a base in
Colorado Springs, and composed of 11 command and control antennas and 16 monitoring
stations. The role of control stations is to facilitate the track of GPS satellites, monitor
their transmissions, perform analyses, and send commands and data to the constellation.
After having been processed at the computing center, this information makes it possible
to update the ephemeris of the satellites so that their orbits can be calculated exactly.
The new ephemeris are then transmitted to each satellite via transmitting antennas so
that they can update their navigation message.
Additional information on GPS history, services, segments and it signal structure may
be obtained in the following references [12, 10, 13, 14, 15].

2. GLObal’naya Navigasionnay Sputnikovaya Sistema (GLONASS) : Considered
as the Russian counterpart to GPS, GLONASS is operated by the Ministry of Defense
of the Russian Federation. Based on the experiences with it immediate predecessor
Tsikada, GLONASS was developed by the former Union of Soviet Socialist Republics
(ex-Soviet Union) in 1982 and reaches it full operational capability (FOC) in 1996. Like
GPS, the Russian GLONASS was operated by the Russian army for military purposes
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before being opened to others civil users in 1995.
Due to lack of funding, GLONASS had experienced a continuously declining number of
available satellites until the year 2001. While the complete constellation must consist
of 24 satellites, only six to eight satellites were operational in 2001. Since then, Russia
has made a huge restoration of the system and launched new generation of GLONASS
satellites allowed to bring the constellation back to an operational level. The 24 MEO
satellites of this constellation are placed in three circular orbits at an altitude of about
19100 km. Each orbital plane is inclined by 64.8◦ to the equator. GLONASS satellites
have a rotation period of about 11h15min. This distribution of the satellites allows a
good coverage of the polar zones by GLONASS, which is not the case of the GPS system.
Besides, GLONASS constellation assures a global coverage of more than five satellites
simultaneously visible on 99% of the sites on the earth at any time of day.
Unlike GPS which is based on Code Division Multiple Access (CDMA) technique, GLO-
NASS implements a Frequency Division Multiple Access (FDMA) technique to distin-
guish between the signals of various satellites. All satellites in the constellation use the
same PRN code that allows the receiver to measure the time of flight of the signals.
Fifteen different frequencies distributed around two carrier frequencies : L1 (1602 MHz),
commonly called G1, and L2 (1246 MHz), commonly denoted as G2. This FDMA tech-
nique is more robust against interference, allows low cross-correlation between signals
but have a short ranging code. After discussions between the American and the Russian
government, a GPS/GLONASS interoperability and compatibility had became pos-
sible since GLONASS satellites will broadcast signals in the L3/L5 bands using CDMA
principles. Further information on the Russian GLONASS system may be found in
[12, 16, 17, 18].

3. European Navigation System Galileo : Recognized the strategic and economic
impact of satellite-based navigation and the need to guarantee its own autonomy and
competitiveness, the European Union (EU) has embarked to develop an independent
GNSS system, called Galileo, without any intention to compete with the other existing
GNSS systems but in a vision of interoperability and compatibility with them. Unlike
non-civilian American GPS or Russian GLONASS, Galileo provides an alternative that
remains under civilian control. The complete Galileo constellation will comprise 27
operational and 3 spare MEO satellites spread evenly around three orbital planes with
56◦ of inclination with reference to the equatorial plane. Each satellite will take about
14 hours to orbit the Earth and will be at an altitude of 23222 km. This distribution
guarantees six to eight satellites to be in view above 10◦ elevation mask at any location.
Conceived in a service-oriented approach in the design phase, Galileo provides four
different services :

— Open Service (OS) : Intended for the mass market, this service is accessible to
all users free of charge but without any service guarantee or liability. It can be
ensured by means of six unencrypted signals modulated onto three different carrier
frequencies : E1 (1575.42 MHz), E5a (1176.45 MHz) and E5b (1207.14 MHz).

— Commercial Service (CS) : Intended to generate a revenue stream for the Gali-
leo Operation Company (GOC), this service offers higher performance than the
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OS with added guaranty and liability of service. CS broadcast encrypted signals
modulated onto the Galileo frequency band E6 (1278.75 MHz).

— Public Regulated Service (PRS) : Intended to provide a continuous and encrypted
signal even if other services are disabled in situations of crisis, this service is allo-
cated to government-authorized users. The bands allotted for this service are the
E1 and E6.

— Search and Rescue Service (SAR) : Intended to provide a continuous global ser-
vice for humanitarian search and rescue activities under Cosmicheskaya Sistyema
Poiska Avariynich Sudov-Search and Rescue Satellite-Aided Tracking (COSPAS-
SARSAT) organisation, Galileo satellites will be able to pick up emergency signals
from distress emitting beacons carried on ships, planes or persons and ultimately
forward these back to national rescue centres (SAR ground segment) in the SAR
down-link frequency band.

The ground segment of Galileo comprises two control centers, thirty monitoring stations
around the world and five satellite link stations. Further information on the European
Galileo system may be obtained, for instance, in [12, 19].

4. BeiDou Navigation Satellite System (BDS) : Started as an experimental regional
navigation system, called Beidou 1, with four experiment satellites from 2000 providing
Radio Determination Service System (RDSS), China announce the third step of deve-
lopment of it own satellite positioning system BeiDou with a fully operational regional
covarage in 2012 and with a clear plan to provide a global coverage around the year
2020. Initially this system, called Beidou, allows a satellite-based location on all China
an on the outskirts of China. Under ongoing modernization, BDS consists in 2016 of
23 satellites in orbit that will be extended to a constellation of 35 satellites in 2020,
which include 5 geostationary orbit (GEO) satellites, 3 IGSO (Inclined Geosynchronous
Orbit), and 27 MEO (Medium Earth Orbit) satellites [20]. MEO satellites are placed in
tilt orbits of 55◦ and at an altitude of about 21528 km [21]. Like GPS, BDS provides
civilian service and military service (or authorized service). These official documents
published by the China Satellite Navigation Office [20, 22] describe the frequency bands
used by BDS which are : B1I (1561.098 MHz) and B2I (1207.140 MHz).

5. Quasi-Zenith Satellite System (QZSS) : Considered more as an augmentation
system and complementary to GPS, the Japanese regional satellite navigation system
QZSS is intended to provide an enhanced satellite availability in the East Asia and
Oceania region. With a current constellation of four satellites in orbit, Japanese Space
Policy have decided in January 2015, to begin operating QZSS as a total of 7-satellite
for GPS augmentation that allows sustainable positioning around by 2023.
The orbits of QZSS geosynchronous satellites oscillate in the north-south direction with
a constant longitude. They are shaped like a figure eight with north-south asymmetry.
With the intention of total compatibility with the American GPS, QZSS is conceived to
broadcast signals similar to GPSs L1 C/A, L1C, L2C and L5. Additional information
about the Japanese GNSS may be found in this official website [23].

6. Indian Regional Navigational Satellite System (IRNSS) : Conceived to provide
an autonomous regional navigation system for the Indian sub-continent, the Indian
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IRNSS project was approved by Indian government in May 2006 and developed by the
Indian Space Research Operation (ISRO) since then.
For the time being, the space segment of IRNSS consist of a constellation of seven
satellites : 3 satellites in GEO and 4 satellites in Geosynchronous orbit (GSO) at ap-
proximately 36000 km of altitude above earth surface. IRNSS provides two types of
services, namely, Standard Positioning Service (SPS) for common civilian users and
Restricted Service (RS), which is an encrypted service provided only to the authorised
users. The Indian IRNSS uses dual-frequency service in L-band in coallocation with
GPS L5 and Galileo E5a and in S-band. [24] gives additional information on IRNSS.

1.2.2 GNSS Working Principle

By means of emitted navigation signals from the GNSS Space Segment, i.e. operational
satellites, the user is capable to determine his position, expressed for example by latitude,
longitude and height coordinates. The task of processing the broadcast satellite signals in
the user segment is accomplished by a simple resection process using an essential information
which is the range measured to satellites, this process is called multilateration.

First of all, the range measured to satellites is proportional to the amount of time taken
by the GNSS signal to travel from the satellite to the receiver, i.e., the travel time. This time
can be determined based on a comparison or a correlation between received coded signals
and receiver-generated signals, i.e. local coded signals. To do this, the receiver has to know
the time the signal left the satellite as well as the time the signal arrived at the receiver.
Hence, two clocks are involved : one in the satellite side and the other in the receiver side.
The accurate satellite clock gives the navigation signal time-tag, when transmitting it. The
receiver clock is used to measure the time of arrival of the signal. For economical reasons,
usually a very cheap clock is used inside the receiver. The receiver has then to compute the
clock offset of its own cheap clock. Thus, measured range to satellites are biased by satellite
and receiver clocks errors and consequently they are denoted as pseudoranges.

To solve for the four principal unknowns, namely the three coordinates of user position and
the receiver clock bias, at least four simultaneously and independent measured pseudoranges
are needed. Using, the ephemeris broadcast by the satellite, its position can be computed.
Knowing the position of at least four satellites and the corresponding pseudoranges, user
position is estimated using a multilateration process : each pseudorange defines a sphere
centred at the satellite location, then these four spheres overlap in two locations. The first
one corresponds to the receiver location while the second point is distinct in space. This allows
to compute the user position. This process is presented in Fig. 1.3.

For this pseudoranges (PRs) measurement to be carried out, the GNSS signals have been
designed with particular properties allowing the receiver to estimate their flight time, i.e.
the time they have spent travelling the satellite/receiver distance. The receiver itself can be
broken down into several "stages" with specific missions for each that allow the calculation of
the final user position. The conventional architecture of a GNSS receiver is shown in Fig 1.4.
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Figure 1.3 – Trilateration concept for Positioning using GNSS

It must be recalled that a general GNSS receiver contains several reception channels running
in parallel for PRs estimation, but are not shown in Fig 1.4 for a matter of simplicity.

Figure 1.4 – Architecture of a GNSS receiver - NB : several reception channels are generally
running in parallel but not shown in this figure.

The navigation message and the PRN code are both modulated onto the same carrier
frequency. Pseudo-random (PRN) codes are used because of their excellent characteristics for
correlation. Indeed, the correlation of two different PRN codes will give an almost zero result.
On the other hand, the autocorrelation of a PRN code will give a strong triangular peak
when the two replicas are in phase, and will be almost zero elsewhere. This specific property
allows on one hand to separate the different GNSS signals from one another and on the other
hand to initiate the estimation of the delay between the received signal and the replica that
the receiver generated locally, i.e. pseudoranges. This process is performed in the acquisition
stage (as in the tracking stage as well), in which a coarse estimation of the Doppler frequency
and the time delay is performed.
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After performing the acquisition step, the receiver starts the process of tracking the na-
vigation signal. The tracking step makes it possible to follow the evolution of the delay on
the code, the frequency and the carrier phase generated by the relative movements between
the satellite and the user and thus update the calculation of the point. Indeed, because of the
movement of satellites at high speed, the frequency and delay characteristics of each signal
evolve very quickly. If they were not re-estimated regularly, the receiver would lose the signal.
Further details may be obtained in [13, 14, 25, 26].

The final stage in the receiver architecture is the navigation block which permits to com-
pute the final user position using the estimated pseudoranges. The code pseudorange (PR)
is equal to the difference between the receiver and satellite clock readings multiplied by the
speed of light c, and can be expressed as :

zi = c(TRec−Rx − T iEmit−Sat) (1.1)

Here, zi refers to the measured code pseudorange between the observing receiver site and
the satellite i, the term TRec−Rx is the time at which the GNSS signal is received by the
receiver and T iEmit−Sat refers to the time at which the same GNSS signal is transmitted from
the satellite i. In practice, the navigation signals are affected by systematic errors or biases
and random noise as well. Broadly speaking, these error sources could be classified into three
main groups : satellite-related errors namely orbital errors or satellite clock bias, propagation-
related errors including ionospheric, tropospheric delays and multipath and non-line-of-sight
(NLOS) reception and receiver-related errors including receiver random noise. We note that
the clock bias is a parameter to be estimated in the state vector of position and time, because
it is very difficult to compensate for. Taking into account these errors, measured PR from an
emitted satellite i can be represented by [13, 26] :

zi = hi(xu)− c.dT iSat + Ii + Ti + vi (1.2)

Where :

— hi(xu) is the line-of-sight (LOS) distance between the receiver at user location xu =
(xu, yu, zu)T and the satellite i. Note xiSat, yiSat, ziSat the three components of the position
vector of the satellite i in the Earth-Centred-Earth-Fixed (ECEF) frame 1at epoch t,
this last LOS distance can be expressed as :

hi(xu) =
√

(xu − xiSat)2 + (yu − yiSat)2 + (zu − ziSat)2 + c.dTRx

— dTRx is the receiver clock bias. This term represents the offset between the cheap receiver
clock time and the true system time and has to be considered as an unknown to be
estimated.

— dT iSat is the satellite clock offset. Since the atomic satellite clocks are very stable, this
term can be predicted using a second order polynomial model based on parameters sent

1. In this thesis, we consider that all needed frame changes have been done before computing the satellites
positions in the ECEF frame. Hence, the Sagnac effect has been compensated for in the used software.
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in the ephemeris messages.
— Ii represents the ionospheric delay caused by the signal propagation in the ionosphere

layer. This ionospheric refraction can be corrected by an adequate combination of dual-
frequency data or using some known models such as Klobuchar model [27].

— Ti refers to tropospheric delay due to GNSS signal propagation in the troposphere layer.
Many models have been used to correct for this delay such as the Minimum Operational
Performance Standards (MOPS) adopted by the SBAS (WAAS, EGNOS,...) [28].

— vi denotes all undesired errors, including the receiver noise ni, Multipath (MP) and
non-line-of-sight (NLOS) errors. Receiver noise refers to the pseudorange error caused
by the GNSS receiver hardware and software. This noise is generally assumed to be a
white noise. MP and NLOS biases are very difficult to be predicted and indeed become
one of the focused subjects in this thesis. These two terms will be further explained.

After Model-based compensation of ionospheric delay, Ii, tropospheric delay, Ti, and the
satellite clock offset, dT iSat, the measurement model for all received satellite could be simplified
as :

z = h(xu) + v (1.3)

Equation (1.3) contains a nonlinear function on the three unknown user position xu =
(xu, yu, zu)T . Since this function is nonlinear, problem (1.2) cannot be resolved analytically in
general. This function is then linearised using a first order of Taylor expansion around a known
location x0 = (x0, y0, z0)T , which is usually taken as the previous estimated user position.
Then, considering N emitting GNSS satellites, the following linearised equation formulates
the satellite positioning problem, called the navigation equation [13, 10] :

δz = Hδx + v

The term δx is the offset in the user’s position and time bias relative to the linearisation point.
The term δz is the PR measurements innovation (i.e. measured minus predicted pseudorange).
The linearisation is valid in the case of GNSS, because the displacement in the user’s position
is within close proximity of the linearisation location.

For the sake of simplicity of application of estimation methods in this thesis, we denote
the input vector as y = δz and the state vector to be estimated as x = δx to obtain the
following observations model :

δz = Hδx + v → y = Hx + v; y = δz,x = δx (1.4)

Throughout this dissertation, we adopt the following notations :
— State Vector or Unknowns : x = (xu − x0, yu − y0, zu − z0, bRx)T is the [4, 1] state

vector containing the parameters of primary interest, i.e. the three coordinates of the
user position (x, y, z)T and the receiver clock bias bRx. x represents an incremental
deviation from the known reference point x0.

— Measurement Innovation vector : y = (y1, · · · , yN )T is the [N, 1] linearised pseu-
dorange (PR) measurements vector. For each satellite i, this term is related to the PR
measurements from the same satellite with the following relation : yi = zi − zPrei (x0),

17



where zPrei (x0) = hi(x0) − c.dT iSat + Ii + Ti is the predicted PR measurement from
satellite i at reference point x0 = (x0, y0, z0)T .

— Measurement Matrix : H = (∂h1(x0)
∂x , · · · , ∂hN (x0)

∂x )T contains the unit line-of-sight
(LOS) vectors between satellites and reference point x0 = (x0, y0, z0)T . This matrix
describes the linear connection between measurements innovation y and unknowns x,
obtained as the Jacobian matrix of h function in (1.3) by 1st order Taylor expansion.

— Observation or Measurements error signals : v = (v1, · · · , vN )T = n+bMP−NLOS
refers to pseudorange measurements error signals. bMP−NLOS refers to the additional
measurement bias caused by MP/NLOS receptions and the remaining satellite-related
and propagation-related errors after the application of the corrections, commonly called
as PR bias. n is the receiver measurements noise. Traditionally, this latest term is
supposed to be a white Gaussian noise characterized by a known covariance matrix
R = E[nnT ].

It is important to note that the first three parameters in the new unknown x to be estimated
represent an incremental deviation from the known reference point x0 = (x0, y0, z0)T about
which the linearization took place. This position is calculated in WGS84 (World Geodetic
System 1984) ECEF coordinate system [29] and then transformed to the geodetic coordinates
system composed of longitude, latitude and ellipsoidal height.

1.2.3 GNSS Basic Estimation Techniques

Using PR measurements, the navigation block has as its mission to estimate the unknown
state vector in the classical equation (1.4) to predict the user position. A plethora of estimation
algorithms had been proposed in the literature to solve for the user location in the GNSS
navigation equation (1.4). In particular, the well-known standard Least-Squares (LS) and
Extended Kalman Filter (EKF) are ones of the most widely used algorithms in science and
particularly in GNSS localization with GNSS measurements. Some brief descriptions of these
algorithms are as follows :

1.2.3.1 Standard Weighted Least-Squares Estimation

According to (1.2) and (1.3), the GNSS measurement model is non linear. Thus, we have
to linearize this model as it have been shown in (1.4) to apply the standard Least-Squares.
The conventional Least-Squares (LS) estimate of (1.4) is given by the following :

x̂LS = (HTH)−1HTy = H+y (1.5)

The Weighted Least-Squares (WLS) estimate of (1.4) is given by the following [10] :

x̂WLS = (HTWH)−1HTWy = H+
Wy (1.6)
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Where H+
W = (HTWH)−1HTW, and W is a weighting matrix. To achieve optimal perfor-

mance, the weighting matrix should be proportionnal to the inverse of the measurement error
covariance [30] that is W = C−1

p , where Cp is the covariance matrix of the observation noise
v. So, we denote H+

Cp
= H+

W. It is important to note that the final user position is estimated
using the following update rule : xu = x0 + δx̂, where δx̂ is given by (1.5) or (1.6).

By omitting the MP/NLOS bias from PR measurements in (1.4) at the outset, i.e.
considering firstly that bMP−NLOS = 0 (neglicting also the remaining satellite-related and
propagation-related errors after the application of the corrections), observation noise are as-
sumed to be Gaussian distributed with zero mean and covariance matrix Cp = R. A used
metric to qualify the efficiency/accuracy of an estimation is the covariance matrix of the es-
timation error. In the case of the WLS estimation, it can be shown that this metric is given
by [10] :

Cov(∆x̂WLS) = E[∆x̂WLS∆x̂TWLS ] = E[H+
Rn(H+

Rn)T ]
= H+

RE[nnT ](H+
R)T = H+

RR(H+
R)T = (HTR−1H)−1 (1.7)

Where ∆x̂WLS = (x̂WLS−x) denotes the WLS estimation error and E represents the expec-
tation operator. To illustrate the effect of the quality of measurements and the geometrical
configuration of the satellites visibility, we assume that the PR measurements from different
GNSS satellites are identically distributed and independent. However in practice the PRs
maybe correlated and specific processing techniques are available as well as filter tuning to
deal with this fact. Hence the noise covariance matrix R can be simplified to R = σ2

UEREIN,
where IN is the N × N identity matrix and σ2

UERE represents the User-Equivalent Range
Error (UERE) variance. Under this assumption, substitution into the covariance matrix of
the estimation error expression (1.7) yields :

Cov(∆x̂WLS) = (HTH)−1σ2
UERE (1.8)

Hence the covariance of the WLS errors are proportional to the matrix (HTH)−1, called
the Dilution of Precision (DOP) matrix. The accuracy of the position/time WLS estimation
is determined as a product of a geometry factor, known as the DOP, and a pseudorange
errors factor, i.e. pseudorange measurements quality [31]. In other words, the satellite-user
geometry dilute the range domain accuracy by the DOP factor. The lower the DOP value,
the more favorable is the satellite-user geometry (satellites well spread on azimuth), the more
accurate is the WLS estimation. The DOP can be seen as a projection of the errors from the
measurement domain onto the errors in the position domain.

DOP value become lower in case of GNSS satellites equally spaced and well distribu-
ted in the horizon. To characterize the accuracy of various components of the postion/time
solution, different DOP parameters can be defined, namely the geometric dilution of preci-
sion (GDOP), the position dilution of precision (PDOP), the horizontal dilution of preci-
sion (HDOP), the vertical dilution of precision (VDOP) and the time dilution of precision
(TDOP). If the satellite and user positions are expressed in East-North-Up (ENU) or North-
East-Down (NED) coordinates, then these DOP parameters are linked to the trace of the
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G = [G]i,j = (HT
ENUHENU )−1, DOP matrix, as follows :

GDOP =
√

G1,1 + G2,2 + G3,3 + G4,4; PDOP =
√

G1,1 + G2,2 + G3,3

HDOP =
√

G1,1 + G2,2; V DOP =
√

G3,3; TDOP =
√

G4,4
(1.9)

Finally, the attractiveness of this WLS estimation stems from it ease of implementation, but
it requires a minimum of four satellites in visibility so that a solution can be calculated.

1.2.3.2 Extended Kalman Filtering

The linear Kalman filler (KF) is an advanced estimator that uses a dynamic model of
motion and requires a prior knowledge of certain parameters, mainly the covariance matrices
of measurements and dynamic models [32]. It is capable of operating with less than four GNSS
measurements for short time periods. The main theoretical strength of KF is the relaxation
of the stationarity of the state vector being estimated, as opposite to Wiener filtering and
LS [33]. This filter also has the advantage of smoothing the navigation solution taking into
account motion model. The ability of the Kalman filter to operate in the presence of few
signals and its simplicity of real-time implementation have promoted the use of this solution
as the most common navigation filter in most standard GNSS receivers.

The state vector to be estimated in (1.4) is obviously a function of time. Hence, current
user position estimation will benefit from previous sequence of measurements, user positions
and clock errors over time. Kalman Filter is based on incorporating past pseudorange measu-
rements into position estimation by means of motion model of the user over time and model
of the progression of the Rx clock bias over time. The considered state vector in the Kalman
filter assembles also the user velocity and the receiver clock bias drift. At each discrete time
increment, these unknown parameters may be modeled by the following system [34, 35] :yn = Hnxn + vn : Measurement Model

xn = Φnxn−1 + wn−1 : Motion Model
(1.10)

Analogously for other quantities, the notation xn = x(tn) is introduced to indicate that
following formulations are considered at discrete time epoch tn. Φn refers to the discrete
dynamic or transition matrix and wn−1 is the dynamic distribution, supposed to be white
Gaussian noise with a known covariance matrix Qn. The motion model describes the predicted
state vector motion based on some assumed model for how the state vector changes/evolves
in time. The KF process is accomplished using a recursive computation of four steps :

— Step 0 : Initialisation : Give a prior estimate and error covariance matrix.

— Step 1 : Prediction Step : The state prediction and the prior covariance matrix of
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the estimation uncertainty P−n can be propagated as :x̂−n = Φnx̂n−1

P−n = ΦnPn−1ΦT
n + Qn

(1.11)

This step is based on prior knowledges of the dynamic, without any use of measurements.
— Step 2 : Kalman Gain Computation Step : The Kalman gain or weight matrix

Kn is obtained in order to optimize, under the assumption of white Gaussian noise and
linear model, the estimation accuracy and is given by :

Kn = P−nHT
n (HnP−nHT

n + Rn)−1 (1.12)

— Step 3 : Update Step : The final solution of the system (1.10) and the covariance
matrix of the estimation uncertainty Pn are update as :x̂n = x̂−n + Kn(yn −Hnx̂−n )

Pn = P−n −KnHnP−n
(1.13)

Other equivalent formulas of Kn and Pn could be found in the literature. Here, x̂n and x̂n−1
are EKF solutions at discrete time epochs tn and tn−1. Using a motion model, EKF improves
current user estimate by means of previous estimates and new measurements, this process is
called smoothing. However, EKF performance relies on Gaussian measurements and motion
noise assumptions and on prior knowledge of the receiver dynamics. When these assumptions
are incorrect, problems can arise quickly and the estimation is degraded.

Since the GNSS measurement model is non linear, we need to linearize the state and
measurement equations in order to resort to the Extended Kalman Filter (EKF) [33].

1.2.4 GNSS Quality Metrics

The performance of any system can be characterized by a number of different features or
quality parameters. In the case of a navigation system, a number of statisticals features or
metrics have been defined in the literature [10, 31]. Brief descriptions of some of these features
are as follows :
— Accuracy : The accuracy of a navigation system is a statistical measure of the degree of

conformance between estimated and true positions and/or velocities. Usually, this metric
is build from the statistical distribution of the estimation errors. Accuracy requirements
are generally expressed as a statistical measure of the position error together with a
fixed confidence level, e.g. 95%. In the case of GNSS, the accuracy of the PVT depends
on :
— The measurement accuracy : This factor represents the quality of pseudorange

measurements used for PVT estimation. The quality of PR measurements may
be degraded because of several factors such as ionospheric delays, multipath and
non-line-of-sight errors, navigation signal attenuation...
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— The estimation mode : This factor represents the estimation framework or algo-
rithm used for PVT computation. It reflects also the presence or not of aided
measurements from others sensors. Typically, SBAS, Differential-GNSS (DGNSS)
and Real Time Kinematic (RTK) are some used modes for increasing the estima-
tion accuracy.

— The satellite-user geometry : This factor reflects the satellite geometrical distri-
bution in the sky and is expressed in the DOP matrix. It indicates the ratio of
positional errors to range errors. If the DOP is high in case of bad satellite-user
geometry, the estimation accuracy will be degraded. This factor includes also the
measurement redundancy, since the more satellites are available, the lower the
DOP.

— The choice of the dynamics model : This factor is considered only in the case of
using a motion model in the estimation of the PVT. If the dynamics parameters are
set to erroneous values that does not correspond to the actual receiver dynamics,
the position estimation will be degraded.

— Integrity : The integrity is a measure of the trust that can be placed in the correctness
of the information supplied by a navigation system. It includes the ability of this system
to provide timely and valid warning or alerts to users in the case when the system
should not be used. Conceptually, integrity monitoring in navigation can be defined
as the capacity of providing positioning confidence which is able to detect blunder in
the measurements and unacceptably large position errors. Integrity monitoring was first
developed in the aim of maintaining safety and efficiency of GNSS positioning for air
navigation. Integrity requirements involves different parameters, namely Integrity Risk
(IR), Protection Levels (PL), Alert Limit (AL) and Time to Alert (TTA).
High accuracy does not mean high integrity : is is not enough that position errors are
small in average (accuracy), they must remain small all the time to avoid any risk of
unacceptable large errors. Fig. 1.5 illustrates the interest of integrity monitoring and it
difference with accuracy.

Figure 1.5 – An illustration of the difference between Integrity and Accuracy [2]

— Continuity : The continuity of a navigation system is the ability to perform its func-
tion without interruptions during an intended operation. This feature is expressed in a
statistical quantity that quantifies the probability that the specified system performance

22



will be maintained for the duration of a phase of operation, presuming that the system
was available at the beginning of that phase of operation.

— Availability : The availability of a navigation system is the percentage of time that the
services of the system are usable. Availability is an indication of the ability of the system
to provide usable service within the specified coverage area under specified conditions
of providing required levels of accuracy, integrity and continuity. It is a function of
both the physical characteristics of the environment and the technical capabilities of
the transmitter facilities.

1.3 Thesis Motivation : GNSS Challenges in Harsh Areas

This dissertation is a synthesis of the research work carried out since 2014 on methods for
robust positioning using GNSS measurements in presence of MP and NLOS reflections in the
order to enhance GNSS performances in harsh environments, e.g. canyons urban, urban or
peri-urban areas, forest and mountainous areas. The motivations of this research works are
listed in below :

1.3.1 Increased Demands and Added Value of Reliable Positioning

The Global Navigation Satellites Systems application for land navigation has grown in
popularity in urban areas for their free accessibility and suitable accuracy. Motivated by the
significant developments of GNSS-based techniques, satellite positioning are poised to have
a wide spectrum of applications in land navigation, intelligent transportation systems (ITS),
robots/Drones, Location-Based Services (LBS) and Wireless Sensors Networks (WSN) [11].

User requirements in these environments can be specified from numerous perspectives,
including accuracy, integrity, reliability, continuity. These requirements can be very stringent
and depends on the specific applications. For instance, GNSS reliability is mandatory espe-
cially for applications having impacts on financial, legal or safety-of-life repercussions such as
specific car tracking or road user charging (RUC) [36]. Some of these application are mission-
critical, since, for instance, road users should be charged fairly, accurately and securely in
RUC applications. In case of unreliable GNSS positioning, operators have the liability for any
wrong doing such as overcharge or undercharge. Moreover, the availability of navigation-based
services in urban areas depends directly on the great extent on the positioning performance
that that navigation system can provide.

For mass market applications, the use of GNSS systems by the general public, especially
through smartphones equipped with GNSS chipsets, is becoming more and more frequent in
urban areas. Unlike in the countryside, the different points of interest for users in towns are
very close to each other. A few meters away, GNSS users can take the wrong street, take the
wrong motorway exit ramp or not even get to find the restaurant they are looking for. Urban
users therefore expect a very good positioning precision using GNSS systems. Besides, they
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ask for a very important service availability, since in a short time they are likely to pass by a
large number of points of interest and a position estimation using GNSS unavailable for only
one minute may cause them to miss the crossover where they should turn.

As a conclusion, users in urban environments are expecting for a positioning accuracy
greater than that obtained in open sky areas, because of the proximity of the various points
of interest and intersections in these areas. Hence, along with the appearance and innova-
tion of new land applications, many of the demands come from urban environments where
the processing needs of the received signals are extensively more complex than in open sky
environments. This factor have motivated our scientific research aiming to enhance GNSS
performances in these areas to meet user requirements and expectations.

1.3.2 Degraded GNSS Performances in Urban Areas

Nowadays, GNSS encompass many operational systems such as the American GPS, the
Russian GLONASS and the European GALILEO, which forecast on a large increase of per-
formance and services. However, the exponential progress of GNSS applications in land na-
vigation is not without major hurdles in it course of development. Indeed, even with this
increase in the satellite availability and the improvement of the constellation geometry, GNSS
positioning in urban areas suffer from degraded performance because of several problems that
persist. Basically, the rapid urbanizing process in many cities hinders existing GNSS-based
positioning technologies performances to achieve the technical and regulation requirements for
three main reasons, namely satellites masking and signal attenuation, GNSS signal reflections
and degraded satellite-user geometry.

1.3.2.1 Satellite Masking and Signal Attenuation

One of the main problems incurred in the receiver measurements process in urban areas is
the masking and the attenuation of the satellite signals. Tall buildings, foliage and surroun-
ding objects present in urban environments tend to obstruct the direct line-of-sight (LOS)
signal from many satellites which reduce satellite visibility and degrade the position availa-
bility. Purely from geometry it is clear that signals received from low to medium elevation
satellites are susceptible to be masked by the densely-built areas and high buildings. Hence,
the continuity of position estimation cannot be guaranteed if tunnels, tall building and foliage
disrupt the GNSS navigation completely.

Besides, satellite signal could be only partially blocked when propagating though dense fo-
liage which will attenuate the signal strength. This factor engender very challenging technical
issues for acquiring and tracking the attenuated GNSS signals.
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1.3.2.2 Signal Reflections

Urban environment, on the whole, consists of narrow streets and high buildings with
smooth surfaces that may reflect the transmitted signals. Thus, it is very common that GNSS
signals reach the receiver via multiple, direct and/or indirect, paths. Similarly, the satellite
signal gets bent at the building edges and reaches the GNSS receiver after diffraction, where
LOS signal is blocked. Signals received in indirect paths can be classified into two separate
types, that generally occur together : Multipath (MP) signal if the signal is received through
both direct and alternative paths and Non-Line-Of-Sight (NLOS) signal if the signal is received
only through reflections. These combined NLOS and multipath (MP) biases degrade the
pseudorange measurements quality and hence degrade the position estimation. In the next
paragraphs, we illustrate the adverse effect of these reflections on user position estimation,
from a physical point of view. A theoretical demonstration of the effects of MP/NLOS errors
on final position estimation is provided in appendix A.

Multipath and NLOS Reception : Physical Consideration : Even though both the
NLOS reception and multipath interference are often grouped together as “multipath”, they
are actually separate phenomena that cause very different ranging errors and different ca-
racteristics [37]. In GNSS, for optimal positioning, it is assumed that the received signals
propagate through a LOS path. However, infringement of this assumption can result in inac-
curate positioning data. The pseudorange (PR) error is defined as the extra distance travelled
by the received signal with respect to the LOS path. This extra distance can occurs in case of
reflection of the LOS signal : if both reflected and LOS signals are received, this situation is
called multipath interference ; otherwise, if only reflected signals are received, we are in Non-
Line-of-Sight (NLOS) situation. Figure 1.6 illustrates the different GNSS signals propagations
scenarios in urban environments.

Figure 1.6 – An illustration of different GNSS signals propagation possibilities in urban areas

Multipath interference occurs when the transmitted satellite signals are received through
multiple replicas which follows different paths than the original satellite-user direct link. These
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different path are caused by the reflection or diffraction of the direct signals. Such multipaths
distort the correlation function between the received composite (direct path plus multipaths)
signal and the locally generated reference in the receiver. Theoretically, the magnitudes of
multipath error can reach about 0.5 of a code chip depending on the receiver correlation
technology [14, 37].

Non-Line-of-Sight (NLOS) is a term to describe a link where there is no visual line-of-
sight (LOS) between the transmitting antenna and the receiving antenna. If the line of sight
(LOS) is blocked and the satellite signal is received through a reflected NLOS path, the related
pseudo-range (PR) measurement will be affected by an additional, always positive, potentially
unlimited in range and with an magnitude dependent on the propagation environment.

Improvements due to GNSS augmentations and GNSS modernization are reducing many
sources of error, leaving multipath and shadowing as significant and sometimes dominant
contributors to error. As they usually arise together in urban settings, these two phenomena
distort the composite phase of the received signal, introducing errors in pseudorange measu-
rements, and thus produce errors in position, velocity, and time.

1.3.2.3 Degraded Geometrical Satellite Distribution

The masking of the satellite signals, in urban environments, induces a poor constellation
geometry that may affect the Dilution Of Precision (DOP) unfavourably and hence degrade
the positioning accuracy. The remaining non-masked received signals are often contaminated
with large ranging errors and have all together a poor geometrical distribution which corrupts
the position accuracy by several tens of meters of error.

In view of such technical challenges, there is a pressing need to counteract the disad-
vantages of GNSS degradations, namely MP/NLOS reception : This is one of the principal
motivations of this research work.

1.4 Thesis Objectives

The main objective of this research is to develop methods for robust positioning using
GNSS measurements in presence of MP and NLOS reflections, by integrating aided informa-
tion on the receiver environment. Therefore, the following questions are set and have been
dealt with in this research :

1. What is the maximum achievable positioning accuracy level reached by
GNSS positioning in MP/NLOS setting, in case of no use of external in-
formation ? To answer this question, we have characterized Lower Bounds (LB) on
GNSS positioning performance in MP/NLOS conditions, i.e. the best GNSS estimation
performance in the presence of a non-Gaussian environment, without use of external
information to assist GNSS systems.
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2. Can a 3D GNSS Simulator, i.e., external information about the receiver
environment of reception, be used constructively in real-time to assist GNSS
in MP/NLOS situations ? These additional information are essential in the case of
very low GNSS signal availability. The following points have been addressed in this
research :

(a) What is the required level of realism of the information provided by 3D simulation
to be constructively used for GNSS positioning ? What is the merit of using a 3D
GNSS simulator ?

(b) How information from the 3D GNSS Simulator could be used to enhance positioning
performance ? At what level of processing should this information be used ?

1.5 Thesis Contributions

The main contributions of this thesis are :
1. The merit of using aiding information from a 3D GNSS signal propagation

simulator to assist GNSS in MP/NLOS setting :
We have studied the required and desired minimum level of realism that a 3D GNSS
Simulator, or any tool providing information about the MP/NLOS bias, must achieve
to be integrated with GNSS for positioning. This is the subject of chapter 3.

2. Use of external information from a 3D GNSS signal propagation simulator
to assist GNSS positioning in MP/NLOS conditions :
Different proposed methods for integration of this 3D information to assist the GNSS
receiver, at the PVT module by positioning over a grid of candidate positions or the
navigation block by correcting degraded pseudorange measurements. This is the subject
of chapter 3.

3. Derivation of Lower Bounds of GNSS performance in presence of a non-
Gaussian environment :
Evaluation of the maximum achievable GNSS positioning performance in presence of
MP/NLOS signals using only “stand-alone” advanced estimation techniques, without
external information. The presence of MP and NLOS reflections make the marginal pro-
bability density function of the GNSS observations without an analytical form and ma-
thematically intractable, which prevents from using the known standard deterministic
lower bounds (LBs) on the mean-squared-error (MSE). Therefore, we derived modified
Lower bounds (MLBs) in the framework of non-standard deterministic estimation, at
the expense of tightness however.This is the subject of chapter 4.

The methodology followed in this research work is shown in Fig. 1.7.

In this thesis, GNSS positioning methods performed at the position level are methods
based on scoring of candidate positions, while GNSS positioning methods performed at the
measurements level are methods based on PR measurements correction to enhance positioning
performance.
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Figure 1.7 – Methodology followed in this research work

1.6 Thesis Structure

This dissertation is organized as follows :

Chapter 1 presents the motivations and objectives of this research work, as well as the
contributions and the structure of this dissertation. This chapter introduces also the principle
of GNSS positioning and its different applications for land navigation. The challenges faced
for GNSS positioning in urban environments are also highlighted.

Chapter 2 presents an extensive overview about the most known and used state of the art
approaches to tackle the GNSS positioning challenges in urban setting. This chapter gives a
detailed summary and a review of these published works in the field of Multi-Path (MP)/Non-
Line-Of-Sight (NLOS) mitigation for GNSS-based positioning applications. Broadly speaking,
recent published studies on this field fall under three headings : LOS/NLOS classification
techniques, i.e. MP/NLOS detection and identification techniques, MP/NLOS modeling and
mitigation techniques and constructive use of MP/NLOS degraded measurements for posi-
tioning. A special description will be given to techniques based on the use of 3D models/3D
GNSS simulators for MP/NLOS constructive use.

Chapter 3 presents our contributions on 3D-Mapping Aided GNSS positioning. In this
chapter, we include prior information about the reception environment, provided by a 3D
GNSS simulator, to reduce positioning errors. We use information on PR bias provided by
a 3D GNSS simulator to assist GNSS positioning in harsh environments. The first section
details the used 3D GNSS simulator in this study and discusses it level of reliability. The
proposed technique for positioning based on pseudorange errors bounding will be presented
in section 2. Two different methods based on using the 3D information, provided by the
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3D GNSS simulator, for scoring an array of candidate positions are presented in the third
section. Finally, original research about the minimum requirements to be achieved by 3D
GNSS simulator, or any others PR-errors-prediction tools, to be constructively used with
GNSS will be presented in the fourth section.

Chapter 4 presents our contributions on asymptotic positioning accuracy in the presence
of a non-Gaussian environment. Indeed, this practical GNSS problem of MP/NLOS biases
falls into a wider one form a theoretical point of view, that is deterministic parameter es-
timation in the situation where the probability density function (p.d.f) is parametrized by
unknown deterministic parameters results from the marginalization of a joint p.d.f. depending
on random variables as well. Indeed, when one wants to incorporate a Multipath fluctuation
p.d.f different from the Gaussian distribution in presence of Gaussian noise, in most cases,
none of the existing estimation performance characterization methods (for instance lower
bounds) can be used since the marginal p.d.f of the observations has not an analytical form.

Chapter 5 summarizes the main objectives and challenges addressed in this research.
It gives also an overview about the developed techniques and solutions to circumvent the
limitations of conventional GNSS algorithms. Resulting from the work of this thesis, several
perspectives are noticeable and need a special interest.

1.7 Main Thesis Outputs : List of Publications

1. Journal Papers
[1] N. Kbayer, J. Galy, E. Chaumette, F. Vincent, A. Renaux and P. Larzabal, «On
Lower Bounds for Nonstandard Deterministic Estimation,» in IEEE Transactions on
Signal Processing, vol. 65, no. 6, pp. 1538-1553, 15 March 2017.
[2] N. Kbayer, M. Sahmoudi, «Performances Analysis of GNSS NLOS Bias Correction
in Urban Environment Using a 3D City Model and GNSS Simulator,» in IEEE Tran-
sactions on Aerospace and Electronic Systems, 2018.

2. International Conferences
[1] N. Kbayer, M. Sahmoudi, E. Chaumette, «Robust GNSS Navigation in Urban En-
vironments by Bounding NLOS Bias of GNSS Pseudoranges Using 3D City Model,»
Proceedings of ION GNSS+ conference, September 2015.
[2] N. Kbayer, M. Sahmoudi, «Constructive Use of MP/NLOS Bias of GNSS Pseu-
doranges : Performance Analysis by Type of Environment,» Proceedings of ION ITM
conference, January 2017.
[3] N.Kbayer, J.Galy, E.Chaumette, F.Vincent, A.Renaux, P.Larzabal, «Estimation Ac-
curacy Of Non-Standard Maximum Likelihood Estimators,» On International Confe-
rence on Acoustics, Speech, and Signal Processing (ICASSP), March 2017.
[4] N. Kbayer, M. Sahmoudi, H. Ortega-Gonzàlez, C. Rouch, «Approximate Maximum
Likelihood Estimation Using a 3D GNSS Simulator for Positioning in MP/NLOS Condi-
tions,» Proceedings of ION GNSS+ conference, September 2017.
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[5] N. Kbayer, M. Sahmoudi, H. Ortega-Gonzàlez, C. Rouch, «Position Matching Es-
timation Using 3D Simulator for GNSS Positioning in Multipath/Non-Line-Of-Sight
Environments,» Proceedings of ITNST conference, November 2017.
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Etat-de-l’art

Vue d’ensemble

Bien qu’ils soient utilisés régulièrement par des millions d’utilisateurs aujourd’hui pour
la localisation, les technologies de positionnement par satellites souffrent des effets néfastes
de réceptions MP et NLOS. En effet, la réception des signaux par MP et NLOS sont consi-
dérés comme les principaux contributeurs d’erreur de positionnement GNSS dans les zones
urbaines. Par conséquent, des nombreux travaux de recherches ont été menés et sont tou-
jours activement en cours afin de développer des méthodes pour surmonter ces difficultés et
améliorer la qualité de la localisation, même en présence de conditions MP/NLOS. De ma-
nière générale, la littérature sur le problème des MP/NLOS se répartit dans les thématiques
principales suivantes :
— Détection MP/NLOS : méthodes abordant l’identification des signaux degradés et la

détection des réceptions MP et/ou NLOS.
— Elimination des MP/NLOS : méthodes abordant l’élimination des signaux MP/NLOS.
— Modélisation de MP/NLOS : méthodes abordant la modélisation des signaux MP/NLOS.
— Pondération MP/NLOS : méthodes abordant la réduction et l’atténuation des effets des

signaux MP/NLOS.
— Estimation des MP/NLOS : méthodes abordant l’estimation des biais MP et NLOS.
— Utilisation constructive des MP/NLOS : méthodes abordant l’utilisation constructive

de ces signaux MP/NLOS pour le positionnement au lieu de les éliminer, car les signaux
LOS peuvent être trop rares dans certaines situations.

Bien que la littérature sur le problème MP/NLOS soit très riche, très peu sont efficaces pour
la cas de GNSS en raison de la structure spécifique des signaux GNSS. Une des principales
raisons est que pour le positionnement GNSS, nous visons à estimer avec précision le retard
réel des signaux transmis par satellite et pas la puissance du signal lui-même comme dans
les communications sans fil. Une combinaison entre plusieurs techniques de traitement des
signaux MP/NLOS est souvent utilisée pour le positionnement.

Detection/identification des erreurs MP/NLOS

Ce premier type de techniques appliquées au problème MP/NLOS tend à faire la distinc-
tion entre les signaux LOS et les signaux MP/NLOS. Ces techniques peuvent être décomposées
en techniques utilisant un hardware additionnel et d’autres ne nécessitant pas de hardware
additionnel. Les techniques de distinction basées sur l’utilisation d’un hardware additionnel
incluent l’utilisation d’une antenne double polarisation, un réseau d’antennes, un modèle 3D
de l’environment et/ou un simulateur GNSS, une fusion du GNSS avec des capteurs inertiels
(INS) et un laser-scanner, ou une caméra pour une navigation basée sur la vision.
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Sans utiliser de capteurs supplémentaires ni d’informations externes, de nombreux mé-
thodes publiées proposent des indicateurs basés sur la qualite du signal réçu pour l’identifi-
cation de la réception NLOS.

Elimination des erreurs MP/NLOS

Considérées comme la source dominante d’erreurs dans les applications basées sur le posi-
tionnement GNSS dans les environnements urbains, les erreurs MP et NLOS constituent un
obstacle majeur au positionnement haute précision. Il est donc primordial de caractériser et
d’éliminer ces erreurs. Pour ces raisons, plusieurs recherches ont été menées et sont toujours
en cours pour éliminer l’influence des biais MP/NLOS. La plupart des travaux principaux
peuvent être en grande partie classés dans trois classes : méthodes utilisant du matériel ou
des antennes spéciales éliminant les signaux MP, techniques de corrélation interne au récep-
teur dans les boucles du module récepteur et techniques de post-traitement appliquées sur les
mesures pseudo-distances.

Modélisation des erreurs MP/NLOS

Classiquement, les algorithmes de positionnement GNSS supposent que le bruit d’obser-
vation est distribué selon une distribution gaussienne. Cette hypothèse simplifiée n’est plus
valide dans les environnements urbains car les signaux GNSS sont contaminés par de grandes
erreurs MP et NLOS. Les distributions d’erreurs MP et NLOS sont loin d’être gaussiennes et
présentent des "queues" de distribution statistique plus lourdes que celles représentées par le
modèle idéaliste gaussien.

Sur une fenêtre temporelle glissante, certaines méthodes se concentrent sur la caractérisa-
tion des erreurs PR sous forme de distribution gaussienne avec une moyenne et une variance
variables dans le temps. Les erreurs MP/NLOS sont caractérisées aussi avec un modèle de
mélange gaussien (GMM) avec un nombre variable de Gaussiens ou de modes en fonction
de la taille de la fenêtre d’observation. D’autres modèles statistiques sont utilisés, tels qu’un
mélange de processus de Dirichlet infini, des distributions de Rayleigh et exponentielles.

Pondération des erreurs MP/NLOS

L’idée de base des techniques de pondération MP/NLOS est d’attribuer un poids faible
aux mesures "contaminées" aberrantes, c’est-à-dire une faible contribution à l’estimation de la
position, tout en donnant une pondération nominale ou une contribution totale aux "mesures
propres" dans le calcul de la position. Le principal défi consiste à définir cette procédure
de pondération afin d’optimiser les performances de positionnement et de réduire autant
que possible les effets néfastes des signaux MP et NLOS. Dans cette optique, il existe deux
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approches principales, l’une basée sur les tests de vérification de la cohérence de l’information
d’innovation et l’autre sur le concept des techniques d’estimation robsute (M-estimation par
exemple).

Estimation des erreurs MP/NLOS

Les erreurs MP et NLOS entraînent des altérations majeures sur la navigation avec les
mesures GNSS, principalement par l’introduction de biais sur l’estimation des PR. Il est donc
essentiel d’estimer ces biais pour surmonter cette limitation. Des méthodologies récentes ont
été étudiées afin d’estimer simultanément la position de l’utilisateur et les biais sur les mesures.
Les méthodes d’estimation des signaux MP/NLOS peuvent être classées en deux catégories :
les méthodes tendant à estimer les signaux MP/NLOS dans les boucles de corrélation internes
du récepteur et les méthodes d’estimation des erreurs MP/NLOS dans le bloc de navigation.

Utilisation constructive des erreurs MP/NLOS

Afin d’améliorer les performances des systèmes GNSS dans les environnements urbains,
beaucoup de travaux existants visent à modéliser ces dégradations MP/NLOS et de les suppri-
mer au niveau des boucles de poursuite ou dans le filtre de navigation. Toutefois, ces méthodes
d’élimination des mesures dégradées ne sont pas adaptées aux environnements contraints puis-
qu’ils induisent généralement une mauvaise constellation géométrique DOP et une visibilité
réduite des signaux. La plupart des satellites en environnement urbain sont affectés par des
réceptions en MP ou NLOS. Il est donc nécessaire dans ces environnements, d’utiliser tous
les signaux disponibles (les signaux corrects et les signaux dégradées) tout en veillant à ré-
duire l’effet des biais dans l’estimation finale. Ces techniques récentes essaient d’utiliser les
signaux MP/NLOS d’une manière constructive pour améliorer les performances de la solution
de navigation en environnement urbain.

Etant riche en informations, un simulateur 3D de la propagation GNSS permet une pré-
diction des biais des signaux MP/NLOS. Cependant, cette bonne prédiction des biais est
conditionnée par des bonnes performances du simulateur GNSS et une bonne estimation de
la position "input" introduite au simulateur. Cette position "input", fournie au simulateur, est
utilisée par le simulateur GNSS pour la prédiction du biais. Cette position doit être proche
de la vraie position du récepteur (inconnue). Ce problème, similaire à celui de l’œuf et de
la poule, pose une difficulté naturelle à l’exploitation du simulateur 3D pour les applications
GNSS.

Plusieurs approches de l’état de l’art choisissent de traiter ce problème en considérant un
nombre de points fournis au simulateur GNSS sous forme d’une grille de points candidats
aux alentours d’une position calculée par le récepteur GNSS autonome en environnement
dégradé. La comparaison ensuite entre la prédiction du modèle 3D et les observations au
niveau du récepteur permet de trouver la position candidate la plus proche de la vraie position
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du récepteur parmi toutes les positions candidates de la grille. Le critère de sélection de
cette position parmi les différentes positions candidates a été l’objet de plusieurs travaux de
recherche. De façon générale, la sélection de cette position se base sur la comparaison entre
des observations reçues au niveau du récepteur et des informations fournies par le modèle 3D
(ou le simulateur GNSS). Ces observables comprennent la visibilité des satellites, les mesures
pseudo-distances pondérés par des valeurs de DOP, les rapports signal sur bruit C/N0, et les
biais PR. En supposant que la structure des bâtiments est symétrique en zone urbaine, un
modèle 3D simplifié de l’environnement proposé par le laboratoire IFFSTAR, appelé tranchée
urbaine, permet d’améliorer les performances de positionnement en villes.
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Multipath and NLOS reception are considered as the major potential error contributors
to GNSS positioning applications in urban areas. However, this problem in GNSS signals
falls into a wider one. MP/NLOS reception is a general problem in various applications of
wireless telecommunications, including positioning using GNSS signals, targets detection using
radar processing, communication using digital radio communication such as Global System for
Mobile Communications (GSM) and localization using Ultra-wideband (UWB), Bleutooth,
wireless Local Area Network (LAN)/Wi-Fi technologies.

While they are being used regularly by millions of users today for localization, these signal-
based positioning technologies suffer all from the adverse effects of these time-varying MP and
NLOS ranging errors. Hence, since the early years of the use of wireless telecommunications, a
huge amount of researches have been conducted and still actively ongoing in order to develop
methods to overcome these challenges and improve the quality of localization, even in presence
of MP/NLOS conditions. Broadly speaking, the literature on the MP/NLOS problem fall in
these main categories :
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— MP/NLOS Detection : Methods focusing on identifying the contaminated signals
and detecting MP and/or NLOS receptions.

— MP/NLOSMitigation :Methods focusing on mitigating the contaminated MP/NLOS
signals.

— MP/NLOS Modeling : Methods focusing on modeling the contaminated MP/NLOS
signals.

— MP/NLOS Weighting : Methods focusing on reducing and down-weighting the un-
wanted effects of MP/NLOS signals.

— MP/NLOS Estimation : Methods focusing on estimating the time-varying MP and
NLOS ranging bias.

— MP/NLOS Constructive Use : Methods focusing on using constructively these de-
graded MP/NLOS signals for positioning instead of their elimination, since LOS signals
may be too scarce in some situations.

Although the literature of MP/NLOS problem is very rich, very few are efficient for the
case of GNSS because of the specific structure of GNSS signals. A key reason is that for GNSS
positioning we aim to estimate precisely the true delay of satellite transmitted signals and
not the signal itself as in wireless communications. Let us mention also that a combination
of several multipath mitigation techniques is often used for positioning.

2.1 MP/NLOS Identification/Detection Techniques

This former type of techniques applied to MP/NLOS problem tends to distinguish between
“clean” Line-of-Sight (LOS) signals and "deteriorated" MP/NLOS signals. These distinction
methods can be largely grouped into those using an additional hardware or information sources
with the principal positioning system and those focusing on detecting MP/NLOS signals
without using any external information.

2.1.1 MP/NLOS Detection Using Additional Hardware

Hardware-based distinction techniques include the use of a dual polarization antenna, an
antenna array, 3D city models and/or 3D GNSS simulators, a fusion of GNSS/INS and a
laser-scanner, or a camera for vision-based navigation.

1. Dual polarization antenna : GNSS signals are transmitted with a right-handed cir-
cular polarization (RHCP). Specular Reflection of these signals will mostly change their
polarization to left-handed circular polarization (LHCP). Hence, exploiting the polari-
zation information may be a simple indicator on the signal reception status. For this
purpose, a dual-polarized antenna, containing a single antenna with two receivers sen-
sitive to each polarization, have been used to identify NLOS reception using both the
polarization and the C/N0 level [38]. It have been proven that this method detect
most but not all of the NLOS signals. Following the same methodology, a method for
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NLOS signal detection using single orthogonal dual-polarized antenna is proposed in
[39]. These two techniques have also some other limitations : Signals reflected twice or
four times will be mostly RHCP and without specific antenna it is difficult to predict
the polarization of the received signals.

2. Antenna array : Following the concept of interferometric attitude determination, angle
of arrival (AOA) of GNSS signals can be measured using an antenna array [40]. This
angle information can be used as an LOS/NLOS distinction criteria by comparing azi-
muth of the received signals (measured using estimated AOA) and the determined lines
of sight to the satellite position computed using ephemeris data.

3. 3D city models and/or 3D GNSS simulators : 3D city models are digital represen-
tations of buildings and other objects present in cities. As these models are becoming
more precise and widely available for most big cities around the world, there are gro-
wing interest in their exploitation to predict GNSS satellites reception status. Knowing
objects surrounding the user location using a 3D city model [41], it is possible to detect
blocked signals. Besides, by using a ray-tracing algorithm applied to a 3D city model,
commonly called 3D GNSS simulator, reflected and direct signals can be easily iden-
tified for simulated signals. However, for real signals the gap between simulation and
real propagation is a big challenge for applying this approach. Assuming a prior user
location, [42] and [43] use a 3D digital map, jointly with a ray tracing algorithm, to
detect multipath interference. Using a 3D GNSS Simulator, called SE-NAV, [44] predict
the LOS/NLOS reception state based on a prior user location. The work in [45] propose
a simplified 3D model, called urban trench model, based on a geometrical street mo-
del with constant width and height and a highly symmetrical building layout, which is
mainly the case in the down-towns of some French cities. This simplified 3D model, light
in terms of information contents and computation throughput, is then used to identify
NLOS and LOS signals based on a prior knowledge of the user true location.
As the input point used in 3D model is crucial for LOS/NLOS reception state determi-
nation and as the true user location is unknown, the work in [46] consider GNSS signal
shadowing at multiple location in real time. The building boundary at each candidate
position is then computed using ray tracing method to determine the azimuth and ele-
vation angles of the building boundary [47]. To differentiate between LOS and blocked
signals, the elevation of each satellite is compared with that of the building boundary
at the corresponding azimuth of the satellite at each candidate position over a search
grid. As the exact user position is unknown to determine the true satellite visibility, this
paper proposes different ways of tackling this problem : a search by position based on
founding for a position and signal selection that are mutually consistent or a search by
signal combination based on combining the satellite visibility provided by the 3D model
with another NLOS detection method, such as consistency checking.

4. GNSS/INS with a laser scanner : By exploiting an integration of a GPS receiver, a
laser scanner and an inertial navigation system (INS), the work in [48] propose a method
for Multipath identification in the reception channel block based on the Doppler shift
information. Detecting multipath interference is made by matching between measured
frequencies if local energy maxima observed in the tracking process of the GPS receiver
and predicted frequencies computed using laser scanner and inertial measurements.
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These predicted frequencies are estimated based on parameters of reflecting surfaces
that are extracted from laser scan images and inertial measurements of the receiver
velocity.

5. Vision-based navigation : Generating an image of the entire fields of view above the
receiver’s masking angle can be a considerable source of information for LOS/NLOS re-
ception state determination. A sky-pointing camera can be used to observe surrounding
obstacles. If the orientation of the camera is known, blocked and direct signals can be
easily separated from the image based on satellite position obtained using ephemeris
message [49, 50]. A research project, called CAPLOC, is developed in the French ins-
titute of science and technology for transport, development and networks IFSTTAR in
the aim of using image processing techniques to detect visible sky in fish-eye acquired
images [51]. The aim consists in separating LOS satellites and blocked/reflected satel-
lites [52]. A sky-facing series of 360◦ × 180◦ fish-eye cameras have been used in [53]
exploit extracted planes to build a visibility mask for NLOS detection. Finally, virtual
camera images can be combined with information from a 3D city model to detect NLOS
measurements based on the comparison between actual satellite elevation angle and the
critical elevation angle obtained from the 3D model at the position estimated a priori
by the navigation process [54].

2.1.2 MP/NLOS Detection Without Additional Hardware

Without using additional sensors or any external information, various published literature
proposes many indicators for NLOS reception identification. This type of indicators have been
extensively studied in UWB-based positioning algorithms, especially for indoor applications.
Indeed, indoor areas contain, on the whole the same features as urban environments, and
hence localization applications are often unable to cater continuous navigation accuracy.
— LOS/NLOS distinction methods in non-GNSS applications : [55] and [56] give a

survey on NLOS identification techniques for wireless signals and classify them into three
main categories : Range estimation-based methods, easy to implement and applicable
to GNSS but highly depend on fixed thresholds, compares variance of range estimates
with a LOS threshold to distingush NLOS reception [57] or to detect transition between
LOS and NLOS. The second category of methods are channel statistics-based methods,
which are applicable to GNSS but not efficient since they need very high bandwidth
[58, 59, 60, 61]. The latest class of methods, which are applicable to GNSS, is applied
in the measurements domain to detect NLOS receptions, by exploiting the redundancy
of the range estimate using Mini-max or least-median-of-squares techniques [62] or by
making use of the dynamics of the system to track NLOS situations and/or LOS/NLOS
transitions in the Kalman or particle filters [63, 64].

— Satellite elevation angle-based LOS/NLOS distinction methods : In the GNSS
field, several studies have attempted to distinguish MP/NLOS reception from LOS
reception. Reference [65] presents a brief assessment of various techniques for mitiga-
ting and detecting MP/NLOS signals. These techniques include some classic distinction
approaches through basic indicators such as satellite elevation angle and signal Carrier-
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to-noise ratio (C/N0). Purely from geometry, it is obvious that signals received from
low satellite elevations are more susceptible to be blocked or reflected by obstacles than
signals from high satellite elevations. As a consequence, the elevation of the satellite
can be used as a simple indicator of the quality of received pseudorange measurements,
by assuming as LOS signals those received from high satellite elevations. However, in
dense urban areas, this assumption is not always valid. High buildings may obstruct
signal from high elevation satellites, while low elevation satellites could be received in
direct path because not all directions are hindered by buildings. Elevation-angle-based
distinction criteria may cause a drastic unfavourable effect on satellite-user geometry
which degrades the final position estimation.

— C/N0-based LOS/NLOS distinction methods : As reflected signals are generally
attenuated, signal-to-noise ratio (SNR) or Carrier-to-noise ratio (C/N0) can be indi-
cative of NLOS reception or multipath interference. However, the configuration of the
surrounding reflecting objects in urban areas may cause drastic exceptions to this dis-
tinction criteria. Low SNR can be caused by propagation through foliage, object masking
or a null in the antenna gain pattern. On the other hand, smooth surfaces such as wet
surfaces could produce reflected signals almost as strong as LOS signals. Furthermore,
constructive multipath may increase C/N0 which make it difficult to distinguish bet-
ween LOS and NLOS using only C/N0. Tests in a urban environment presented in [66]
show that down-weighting low C/N0 measurements may lessen but not totally nullify
the impact of MP/NLOS signals. This C/N0-based weighting provides more accurate
positioning than weighting based on satellite elevation angle, indicating that C/N0 is
probably a more reliable indicator of LOS/NLOS reception than satellite elevation angle.
Another NLOS/LOS selection criteria based on signal C/N0 levels is presented in
[65, 67]. This criteria is based on comparing the difference in C/N0 between different
frequencies of the same GNSS satellite with the value expected for the satellite type
and elevation angle to indicate MP/NLOS or LOS reception. [65] argues that using
a three-frequency comparisons give more reliable distinction criteria that using dual-
frequency comparisons. Tests of this distinction technique in urban areas using GPS
and GLONASS data show that this multipath detection method is more suitable for
static applications and less reliable for dynamic applications, despite its ease of imple-
mentation.

— Residual/Innovation-based NLOS/LOS distinction methods : Another basic
in-receiver indicator of MP/NLOS reception is the measurements residual or innova-
tion. Residual metric consists of the difference between the actual measured PR and
the predicted PR based on the time-propagated navigation solution from current epoch
solution, while innovation metric is computed using the difference between the actual
measured PR and the predicted PR based on the time-propagated navigation solution
from previous epoch solution. Modeled as a variance changes in the case of multipath
interference and a mean value jumps in case of NLOS reception, [68] studies a series of
innovations from previous epochs to detect MP and/or NLOS signals. By introducing a
prior and update information about the PR bias magnitude, [69] propose an approxima-
ted marginalized likelihood ratio (MLR) stitstic test based on Monte Carlo integration
and Jensen’s inequality to detect MP/NLOS signals. Following the same methodology

39



and to handle the non-linearities in GNSS measurements, [70] investigates the use of an
Unscented Kalman Filter (UKF) based marginalized likelihood ratio (MLR) to identify
the biased PR measurements. Using a similar mean value jumps model for multipath
NLOS situation, [71] studied a Rao Blackwellized particle filter based on a jump Markov
system for joint MP/NLOS detection and positioning. Other prior distributions for the
MP/NLOS errors are considered such as the Gaussian mixtures model used in [72] to
explore a two-hypothesis Bayesian approach for MP/NLOS detection.

While previous techniques are using a filtred solution, other techniques are working
with a single epoch solution. A conventional "top down" sequential testing approach to
consistency checking have been implemented in [73] to detect MP/NLOS measurements,
with the conclusion that this type of approach is unreliable in case of large number of
degraded measurements such as in dense urban areas. Another "bottom up" consistency
checking method based on subset comparison is proposed in [74] and [66] based on
identifying the most self-consistent set of signals. On the whole, these measurements
residual/innovation-based NLOS/LOS distinction methods suffer from several limita-
tions : they generally cannot handle several NLOS errors at a time, they require enough
multipath-free LOS signals to generate a reliable LOS/NLOS distinction. Thus, the
measurements residuals or innovation is not reliable and robust information to reflect
the quality of PR measurements in urban environments.

— Consistency checking : Post-receiver techniques for MP/NLOS detection encompass
inter-satellite consistency checking. Consistency checking is based on the same principle
as the fault detection process in the Receiver Autonomous Integrity Monitoring (RAIM)
method, designed to detect faulty satellite signals. By adapting this method to harsh
environments, consistency checking operates on the principle that contaminated signals
will produce a less consistent navigation solution than "healthy" multipath-free direct-
LOS signals. Another consistency checking based technique inspired from RANdom
SAmple Consensus (RANSAC) approach is considered in [74] by comparing multiple
position solutions in the position-domain, using different combinations of PR measure-
ments, and select the most consistent position set.

— Receiver-Based LOS/NLOS distinction methods : Extensive research has been
carried out on MP/NLOS detection inside the GNSS receiver itself. As reflected signals
from objects presents in urban areas have different range rates from direct signals, it
is possible to use the Doppler shift as an indicator of the signal reception status when
tracking different signals in both code-phase and Doppler shift domains. Early-Late
Phase correlator comparison could be also used as an indicator of MP reception [75].
The amplitude variation of the early and late correlator outputs are compared in [76] to
identify multipath interferences. In [77], authors assess vector tracking in a dense urban
environment to detect multipath interference and NLOS reception.
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2.2 MP/NLOS Mitigation Techniques

Considered as the dominant source of ranging errors in GNSS-based applications in harsh
environments, Multipath and NLOS errors are undesirable and present a major hurdle to
high-precision positioning. Therefore, it is of utmost importance to characterize and remove
these measurement errors. For these reasons, several researches have been conducted and
are still ongoing to mitigate the influence of MP/NLOS biases. Most principal works can be
largely classified into these three classes : methods using special multipath limiting antennas
or hardware, receiver-internal correlation techniques in the signal domain and post processing
techniques in the measurements domain.

2.2.1 Hardware-based Methods

High-end receivers are able to suppress multipath to a certain extent, but it is good
engineering practice to suppress multipath in the antenna as much as possible. The concept
of hardware-based MP/NLOS mitigation approaches is to discard or eliminate multipath and
NLOS signals by means of adding new hardware such as a bank of correlators or multiple
antennas or modifying the receiver antennas. Discarding these unhealthy measurements will
introduce then "clean" pseudorange measurements to the signal processing stage for position
computation. These techniques falls under two main headings : methods based on antenna
configuration and method based on adding new hardware.

1. Antenna Configuration : One of the antenna-based reflections mitigation methods is
to enhance the antenna design. If the GNSS antenna is well-designed to receive RHCP
signals, the amplitude of reflected LHCP signals will be reduced and hence reduce the
effect of multipath interference [39]. However, there is very little polarization discrimi-
nation for low-elevation signals which are more prone to reflections than high elevation
signals. To reduce the size and cost of these antennas, new technologies are proposing a
small polarization-discriminating GNSS antenna [78]. Other classical approaches consist
of improving the antenna gain pattern, by means of hardware design or with signal pro-
cessing techniques, to counter multipaths and reflections [79]. A choke ring antenna is
specially designed to reject the reception of reflected signals from the ground surface
[80]. This solution based on applying a sharp cut-off below a certain elevation angle, is
giving a considerable elimination of signals reflected from the ground. Some new and
innovative methods argue for an installation of a small wave-absorbing shield around
the GNSS antenna to reduce reflections reception [81].
Different configurations of antennas have been studied in the literature in order to mi-
tigate the multipath and NLOS adverse effects. Among these methods, antenna array-
based GNSS receivers have been widely proposed in the aim of applying beamforming
techniques to GNSS signals [82, 83]. The basic idea is to maximize the antenna gain
pattern in the direction of direct signals while minimising it in the direction of reflec-
ted signals. A beam-forming Controlled Reception Pattern Antenna (CRPA) has been
proven to considerably reduce PR errors [84], despite some cost and size limitations. An-
tenna arrays are also combined with output from the receiver-internal tracking loops in

41



order to mitigate MP. Examples encompass the integration of the beamforming process
into the tracking module in [85], the use of carrier phase differences along with multiple
closely-spaced antennas in [86] and the integration of the Space-Alternating Generalized
Expectation-Maximisation (SAGE) algorithm with a classical GNSS tracking loop in
[87].

2. Additional Hardware : Using an additional hardware to counteract the disadvan-
tages of GNSS basic architecture in presence of MP/NLOS conditions have been widely
studied in the literature. Matching GNSS outputs with panoramic lens camera or an
array of cameras is of growing interest [50, 51, 53, 54]. This matching is generally based
on superimposing satellite positions obtained using ephemeris data on the image of the
sky given by cameras. This class of method suffer from some inherent limitations such
as the additional image processing, the additional physical equipment, the cost, the
weight and the limited visibility requirement of the camera. A rotating antenna-based
processing seems to be efficient against some kind of multipaths [88].

2.2.2 Signal domain Methods

The reception of multipath creates a bias into the time delay estimate of the Delay Lock
Loop (DLL) of a conventional navigation receiver, which potentially jeopardizes GNSS posi-
tioning accuracy. To mitigate this effect, working in the receiver loops is another well-known
approach. Some in-receiver MP/NLOS mitigation techniques are mature and represent stan-
dard features of professional grade GNSS receivers, in particularly those based on narrow and
double-delta correlators [89]. References [90, 91, 92] provide a comprehensive survey of basic
in-receiver signal processing methods for multipath mitigation.

In-receiver MP mitigation methods can be classified into two classes : methods aligning
the more or less traditional receiver components (e.g. the early/late correlator) in order to
reduce the effect of reflected signals and methods of multipath estimation techniques within
the receiver, which treat multipath as an unknown to be estimated before removing it. The
second type of in-receiver multipath estimation techniques will be detailed in section 2.5. The
former class is based on varying the early-late correlator spacing in the implementation of
delay lock loops (DLLs) or aligning the discriminator/timing error detector (TED) of the
DLL to the signal received. Examples encompass narrow correlator spacing, double-delta
discriminator, the strobe and edge correlator [93], Multipath Elimination Technology (MET)
[94] and Multipath Mitigation Technology (MMT) [95].

In-receiver MP mitigation techniques are very well-known, standard and mature methods
that approaches the theoretical performance limits. These techniques presents several limita-
tions such as the complex and expensive implementation, the increased power consumption
compared to conventional GNSS architecture. These limitations hinder their use for consumer-
grade receivers, which are the main used receivers in urban areas. Most of these methods
have been patented by leader industrial in the GNSS market which constrains their adoption.
Moreover, details of real-time implementation are never provided in open publications. Fur-
thermore, the main limitation of these methods is that they have no improvement in the case
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of NLOS reception because of the absence of the direct LOS signal.

2.2.3 Measurements domain Methods

Mitigation of the MP/NLOS effect in the navigation block has been extensively studied
in the literature. A plethora of algorithms have been reported with different positioning per-
formances, different levels of robustness against MP/NLOS errors, a-priori knowledge requi-
rements and computational complexities. A comprehensive survey of different time-of-arrival
(TOA)-based localization algorithms is provided in [96].

Adjustment of the optimal Maximum-likelihood solution in the case of Multipath and
NLOS reception has been largely studied. Based on prior knowledge regarding the MP/NLOS
distribution and assuming that NLOS scenarios are detected, [97] proposes an improvement
of the classical ML position estimation technique to mitigate MP/NLOS errors. Assuming an
exponential distribution to NLOS bias, [98] derives a new ML solution more adapted to large
measurement errors. Another ML-based solution is also proposed in [99], assuming a Rayleigh
distribution for the NLOS error. Different positioning solutions have been proposed in [100]
depending on three main level of how much a priori knowledge of NLOS bias is available :
with known NLOS statistics, case of limited a priori information and the worst case of no
knowledge of the NLOS error.

By supposing some constraints associated with MP/NLOS errors, a new class of constrai-
ned localization solutions have been widely studied. A new constrained LS (CLS) formulation
have been introduced in [101] and have been solved using quadratic programming techniques.
By bounding NLOS errors and assuming a random walk for PR bias modeling, a modified
Extended Kalman Filter (EKF) with bound constraints have been studied in [102], with a
new enhanced variant constrained Unscented Kalman Filter (UKF) in [103]. Assuming per-
fect identification of LOS and NLOS measurements, [104] proposes to integrate constraints in
user location in the form of a linear feasible region and the final estimation is obtained using
linear programming within this region.

Mitigating MP and NLOS signals by Identify and Discard based method is based on
indicators on measurements quality. Traditionally, innovation filtering in the Extended Kal-
man Filter (EKF) is used as an MP/NLOS identification indicator. Measurements having
inconsistent innovation values, compared to predicted values, are discarded. Residual test al-
gorithms have been used for joint identification and rejection of MP/NLOS measurements, by
selecting the most consistent set of measurements [66, 73]. These methods are using innovation
information to first detect and then mitigate MP/NLOS signals. An innovation test algorithm
is proposed in [105], based on the assumption that normalized LOS innovations have a central
Chi-Square distribution, while normalized NLOS innovations have a non-central Chi-Square
distribution. This test is not specific to the physical meaning of NLOS but only to the non-
Gaussianity of remaining errors.

Other decomposition based techniques have been also proposed in order to mitigate MP
ans NLOS errors. The work in [106] is based on expression of MP/NLOS biases in a new
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basis to obtain a sparse representation of measurement errors that can be introduced to a
classical EKF algorithm or fast convex optimization solvers. Assuming a repetition of multi-
path pattern between consecutive days for a static receiver with GPS measurements, wavelet
decomposition technique have been used to extract multipath from GPS observations and
correcting them [107]. Wavelet decomposition and sidereal filtering have also been used to
denoise and mitigate multipath effects [108, 109].

2.3 MP/NLOS Statistical Modeling Methods

Classical positioning algorithms in GNSS assume that the observation noise is white-
Gaussian distributed. This simplified assumption does not hold in urban environments since
GNSS signals are contaminated with large Multipath and NLOS errors [110]. Besides, high-
sensitivity receivers can acquire much weaker signals [46]. This may significantly increase the
number of acquired reflected signals and therefore their corresponding additional path which
results in more large PR bias values. Due to these circumstances, the strong environmental
dependency of these errors jointly with the variable features of obstacles in urban areas make
it challenging to model mathematically. This erroneous PR errors modeling can lessen the
accuracy of the position estimation. In view of such need, better modeling of the MP and
NLOS errors is very much sought after.

MP and NLOS errors distributions are far from being Gaussian and exhibit heavier tails
than represented by the idealistic Gaussian model [111]. Over a sliding time window, [68]
focuses on characterizing the PR errors as Gaussian distribution with variable time-varying
mean and variance : the mean jump refers to NLOS reception and the variance represents
multipath interference. This assumption have been validated for short observation periods.
Since the measurements errors distributions slightly depends on the observation window
length, [112] proposes a Gaussian distribution with adapted C/N0 dependent variance model
(SIGMA-ε), judged as reliable in 80%–90% of MP/NLOS environments. Following the same
methodology of adapting the Gaussian model, MP/NLOS errors are charactarized with a
Gaussian mixture model (GMM) with a variable number of Gaussians or modes depending
on the observation window size [?, 113]. However, these non-Gaussian or like-Gaussian error
distributions are attributed depending on the reception state of satellites : direct LOS recep-
tion, reflected MP reception and blocked NLOS reception. Erroneous LOS/NLOS reception
state estimation may affect this result since this will lead to attributing a wrong errors dis-
tribution to the estimation stage. The GMM distribution of a set of NLOS corrupted range
estimations has been also considered for positioning using range estimation based on Radio
Signal Strength (RSS) in indoor applications [114].

Other non-Gaussian models have been proposed in the literature. To overcome the limi-
tation of the dependence on the sliding window size, the non-stationariness of pseudorange
errors and the finite aspect of GMM, [115, 116] examine an infinite Dirichlet Process Mixture
(DPM) to track the PR errors distribution in real-time. Despite it better fitting to unknown
GNSS pseudorange measurements errors distributions compared to GMM, infinite DPM are
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more complex. Finally, for indoor positioning and for the sake of convenience and simplifica-
tion, MP/NLOS bias have been assumed to be uniformly distributed between two bias bounds
in [117], Rayleigh distributed in [99] or exponential in [118, 98].

Some other works tried to characterize the degradation at the position level and not in the
measurements domain. These works tend to characterize the horizontal position errors (HPE).
Reference [119] proposes a heavy-tailed generalized Pareto distribution (GPD) to model the
unknown position in urban environments, with tuning parameters fixed off-line. Moreover, in
the aim to model the horizontal position error for integrity monitoring, a large number of
overbounding distributions have been proposed in the literature including a Gaussian sigma
inflation distribution [120], a model of Gaussian core and Laplacian tails [121] and a model
with a Gaussian core and Gaussian sidelobes [122].

It is worthwhile to note that assuming different models for measurements errors characte-
rization may leads to different strategies of position estimation with different derivations. For
instance, Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF) are known to
be optimal solutions in case of white Gaussian noise and other assumptions [26] but are not
suitable when assuming non-Gaussian errors distributions. As a conclusion, despite the consi-
derable work attempting to model MP/NLOS errors, accurate characterization of these errors
is still far to be achieved because of the underlying and sometimes arbitrary arrangement of
obstacles in urban areas making these errors hard to model accurately. Modeling MP/NLOS
in harsh environments is still an open research topic that needs to be tackled especially with
the pressing need for a minimum level of reliability on the safety critical applications in these
areas.

2.4 MP/NLOS Weighting Techniques

The basic idea of MP/NLOS weighting techniques is to assign a low weight to outlier
"contaminated" measurements, i.e., a low contribution in the position estimation, while giving
a nominal weight or total contribution to "clean measurements" in the PVT computation.
The main challenge is how to define this weighting procedure to ensure a maximisation of
the positioning performances and to reduce as much as possible the adverse effects of MP
and NLOS signals. To design the measurements weights, there are two main approaches, one
is based on the consistency checking or innovation tests [66] and the second is based on the
concept of M-estimation [123].

Basic weighting-based techniques encompass weighted least squares approaches in equa-
tion (1.6) as well as the residual weighting algorithm [66]. The conventional weighted least
squares (WLS) solution is modified to reduce the effects of MP/NLOS by giving less em-
phasis to MP/NLOS measurements in the LS solution. Using some statistics of MP/NLOS
errors, such as the kurtosis and the root-mean-square (RMS) delay spread, works in [118, 58]
compute the likelihood value of each received signal to be LOS and use them to define accor-
ding weighting parameters introduced to the WLS solution. Residual Weighting Algorithm in
[124] is a weighting solution expressed on the position domain based on scoring or weighting
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different positions estimated based on different subsets of measurements. Sometimes, these
approaches are named consistency checking in the literature [26]. As the computational load of
such method may be high in case of large number of received measurements, the work in [125]
proposes a lighter and less computational complex solution to compute the residual weighting
solution. This issue is related to the detection of MP/NLOS signals to be down-weighted.

One of the main techniques used for measurement weighting is the M-estimator. The
general idea behind robust M-estimation technique is making a weighting of measurements
based on a new modified cost function, i.e. different from the L2 norm used in the conventional
LS estimation expressed in equation (1.6), that ensure good model fitting : this cost function
should ensure high weights to be assigned to good measurements and low weights to degraded
ones. First proposed by Huber in 1964 in [123], M-estimation technique is a very well-known
class of robust estimators introduced to overcome the limitation of LS regression. All M-
estimators share the following proprieties : employ a modified convex cost function for state
estimation to capture the effects of outlying data, which are the MP and NLOS errors in
the case of GNSS. The convexity of the cost function (to ensure that the cost function is
minimized in an unique point) is an essential condition since it ensures the uniqueness of the
estimated solution. A function is called convex if the line segment between any two points
on the graph of the function lies above or on the graph. Convex functions are especially
important in the study of optimization problems where they are distinguished by a number of
convenient properties. It can be shown that M-estimation can be simply seen as a weighting
technique applied to residuals of the position solution via a convex cost function, usually called
the influence function. The choice of the suitable influence function adapted to measurement
errors is the main interest of many previous works [126, 127, 128, 129, 130, 131, 132].

Different approaches use weight matrix obtained from different influence functions and
weighting strategies. But each influence function gives solutions with different accuracy pro-
perties which make the choice of the appropriate function for each application a challenging
issue. The choice of the appropriate function is based on a priori statistical analysis of the
environment but the need of tuning threshold parameters for optimal performance makes the
M-estimators difficult to use in real-time applications. Besides, the risk of ending up with de-
teriorated performance renders these estimators inappropriate to high-variable environments
with multiple sources of outliers. A detailed introduction of robust estimation, including the
M-estimation method, may be obtained in the first section "Robust Estimation Principle" of
the next chapter "Stand-Alone GNSS Positioning in MP/NLOS Conditions".

Other robust estimators are applied to GNSS measurements such as the S-estimator in
[133]. From a general point of view, S-estimator is an estimator minimizing a scale function
of the residual of measurements.

Simple and effective Weighting techniques have been mainly proposed in the GNSS li-
terature. As a big correlation exists between PR measurement quality and signal SNR, a
basic pseudorange measurement noise variance model based on C/N0 of satellites, called the
SIGMA-ε, is proposed to weight received phase measurements [134, 135] and code measure-
ments [136]. This previous model was enhanced by taking into account the satellite elevation
factor [137, ?] to leverage the relationship between the pseudorange measurements quality
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and satellite elevation angles.

2.5 MP/NLOS Estimation Techniques

Multipath and non-line-of-sight (NLOS) errors cause major impairments to navigation
with GNSS measurements. It is essential then to estimate these biases to overcome this limi-
tation. Recent methodologies have been studied in order to estimate simultaneously the user
position and the measurements biases all along the observation interval. MP/NLOS estima-
tion methods may be classified into two categories : methods tending to estimate MP/NLOS
in the receiver-internal correlation loops and methods estimating the MP/NLOS errors in the
navigation block.

The major method used in the signal domain is the vision correlator [138]. On the whole,
receiver-internal MP/NLOS estimation techniques are considering basically two major scena-
rios : static applications and dynamic applications. Examples of static multipath estimation
are those belonging to the family of maximum likelihood (ML) estimators, where the probably
best-known technique is the multipath estimating delay lock loop (MEDLL) [139]. MEDLL
technique is based on estimating code delays and carrier phases of LOS and MP signals
within the receiver. Although MEDLL requires a large number of correlators and large algo-
rithmic computations, it eliminates any multipath biases for delays larger than 0.1 chip and
has better performance than standard wide and narrow correlators [140]. In order to reduce
computational complexity, [141] suggested a non-coherent implementation of MEDLL. The
non-coherent integration is a technique used to increase the acquisition performance, i.e. the
correlation between the received and reference signals by applying a discrete Fourier transfor-
mation (DFT). It consists in simply summing instances of the output of the basic acquisition
block. Further information on the non-coherent integration may be found in the chapter 5 of
[142].

Dynamic algorithms for estimation of time-varying multipath have been suggested in the
field of communications using the extended Kalman filter as well as the sequential Monte
Carlo approach [143]. For navigation systems, various multipath estimators have been consi-
dered based on sequential importance sampling (SIS) methods (particle filtering), bayesian
estimation or alernating projection algorithms for static and dynamic scenarios [144, 145, 146].
Finally, using a deep fusion of GNSS/INS and laser scanners have been exploited to jointly
detect and estimate multipath reflections in [48].

Aside from the aforementioned mitigation techniques in the signal domain, various other
techniques have been proposed in order to estimate MP/NLOS errors. A Rao-Blackwellized
particle filtering algorithm have been proposed to jointly detect and estimate MP errors
[71, 147]. Tracking multipath bias using a Kalman filter solution using time-of-arrival (TOA),
time-difference-of-arrival (TDOA) and angle of arrival (AOA) measurements is considered in
[148]. Based on a Gaussian Mixture Model (GMM) for MP/NLOS errors, a jump markov
system is proposed in [149] to estimate the satellite reception state and not the MP/NLOS
errors. Others works propose joint particle filter (PF) and unscented kalman filter (UKF)
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[150] and a marginalized likelihood ratio test (MLRT) [69] to track the reception LOS/NLOS
state and estimate additional MP/NLOS bias.

2.6 MP/NLOS Constructive Use Techniques

Since direct LOS signals may be too scarce in urban environment, a new trend of tech-
niques has recently received some attention in the literature. These methods aim to detect
degraded measurements and use them constructively instead of eliminating them. In fact,
under the poor conditions of satellites visibility, it is more interesting to use constructively
these NLOS observables. MP/NLOS Constructive use based techniques totally differ from
MP/NLOS mitigation based techniques and MP/NLOS weighting based techniques : using
constructively MP/NLOS errors signifies using all available pseudorange measurements wi-
thout down-weighting any measurements, unlike MP/NLOS weighting based methods, and
without discarding any measurement, contrary to MP/NLOS mitigation based methods.

2.6.1 PR Measurements Correction-based Methods

The first class of MP/NLOS Constructive use based techniques investigates information on
the additional MP/NLOS path in order to correct the degraded PR measurements. Thus, the
new corrected measurements could be used in a positioning estimator to enhance positioning
accuracy.

Once MP/NLOS measurement is detect using any of the proposed MP/NLOS Identification-
based techniques, MP and/or NLOS bias of this measurement can be estimated and correc-
ted. Hence, MP/NLOS Detection-based techniques can be combined with MP/NLOS estima-
tion based techniques to correct PR measurements and use them constructively. Modeled as
geometry-based components, multipath delays or parameters can be estimated by considering
a series of specular reflections off planar surfaces if the positioning accuracy is sufficiently high
[151]. Positioning accuracy can be maintained sufficiently high using NLOS measurements
even if some of the direct paths became undetectable.

Once identified and estimated using a fusion of GNSS/INS and laser scanner information
for reflecting surfaces detection, multipath reflections are used constructively for navigation
using the predict multipath Doppler shifts at the receiver tracking level [48, 152]. However,
this technique requires the receiver to be moving in a direction that is not parallel to the
reflection surface. The works in [69, 68] use measurement innovation filtering combined with
a prior modeling of PR errors to jointly detect, estimate and correct additional multipath
and NLOS biases. Based on an autoregressive (AR) process model for GNSS errors, PR bias
are detected based on the Mahalanobis distance between the predicted and the observed
GNSS PR data, estimated and inserted in the Kalman filter, by adding a detection step in
the Kalman filter process in order to detect GNSS data disturbances and by augmenting the
state vector using only detected PR bias from the AR process, to correct PR measurements
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[153, 154].

This constructive use of degraded measurements by PR correction is a sensitive task : poor
PR biases prediction may engender an erroneous ranging correction and then may sensitively
reduce the position estimation instead of enhancing it if the compensation term is not accurate
enough.

2.6.2 Use of 3D Models and 3D GNSS Simulators

Among the scientific studies in this field, the idea of using aiding information about the
geometric environment of reception from 3D city models have received considerable interest.
3D city models are digital representations of buildings with other objects in urban areas.
Broadly speaking, we may distinguish between two kinds of 3D models : ones providing pure
geometrical information on the buildings and street sizes [155] and others merging ray-tracing
algorithms to provide also simulated GNSS signals at any input position and time, called
3D GNSS simulator [156]. 3D models are used to predict blockage and reflection of GNSS
signals, and if used jointly with ray-tracing algorithms 3.1.2.2 (3D GNSS simulator) tend to
characterize the measurements errors in urban environments.

1. 3D Model based Positioning
This type of method is based on simple use of 3D models for positioning without GNSS
simulation. As 3D models becoming more and more advanced, they have been used re-
cently for identifying satellite blockage and hence LOS/NLOS state reception in urban
areas [157]. These methods are based on predicting the reception status of the GNSS
signals across an array of candidate positions, i.e. considering signal reception at mul-
tiple candidate positions. The positioning technique is then based on scoring position
hypotheses by comparison between the received observations at the receiver navigation
block level and prediction using the information provided by 3D models such as the
sky visibility [158] provided using bulding boundary information, the SNR measure-
ments combined with a bayesian formulation [159], the position consistency [46] and
the superposition of satellite shadow maps based on particle filtering for candidate po-
sitions propagation [160]. The final user location is generally estimated by weighting of
candidate positions with the highest matching scores.
Considered among the most mature 3D model based positioning approaches, Shadow
Matching solution [157] uses 3D building models to improve cross-track positioning ac-
curacy in harsh environments by predicting which satellites are visible from different
candidate locations and comparing this with the measured satellite visibility to deter-
mine the final user position solution. By achieving good accuracy improvements for
cross-street positioning in urban canyons, this positioning approach based on GNSS
and 3D model fusion for satellite shadows scoring of candidate positions, was imple-
mented for smartphone applications [161, 162]. An improved version of this approach
is proposed in [158] by combing Shadow-Matching based visibility approach with a 3D
based ranging approach for accurate cross-street and along-street positioning in urban
canyons.
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Other proposed methods are using 3D models for visual positioning without use of
GNSS signals. These approaches proposes to use 3D models information jointly with
information provided from cameras for positioning without GNSS measurements. As
aforementioned techniques, these methods are based on scoring of a grid of candidate
positions, but the main difference lies in the scoring function itself. For instance, work
in [163] investigates a scoring function based on matching skylines extracted from up-
ward facing omnidirectional images and skyline segments from coarse 3D models of
cities. Another similar technique [164] proposes the use of 3D map, camera, accelero-
meter, and magnetic sensor on a smartphone. The likelihood of candidate positions are
computed using the same image-matching technique proposed in [163], with two main
differences : virtual photos are generated using Google Earth and the camera attitude
is determined using accelerometer and magnetic sensors. GNSS measurements are only
used for candidate positions generation in the initialisation step.

2. 3D GNSS simulator based Positioning
With an initial position input, 3D GNSS simulators simulate the GNSS propagation in
representative type of environments (e.g. open sky, urban and deep urban) and provide
the user with several types of information such as the number and the characteristics
of reflections, additional PR biases, etc. These simulators output originaly developed
for performance nalysis, are recently used in techniques that aim to improve the mea-
surements model for degraded measurements characterization. Like 3D model based
positioning approaches, the information provided by 3D GNSS simulation are used to
score multiple candidate positions by predicting the path delay of the NLOS signals
across an array of candidate positions, i.e., considering signal reception at multiple can-
didate positions. The positioning technique is then based on likelihood scoring of these
candidate location by comparison between the received observations at the receiver and
ones of the information provided by 3D simulator such as the the NLOS signal delay at
the receiver level [165], the PR measurements matching with a particle filter for candi-
date position generation [166], the PR measurements matching based on some models
on PR errors [158], position error correction based on PR bias predicted by 3D simu-
lation [167] and PR measurements matching weighted with HDOP values [168]. The
final solution is then determined by weighting of candidate positions with the highest
likelihood scores.
To reduce the computational complexity, other works are not supposing multiple can-
didate positions imputed in 3D GNSS simulator but use a-priori input position taken
generally as the previous estimated solution or location near the unknown user position.
For instance, the previous estimated solution is introduced in a high realistic 3D simula-
tor of the GNSS propagation to predict the geometric path of NLOS signals [169]. This
information is then used constructively in a new version of EKF augmented with 3D
simulated PR errors. Other approach combines a simplified 3D model of the environ-
ment with a multi-hypothesis of state reception with different probabilities to enhance
performance [170, 171]. This urban trench technique supposes that the building layout
is highly symmetric, which is mainly the case in the down-towns of some French cities.
Using this simplified 3D model, called urban trench, path delays of NLOS signals may
be computed according to some assumed probabilities of reception. This assumption has

50



been relaxed in a recent paper of the same author [172]. Finally, by constructively using
NLOS measurements from virtual satellites at mirror-image locations, [173] developed
a Maximum Likelihood Estimate (MLE) solution based on modified Direct Position
Estimation (DPE) taken into account NLOS signal information at different candidate
positions using 3D maps. However, this method, applied at the receiver level, does not
make any update of the used 3D model.
The work of this thesis falls in the class of techniques based on 3D simulation in which
we propose several original contributions.

3D models represntation of the environment surrounding the receiver is merely an approxi-
mation. Besides, although the 3D GNSS simulator are becoming more and more accurate, they
contain a certain level of inaccuracy due to not modeling of the moving objects in the environ-
ment (buses, cars, pedestrians. . . ) and some immovable objects such as trees. In addition, it
is obvious that the predicted biases from the 3D propagation model cannot be instantaneous
and highly accurate especially with the sensitivity of the phase lag of the reflected signal.
Hence, there is a need to ensure the quality of the 3D model or 3D GNSS simulator to be
suitable for positioning performance enhancement. Reference [174] gives an exhaustive list of
challenges encountered by shadow matching approach and that can be generalized to most of
approaches based on 3D modeling.

2.6.3 Simultaneous Localization and Mapping (SLAM) with GNSS Signals

Simultaneous Localization and Mapping (SLAM) is a well-known technique developed in
the robotic community. In radio localization (Wi-Fi, LTE, GNSS), it consists of constructing
(building) or updating a map of an unknown environment while at the same time keeping
track of transmitters within it and navigating within this map [175]. SLAMmethods have been
adapted to GNSS applications in order to constructively use NLOS paths. The basic idea is
to suppose that NLOS paths can be seen also as LOS paths from satellites to virtual receivers
located at receiver mirror-image positions. Reciprocally, NLOS signals can be considered as
signals transmitted from virtual transmitters, i.e. virtual GNSS satellites, synchronized in
time with the receiver and located at mirror-image positions.

Other approaches are using Long Term Evolution (LTE) signals with fixed transmitters
to deal with the problem of positioning in challenging scenarios. For instance, by estimating
the multipath components (MPCs) at the receiver level using a Kalman enhanced super
resolution tracking (KEST) approach, works in [176, 177] exploit heading information from
an inertial measurement unit (IMU) to estimate angle of arrival (AoA) that will be integrated
in a particle filter process in order to estimate virtual transmitter location to jointly enhance
position estimation and update the map of the unknown environment surrounding the receiver.

Based on GNSS signal strength and 3D maps, the user region of interest (ROI) is divided
in "can-be" and "cannot-be" partial regions using satellite shadows to end-up with a LOS maps
for all satellites in the ROI [178]. This information is then exploited to how to increase the
accuracy of GNSS positioning using 2.5D models of the urban canyon and simultaneously re-
construct the 2.5-dimensional maps using GNSS signal data and user location [179]. 2.5D city
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models are simplified models built from extruding building footprints or roof edge polygons
and that can be converted to 3D city models using aerial oblique photography.

By considering signal propagation at multiple potential navigation candidate positions
as usually done in 3D-Mapping aided positioning approaches, other works tend to exploit
3D models to enhance user location in urban areas while at the same time detect potential
modelling errors in these considered models. The proposed technique in [180] use information
fusion from Control Area Network (CAN) bus providing speedometer data, Inertial Measu-
rement Unit (IMU) providing heading direction, an onboard camera for lane detection and a
3D model of the city combined with a 3D tracing algorithm. These information are hybridized
using a Kalman filter or a particle filter to obtain an optimized estimated location that can
be used to detect anomalies in 3D modeling and rectify/update the initial 3D building model.
A similar approach is proposed in [159] where SNR measurements are used for SLAM via a
particle filter map matching algorithm.

2.7 Summary

With an ongoing modernization of services and various constellation of satellites orbiting
around the earth, GNSS systems are envisaged to provide enhanced positioning accuracy
around the globe. While millions of users are expecting more and more reliable GNSS perfor-
mance, there are still multiple limitations making GNSS localization degraded in constrained
environments, namely multipath and non-line-of-sight reception. In view of such need to over-
come these challenges, several positioning techniques have been proposed in order to solve the
MP/NLOS problem. Principal proposed methods for localization under MP/NLOS conditions
are highlighted in Table 2.1.

1. [ ] : no reference found
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Table 2.1 – Positioning-based Approaches in presence of MP/NLOS 1

MP/NLOS Problem :
Positioning-based Approaches

MP/NLOS
Mitigation

MP/NLOS
Weighting

MP/NLOS
Constructive Use

Hardware
Choke ring Antenna [80] [ ] [ ]

Polarization-discriminating
Antenna [78]

[ ] [ ]

Antenna Array [40] [ ] [ ]

Space-Alternating Generalized
Expectation-Maximisation

(SAGE) [87]

[ ] [ ]

Panoramic Cameras [50, 51, 53, 54] [ ] [ ]

Wave-absorbing Shield [81] [ ] [ ]

Signal Domain
Narrow Correlator [93] [ ] [ ]

Double-delta Discriminator [93] [ ] [ ]

Strobe Correlator [93] [ ] [ ]

Vision Correlator [138] [ ] [ ]

Fast Iterative
Maximum-Likelihood Algorithm

(FILMA) [92]

[ ] [ ]

Meas. Domain ML-adapted Solutions
[97, 98, 99, 100]

weighted least squares (WLS) Solution PR Correction

Constrained Localization Solutions
[101, 102, 103, 104]

Consistency Cheicking, Residual
Weighting Algorithm
[66, 118, 58, 124, 125]

3D GNSS Simulator & 3D Model :
Scoring of candidate positions

[?, 46, 160, 159, 161, 162, 164, 165,
166, 168, 181, 182, 183, 184]

"Identify and Discard" Solutions
[66, 73, 105]

Robust estimation, M-estimator
[123, 126, 127, 128, 129, 130, 131,

132],
RAIM [26, 185, 186]

3D GNSS Simulator :
PR Correction [169, 170, 171, 187]

"Basis Decomposition" Solutions
[106, 107, 108, 109]

C/N0-based Variance [26] SLAM [159, 178, 179, 180]
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Table 2.2 – Identification, Estimation and Modelling in presence of MP/NLOS 2

MP/NLOS Problem :
Identification, Estimation and Modeling

MP/NLOS
Identification

MP/NLOS
Estimation

MP/NLOS
Modeling

Hardware

Dual Polarization
Antenna [38, 39]

[ ] [ ]

Antenna Array [40] [ ] [ ]

Signal Domain
GNSS/INS/Laser Scanner [48] Bayesian Multipath

Estimators
[95, 138, 92, 144, 145, 146]

[ ]

Vector tracking [77] Non-coherent
integration MEDLL [141]

[ ]

Multipath Estimating Delay
Lock Loop (MEDLL) [139]

Meas. Domain
3D GNSS Simulator

& 3D Model
[?, 46, 160, 159, 161, 162, 164, 165,

166, 168, 181, 182, 183, 184]

Unscented Kalman
Filter (UKF) [150]

Gaussian distribution with
Heavy-tails [111]

Cameras
[49, 50, 51, 52, 53, 54]

Rao-Blackwellized
Particle Filter [71, 147]

Gaussian with Time-Varying
Variance and Mean [68]

Residuals, RAIM
and Consistency Checking
[68, 74, 66, 26, 185, 186]

Marginalized Likelihood
Ratio Test (MLRT) [69]

Direchlet Model and
Mixture Gaussian Model (GMM)

[?, 113]

Satellite Elevation and C/N0
[65, 66, 67]

SIGMA-ε Variances [112]

Other works have tried to identified, estimate or model degraded MP/NLOS signals, with
or without worrying about user positioning itself. Table 2.2 gives an overview about the most
relevant works.

2. [ ] : no reference found
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Finally, the references used in this survey about MP/NLOS problem can be classified
according to their objective in Fig. 2.1. Last, for a broader perspective, let us mention that
other taxonomies of research studies dealing with the MP/NLOS problem could be found for
instance in [188].

Figure 2.1 – Representative references of the State-of-the-Art of MP/NLOS problem
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Utilisation d’un simulateur GNSS
pour la localization

Simulateur SPRING

Le simulateur SPRING est un logiciel de simulation capable de modéliser la propagation
des signaux GNSS envoyés depuis les satellites de différentes constellations vers le récepteur
GNSS tout en prenant en compte la modélisation géométrique de l’environnement entourant
l’antenne de réception (Niveau 2). Un modèle de canal de réception et un modèle de récep-
teur permettent ainsi l’acquisition et la poursuite des signaux propagés dans l’environnement
afin de calculer les mesures de Pseudo-distance, phase et Doppler des satellites acquis. Des
algorithmes de calcul de PVT ont été aussi implémentés pour la détermination de la solution
position, vitesse et temps récepteur.

SPRING supporte les constellations GPS, GLONASS, Galileo, BEIDOU en configuration
mono-fréquence ou bi-fréquence. Les corrections des systèmes SBAS (EGNOS, WAAS, MSAS,
GAGAN) sont également prises en compte. Différents modèles de correction ionosphériques et
troposphériques ont été également intégrés. SPRING supporte la plupart des formats de don-
nées en mode analyse des données GNSS permettant ainsi d’afficher une multitude de sorties
graphiques et des fichiers de données avec plusieurs formats possibles (csv, kml, RINEX. . . ).
Cet outil d’ingénierie a été développé par Thales Services dans le cadre d’un contrat avec le
CNES (Centre National d’Etudes Spatiales).

Pour répondre aux besoins des utilisateurs, le logiciel SPRING possède cinq niveaux de
service :
— Niveau 0 : permettant l’analyse en mode temps réel ou post-traitement de mesures d’un

récepteur GNSS en supportant la plupart des formats de fichiers GNSS conventionnels.
— Niveau 1 : permettant l’analyse en détail des performances simulées en un point géo-

graphique donné, sur une trajectoire ou une région géographique.
— Niveau 2 : offrant la possibilité d’étudier en détail les problèmes causés par la réception

indirecte des signaux GNSS dans des environnements contraints. Ce niveau implémente
des modèles de propagation couvrant les trois phénomènes physiques définis dans la
section précédente. SPRING fournit donc à partir d’une position définie la solution
PVT et les différents caractéristiques des signaux reçus et masqués.

— Niveau 3 : permettant l’hybridation des données GNSS réelles avec d’autres senseurs
additionnels.

— Niveau 4 : permettant l’analyse des performances en mode simulation pour des données
GNSS et des capteurs additionnels dont le comportement est modélisé.

En ce qui concerne le mode général de fonctionnement de SPRING-3D (niveau 2 de
SPRING), le simulateur SPRING est compatible avec des modèles 3D au format Kmz. Le
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logiciel ScenixTM permet d’afficher l’environnement 3D entourant le récepteur selon une
taille modifiable, les positions des satellites et de visualiser aussi les différents interactions et
propagations des signaux GNSS à travers le milieu géométrique au voisinage de l’antenne (ou
de la position input donnée). Le lancer de rayons s’effectue à partir d’une position « input »,
qui représente la position de l’antenne du récepteur, à travers l’environnement géométrique
jusqu’aux émetteurs à l’aide du logiciel OptixTM en utilisant des modèles de propagation en
fonction des types d’interactions activées (réflexion simple avec prise en compte de la diffusion,
réflexion double spéculaire ou diffraction sur les arêtes des bâtiments).

La figure suivante résume l’architecture globale de SPRING Niveau 2 ou SPRING-3D :

Figure 2.2 – Architecture générale de SPRING-3D - Crédits : Formation ISAE 2015

Notre utilisation de SPRING

Dans cette thèse, le simulateur SPRING a été fourni par le CNES afin d’étudier, carac-
tériser la performance et proposer des améliorations à cet outil. La première partie de la
thèse consistait à étudier la fiabilité de SPRING. Comme nous n’avions pas accès au logiciel,
cette première partie était basée sur la configuration des paramètres du logiciel pour don-
ner l’approximation la plus fiable de la propagation des signaux GNSS dans l’environnement
étudié.

Les paramètres de configuration de base de la simulation SPRING sont associés à la confi-
guration de la constellation GNSS, la propagation des signaux GNSS et la configuration de
la modélisation 3D (par exemple configuration des matériaux de la scène 3D en modifiant les
caractéristiques électromagnétiques des matériaux sélectionnés, la configuration du nombre
de rayons par satellite, la configuration du nombre des réflexions du signal et l’activation ou
non de réflexions et diffractions multiples) et la configuration de l’acquisition du signal (confi-
guration du modèle d’antenne (gain, diagramme d’antenne) en fonction de la polarisation et
de l’angle d’élévation, la configuration du module récepteur en simulant les canaux du récep-
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tion GNSS, la configuration du modèle de bruit et la configuration du type et des paramètres
des boucles récepteur). Le but de cette partie est de configurer tout ces paramètres pour
améliorer la fiabilité de la simulation. Idéalement, le paramétrage du récepteur SPRING doit
être identique aux paramètres du récepteur utilisé lors de la collecte des données. Comme
beaucoup de ces paramètres de configuration sont inconnus, l’incertitude dans la simulation
GNSS à travers SPRING est inévitable. La propagation du signal GNSS à l’aide du simula-
teur SPRING n’est qu’une approximation et ne peut pas être identique à la propagation du
signal dans le monde réel. Cependant, nous avons configuré le modèle de récepteur SPRING
pour donner une bonne approximation du récepteur utilisé lors de la collecte des données.
Cette étape de configuration est essentielle avant toute utilisation du logiciel pour une bonne
estimation des biais PR.

Limitations de SPRING

Comme les simulations GNSS à l’aide du simulateur SPRING visent à approximer les
erreurs PR en utilisant la propagation du signal GNSS, nous discutons ici la manière dont
une interférence MP est généré dans un récepteur GNSS. Le mesures pseudo-distances sont
générées dans le récepteur GNSS à l’aide des mesures de code. Les signaux MP réfléchis
déforment le pic de corrélation de code dans le récepteur, ce qui dégrade l’estimation des
mesures PR. L’amplitude de cette dégradation dépend des retards MP du message réfléchi
par rapport au signal LOS, de l’amplitude de ces signaux, du décalage de phase entre le signal
LOS et différents signaux réfléchis et de la conception du récepteur GNSS. Par conséquent, la
prédiction des erreurs MP, à l’aide des simulations de propagation de signaux GNSS, nécessite
un modèle d’environnement précis au cm près et une position du récepteur connue au cm près
pour obtenir une bonne approximation des mesures. Cependant, la cartographie 3D utilisée
dans SPRING n’est pas précise au niveau centimétrique. En outre, les trajectoires de réference
introduites dans le simulateur sont de précision décimétrique. Par conséquent, l’incertitude
sur la prédiction des erreurs MP par simulation SPRING est inévitable.

Une conséquence de ces problèmes est que les erreurs de pseudo-distance dues aux in-
terférences par trajets multiples prédites par le simulateur SPRING n’auront aucune cor-
respondance avec les valeurs expérimentées par le récepteur utilisé. Seul l’écart-type de ces
erreurs peut être estimé, et pas l’erreur elle-même. Ces problèmes ne concernent que les inter-
férences MP et non les signaux NLOS. Pour la réception NLOS, l’erreur de pseudo-distance
est simplement égal au délai supplémentaire par rapport au signal LOS.

Pour améliorer les performances des algorithmes de positionnement basés sur la prédiction
des biais PR à l’aide de SPRING, les prédictions de signaux MP doivent être supprimées des
erreurs PR et seules les prédiction des signaux NLOS doivent être conservées. Mais, puisque la
réception NLOS et les interférences MP sont fusionnés dans les simulations SPRING, éliminer
les corrections MP prédite par SPRING n’était pas possibles.

59



Méthodes proposées

Correction des mesures PR à l’aide des bornes sur les biais MP/NLOS

Une utilisation fiable des informations obtenues par le simulateur 3D repose sur plusieurs
hypothèses, en particulier une bonne qualité de la scène 3D, une bonne estimation de la
position des satellites, une bonne identification des satellites en visibilité directe et des échos
en un point donné via des calculs représentatifs de la propagation. Donc cette modélisation
reste toujours source de petites imprécisions, quel que soit le niveau de réalisme du simulateur
et du modèle 3D. Dans cette logique, nous essayons d’exploiter des bornes sur les biais estimés
par modélisation 3D au lieu de chercher à exploiter directement les valeurs temporelles données
par le simulateur. Dans cette sous-section, deux manières d’utiliser ces bornes sur les biais
PR pour l’amélioration du positionnement en milieu urbain sont introduites.

Cette approche de correction des mesures dégradées par simulation GNSS est basée sur
l’utilisation d’une grille des positions candidates dans l’environnement étudié. Le simulateur
SPRING-3D est ensuite utilisé pour prédire des bornes sur le biais PR de chaque satellite.
Dans cette approche, nous ne cherchons pas à estimer la position finale comme une position
parmi les points de la grille des positions candidates comme classiquement fait par les autres
approches existantes dans la littérature. Les bornes du biais, prédites par simulation GNSS,
sont utilisées dans le domaine des mesures pour corriger les mesures PR en utilisant des
métriques sur la moyenne et la variance. La position finale sera obtenue par application d’un
estimateur conventionnel (LS ou EKF) sur les mesures corrigées.

Positionnement par correspondance sur une grille des positions candidates

A cause des différentes sources d’erreurs présentes dans les environnements urbains, obte-
nir des bonnes performances de positionnement, afin de répondre aux besoins des utilisateurs
dans ces milieux, est un vrai challenge. Il est nécessaire d’avoir des sources d’informations
supplémentaires pour traiter cette problématique. Etant riche en informations, un simulateur
3D de la propagation GNSS dans l’environnement de l’utilisateur permet une prédiction des
biais des signaux MP/NLOS, ce qui engendrera une nette amélioration des performances. Ce-
pendant, cette bonne prédiction est conditionnée par des bonnes performances du simulateur
GNSS utilisé et une bonne estimation de la position input utilisée dans le modèle lui-même.
La bonne estimation de la position "input", fournie au simulateur, signifie que la position
utilisée par le simulateur GNSS pour la prédiction du biais doit être assez proche de la vraie
position du récepteur (inconnue). Ce problème, similaire à celui de l’œuf et de la poule, pose
une difficulté naturelle à l’utilisation du simulateur 3D pour les applications GNSS.

Plusieurs approches de l’état de l’art choisissent de traiter ce problème en considérant un
nombre de points input fourni au simulateur sous forme d’une grille des points inputs candi-
dats aux alentours d’une position conventionnelle calculée par le récepteur GNSS autonome
en environnement dégradé. La comparaison ensuite entre la prédiction du modèle 3D et les
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observations au niveau du récepteur permet de trouver la position la plus proche de la vraie
position du récepteur parmi toutes ces positions candidates.

Dans cette thèse, nous proposons deux contributions pour la sélection de la position finale
parmi une grille des positions candidates à l’aide des métriques calculées par le simulateur
SPRING-3D :
— Approximate Maximum Likelihood-3D : une métrique qui évalue la correspondance

entre les mesures PR obtenues au niveau récepteur est les mesures PR obtenues par
simulation SPRING-3D sur plusieurs points candidats.

— Position Matching-3D : une métrique qui évalue, sur l’ensemble des points candidats, la
correspondance entre l’ensemble des positions candidates et un ensemble des positions
calculées après correction des mesures PR par les biais prédits via simulation SPRING-
3D. Elle évalue également la correspondance entre la solution conventionnelle LS et
l’ensemble des solutions obtenues par application d’une projection de type Least-Squares
« LS » aux mesures PR prédites par simulation SPRING-3D. Si le simulateur GNSS est
précis, la projection de type « LS » appliqué aux mesures PR, prédites par le simulateur
SPRING-3D, à une position égale ou proche de la vraie position devra donner la solution
LS obtenue par application de l’algorithme LS sur les vraies mesures PR reçus au niveau
récepteur.

Résultats expérimentaux et conclusions

Pour analyser les performances des méthodes proposées, une trajectoire de 4 minutes le
long d’un environnement urbain autour de la place « Capitole » à Toulouse a été sélectionnée.
Une grille de positions candidates de 1600 points a été selectionnée. Les algorithmes proposés
permettent une amélioration significative de la précision de 52% par rapport à la solution
conventionelle de LS dans environnements urbains profonds. Les résultats de méthodes basées
sur la sélection de la position finale parmi une grille des positions candidates donnent des
performances similaires à la méthode de l’état de l’art (Shadow-Matching).

En milieux urbains denses avec une visibilité réduite des satellites, l’utilisation d’une infor-
mation de l’environnement pour l’amélioration des performances de positionnement GNSS est
nécessaire. Les algorithmes proposés dans cette thèse se basent sur l’utilisation d’une grille de
positions introduites au simulateur SPRING. Ces algorithmes donnent une amélioration des
performances de positionnement comparable à celles de la solution de l’état de l’art (Shadow-
Matching), sur ce scénario. Cette amélioration de la précision de la solution est obtenue au
détriment d’une augmentation exponentielle du temps du calcul des algorithmes proposés,
en fonction de la grille des positions candidates utilisée pour la prédiction des biais PR par
simulation GNSS. Néanmoins, cet inconvénient peut être atténué, voire supprimé, en utilisant
une implémentation de ces techniques en mode déporté à un serveur de calcul.
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Chapitre 3

3D-Mapping Aided GNSS
Positioning in MP/NLOS
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As shown in the previous chapter, achieving reliable positioning in an urban environment
using only GNSS pseudorange measurements is a very challenging task. As GNSS technology is
based on the reception of signals via direct paths from satellites, any infringement of this basic
assumption, caused by NLOS reception, may cause large positioning errors compromising, the
user’s required performance. Therefore, fusing the GNSS with other sensors or information is
essential in these areas.
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Becoming more and more available, 3D information about the geometric environment of
reception is valuable for properly and constructively using degraded GNSS measurements to
improve the positioning accuracy in harsh environments. Hence, we present in this chapter our
original investigations on the use of a 3D GNSS signal propagation simulator as a source of 3D
aiding information to assist a conventional GNSS receiver. The 3D GNSS signal propagation
simulators provide GNSS with some prior information on pseudorange errors that should
be wisely integrated in order to optimally enhance the final obtained positioning accuracy.
Therefore, we present in this chapter our contributions to this 3D-Mapping Aided GNSS
positioning.

This chapter is divided into 6 main sections :
— Section 3.1 : The motivations behind the use of 3D GNSS signal propagation simulators

in this study will be detailed. A detailed analysis of the used 3D GNSS signal propagation
simulators in the context of this research study will be provided.

— Section 3.2 : A description of the proposed approach for the fusion of GNSS and 3D
GNSS signal propagation simulators aiding information at the PR measuremants level.

— Section 3.3 : A description of the proposed approaches for the fusion of GNSS and 3D
GNSS signal propagation simulators aiding information at the position level.

— Section 3.4 : An experimental validation of the proposed GNSS/3D GNSS signal pro-
pagation simulators fusion methods. The proposed integration methods in the position
domain will be compared with a Shadow-Matching algorithm.

— Section 3.5 : A study aiming to define the minimum required level of 3D simulation
accuracy for constructive use of this information for navigation with GNSS PR measu-
rements. This determines how accurate the 3D information, provided by the 3D GNSS
signal propagation simulators, should be in order to obtain a better positioning accuracy
when integrating this information with GNSS measurements.

— Section 3.6 : A summary of the principal conclusions of this chapter is provided.

3.1 3D GNSS Signal Propagation Simulators

3D city models are 3-dimensional digital representations of terrain surfaces, sites, buil-
dings, vegetation, infrastructure and landscape elements as well as related objects present in
cities. Buildings in 3D models are represented by collection of points in 3D space, connected
by various geometric entities such as triangles, lines, curved surfaces, etc. It is now possible
to incorporate detailed highly representative 3D maps of real environments, such as buildings
or infrastructure of cities to some 3D GNSS signal propagation simulators. Throughout this
dissertation, this integration will be termed as 3D GNSS signal propagation simulator.

Thanks to advances in computing, 3D GNSS signal propagation simulators for the propa-
gation of GNSS signals have been developed in order to offer various signal models complex
enough (in terms of the numbers of contributors) to be representative of GNSS signal propa-
gation in complex and dense population centers such as urban canyons [169, 182, 168]. It is
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worth noting that the complexity and the representativeness of such simulators has increased
with the actual computing power of computers.

3.1.1 Motivation of the use of 3D GNSS signal propagation simulators

Today, 3D models are used in a wide variety of fields including navigation. Several factors
make the use of this 3D information attractive and useful for positioning with GNSS signals,
including :

1) A natural way for the constructive use of degraded signals : As simply dis-
carding degraded pseudoranges in an urban setting may deteriorate GNSS positioning,
using them constructively is the best alternative in these environments. However, to do
that, information about the reception environment is essential. Offering highly repre-
sentative 3D maps of these environments, 3D building models represent a very valuable
source of aiding information to properly use multipath and NLOS signals. This is the
main driver of adapting 3D maps for positioning.

2) 3D maps availability :We have witnessed, these recent years, an increased availability
of digital 3D maps. These data are available now for most cities worldwide. 3D maps
are also provided from national mapping agencies and private commercial companies
such as Google (Google Maps 3D), Apple (Apple 3D Maps), Microsoft (Bing Maps 3D).
Besides, some 3D mapping data, such as OpenStreetMap, are available free of charge,
but without any guaranty of reliability. Generally, these model cover most dense urban
areas where it is most needed for positioning.

3) Possibility of wireless implementation : To cope with different positioning limita-
tions in harsh areas, the GNSS receiver can be assisted by various sources of information,
such as inertial sensors, cameras and laser scanners. But solutions offering reduced size,
price, data storage, processing load and power consumption are more sought after es-
pecially for smartphone applications. 3D maps may be used as a wireless solution (data
base type solution) : 3D information is stored on a remote server, uploaded to the mobile
server and used to enhance positioning accuracy.

4) Advancements in 3D modeling and simulation power : The trend of growing
interest in 3D models is driven by the continuous advancements made in environment
modeling. 3D city models tend to be available for most big cities worldwide. The variety
of research in this field indicates the growing interest that make the use of the 3D
information a promising and fruitful area of study.

5) Efficient solution : As Dr. Groves argues : "3D city mapping has the potential to
revolutionize positioning in challenging urban areas" [189]. 3D models have been proved
to improve positioning performance in harsh environment [158].
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3.1.2 SPRING : Working Principle

SPRING (Simulateur de Performances d’un Récepteur Intégrant la Navigation par GNSS)
[156, 190] is a 3D GNSS signal propagation simulator developed by the French Space Agency
(CNES) that has the capability of simulating, via ray-launching techniques, all paths (from
satellites to receiver) to be received in a certain input position at a certain time. SPRING aims
to predict PR errors in urban areas. It allows the simulation of the propagation of the GNSS
signals inside a 3D scene for an analysis of the multipath interference. A reception channel
model and a receiver model enable the acquisition and tracking of the signals propagated in
the environment. It allows to calculate pseudoranges, phase and Doppler measurements of the
acquired satellites. This simulator is provided by CNES and used in this thesis to assist the
GNSS receiver in order to enhance positioning performance. Next, the details of the SPRING
simulator is presented.

3.1.2.1 Used 3D City Model

SPRING simulations have been conducted with the use of several 3D models. The used
3D model in this research work is a Toulouse 3D model. This 3D city model was developed
by the French National Geographic Institute (IGN). It is based on high resolution images
with level 2 of detail (LoD2). The LoD of a 3D model describes how thoroughly the 3D
objects representation adheres to the real-world representation. A building in LoD2 city model
has differentiated roof structures and thematically differentiated boundary surfaces. More
information about these different levels of detail is available in the following documentation
[191]. The modelling of 3D scene is achieved via Trimble SketchUp Pro [192] and imported
in SPRING from KMZ files. SketchUp allows also the importation of numerous existing 3D
models in various formats. The conversion to the KMZ format is supported by SPRING. In
order to optimize the simulation performances, these 3D models are converted into an internal
SPRING format which ensures the classification of the imported buildings into geographic
tiles.

3.1.2.2 Ray-launching Algorithm

In order to simulate the propagation of GNSS signals in the SPRING simulator, a ray
launching algorithm has been chosen. Ray launching [193] is a method of ray propagation
that requires an accurate model of the 3D scene. This technique is based on optical physics
and models all effects that can occur during the propagation of rays : free-space propagation
(direct path), reflection, refraction, diffraction, shadowing etc. It is assumed that the GNSS
satellites are considered as far field electro magnetic sources, and that the GNSS receiver
antenna receives either far field or near-field EM waves according to the distance of the
contributor to the antenna. Rays are launched in each possible sampled direction inside a
propagation cone. The smaller the directional sampling interval is, the more accurate the
propagation model is. Each ray is propagated until it intersects an object in the 3D modelled
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scene.

Depending on the intersected object type, interactions such as reflections, refractions,
diffractions are processed and secondary rays are emitted at the intersection point. Again,
these rays are propagated until they hit an object on their path. Reflection coefficients are set
by the user depending on the chosen building materials and are uniform for all the considered
3D scene.

3.1.2.3 Software Receiver

Once the characteristics of the different simulated rays have been computed, SPRING uses
a specific aggregation algorithm to compute the main echoes of each satellite signal. The echoes
are also used by an internal software receiver module to compute the final pseudo-range, phase,
Doppler and signal strength measurements (details are in [156]). Different software receiver
models can be considered in the SPRING software, with modified and adaptable parameters.
Finally, an internal PVT module can be used to compute a position solution. As SPRING
don’t use any model for ionospheric and tropospheric errors, the MP/NLOS bias is simply
equal to the difference between the predicted pseudoranges at the level of the software receiver
and the LOS path between the input user position and the satellite position.

3.1.2.4 GPU Resources

The SPRING simulator uses Graphics Processing Unit (GPU) graphical cards to paral-
lelize and accelerate the propagation and visualization algorithms. To implement the ray
launching method in the SPRING simulator, the NVIDIA® OptiX™ Ray Tracing Engine
[194] has been chosen. It is a programmable system designed for highly parallel architectures
such as the Nvidia (graphics card maker) GPU. OptiX is a simple but powerful model of a
ray tracer. This ray tracer employs user-provided programs to control the initiation of rays,
intersection of rays with surfaces, shading of materials, and creation of new rays. As for the
visualization of 3D scene, it is performed by NVIDIA SceniX [195] that is an effective scene
management tool, compatible with the NVIDIA GPU. Furthermore, NVIDIA OptiX is used
for simulation of the propagation of signals parallelized on GPU.

3.1.2.5 Simulator Outputs

During a simulation, SPRING is able to display in real-time different graphical outputs,
including satellite PR measurements errors, satellite reception status, signal strength. At the
end of the simulation, these outputs could be easily exported through print-outs or image
data. Besides, numerous other statistical and textual outputs regarding the propagation and
the interaction of GNSS with the environment are displayed and can be exported.

Simulated PR measurements are computed using GNSS signal propagation within the 3D
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city model and after signal acquisition and tracking using the receiver model implemented
in SPRING. The LOS distance between the satellite and the input position of the receiver
antenna introduced in the software is defined as the direct path between these two points.
As all the other ranging errors (ionospheric, tropospheric, thermal noise...) are not modelled,
the PR bias, which is the parameter of main interest in this dissertation, is predicted as the
difference between simulated PR measurements and the LOS distance.

In summary, SPRING is a 3D GNSS signal propagation simulators developed by the
French Space Agency (CNES) that has the capability of simulating, via ray-launching tech-
niques, numerous paths from GNSS satellites to receiver antenna to be received in a certain
input position at a certain time.

Fig. 3.1 gives a screen-shot of an example of SPRING simulation in an urban environment.
Continuous lines refer to signals received in direct line-of-sight while dotted lines represent
signals received through indirect paths after multiple reflections. Dashed lines represent signals
received after diffractions.

3.1.2.6 Our use of SPRING

Different modeling techniques have been used to develop GNSS simulators for the sake of
GNSS performance analysis [196, 197, 198, 199]. However, for a constructive use of PR errors
and errors prediction, these simulators suffer from a lack of enough precision as it will be
shown in section 3.1.3.1. This is the case of SPRING simulator for example. But, information
delivered by these simulators are valuable to approximate different errors affecting the GNSS
signals. In this thesis, we focus on the approximation and prediction of PR errors using
SPRING simulations in order to mitigate their effect in the processing of the measurements
to improve the positioning accuracy.

In this thesis, the simulator SPRING has been provided by the CNES in order to study,
characterize the performance and propose improvements to this tool. The first part of the
thesis consisted in studying the reliability of SPRING. As we do not have access to the
software code, this first part was based on configuring the software parameters to give the
most reliable approximation of GNSS signals propagation in the environment under study.

The basic configuration parameters in SPRING simulation are associated with the constel-
lation configuration, the propagation and 3D modeling configuration (for example materials
configuration by modifying the electromagnetic characteristics of the materials selected, the
configuration of number of rays per satellite, the configuration of the number of the GNSS
signal reflections and the activation or not of multiple reflections and diffractions) and the
signal acquisition configuration (configuration of the antenna model (gain, antenna diagram)
depending on the polarization and the elevation angle, the configuration of the software mo-
dule simulating the GNSS receiver channels, the configuration of the noise model, and the
configuration of the receiver type and parameters). The goal of this part is to configure all
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Figure 3.1 – 3D GNSS signal propagation simulation using SPRING. Top : Simulation by
considering only multiple reflections. Bottom : Simulation by considering both diffractions
and multiple reflections

these parameters to enhance the reliability of simulation. Ideally, SPRING receiver parameters
should be set as equal as possible to the receiver parameters used during the data collection
(that will be described in section 3.4.1).

As many of these configuration parameters are unknowns, the uncertainty in GNSS si-
mulation using SPRING software is unavoidable. SPRING GNSS signal propagation is still a
mere approximation and cannot be identical to the real-world signal propagation. However,
we have configured the SPRING receiver model to give a good approximation of the receiver
used during the data collection described in section 3.4.1 as it will be quantified in the follo-
wing section. This configuration step is essential before any use of the software for PR bias
constructive use.
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3.1.3 SPRING : 3D GNSS signal propagation simulator Reliability

3.1.3.1 SPRING Reliability study

Many factors may greatly impact the reliability of 3D GNSS signal propagation simula-
tion via SPRING. These factors encompass the reliability of the 3D models, the accuracy
of electromagnetic field propagation and the adequateness of the implemented receiver mo-
del. In this subsection, we discuss the uncertainty of the bias estimation provided by the 3D
GNSS signal propagation simulator SPRING in a dense urban environment in Toulouse. The
considered urban area is the same environment shown in Fig. 3.1.

Fig. 3.2 shows the uncertainty of the bias prediction by 3D GNSS signal propagation
simulation using SPRING compared to the "measured" PR bias. The "measured" PR bias
or bias predicted using the true user position from the reference system) is predicted using
the algorithm proposed in [3]. This pseudorange bias prediction technique relies on the use
of position errors, based on a reference system, and the compensation of the receiver clock
bias using PR measurement from a reference satellite. Other errors, such as ionosphere and
troposphere propagation errors, satellite position and clock errors are reduced using some
models and we neglect here the effect of PR measurements noise. In other words, it exploits
the errors in computed positions to predict the errors in observations or pseudoranges.

The error in the computed position represents the difference between the estimated po-
sition using the least-squares (LS) algorithm and the reference position. This error can be
simply estimated using the reference information of the vehicle position provided by a DGPS
receiver tightly integrated with an IMU. As we compensate ionospheric, tropospheric and
satellite clocks errors using some models and neglect the PR measurements noise n in the li-
nearized PR measurements , the error in linearized PR measurements, i.e. PR bias, represents
the additional path travelled by the signal received through indirect paths. This error is the
difference between the signal received through reflections, with or without reception of direct
signal, and the direct line-of-sight (LOS) signal from the satellite. Having a reference pseudo-
range, i.e. the value of direct line-of-sight (LOS) signal, is difficult to obtain. But as the error
of LS estimation depends linearly on the pseudorange error as expressed in equation (A.10)
of appendix A, true pseudorange error, i.e. PR bias, can be determined by simply inverting
this equation (if the number of unknowns doesn’t exceed the number of PR measurements).

The main problem is having a reference of the receiver clock bias to apply within this
algorithm. The receiver clock bias is eliminated differencing all ranging measurements across
satellites using a reference satellite. The selection of the reference satellite is quite important.
This satellite must have a reliable and almost “clean” ranging measurement. Basic indicators
for this selection process include elevation angle and C/N0 values. Generally, it is better to
use both elevation and C/N0 as the highest-elevation signal can still be NLOS. However, in
our data collect, we have received signals from a GNSS satellite having an elevation angle
higher than 80◦ as shown in Fig. 3.2. So, in this section, we have used the elevation angle as
indicator, i.e. we assume that the satellite with the highest elevation angle has no PR bias. In
summary, this PR bias prediction technique, detailed in [3], relies on the use of position errors
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using a reference system and the compensation of the clock bias using a reference satellite.

Finally, these experiments have been carried out in Toulouse in the same urban section
shown in Fig. 3.1. An AsteRx3 Septentrio receiver is used to record GPS L1 C/A code PR
measurements. A Novatel SPAN system including a DGPS receiver tightly integrated with an
FSAS-IMU (from iMAR), with decimetre level of positioning accuracy, is used as the reference
system. Measurements from both receivers were sampled at 10 Hz. For this SPRING reliability
test, we have selected a 3-min trajectory along the urban section shown in Fig. 3.1. With 10
Hz sampling, this mean that 1800 samples (test locations) are used in Fig. 3.2. Fig. 3.2 shows
also the sky-plot of GPS satellites during this measurement campaign.

Figure 3.2 – SPRING reliability in an urban area described above. Top : PR bias prediction
error using SPRING simulation in this environment. Bottom : Sky-Plot of GPS Satellites

The analysis of the PR bias values obtained by the signal simulation makes it possible
to conclude that : for high-elevation satellites (such as satellite GPS 15), an accurate bias
prediction is obtained by the SPRING simulation. For example, the difference between the

71



"measured" true bias values and the SPRING predicted biases for satellite GPS 15 has a
Gaussian distribution centred on 0 meters with low variance of 1 meter. For satellites with
medium and low elevations, there are some differences between the "measured" true bias and
3D bias predicted by SPRING. For example, for the satellite GPS 13, the 3D bias prediction
difference has a distribution centred on the value of 2 meters with a large variance of more
than 10 meters, as shown in Fig. 3.3. For very low elevation satellites, this 3D bias prediction
error is higher.

Figure 3.3 – 3D bias Prediction error using SPRING simulator for high and medium elevation
satellites. The experiment is detailed above.

In summary, taking into account that some uncertainty in GNSS simulation is unavoidable,
SPRING is a versatile tool to explore GNSS propagation phenomena. Unfortunately, we do
not have a "quantitative" evaluation of the true level of accuracy of SPRING at the moment.
This task requires an evaluation using extensive GNSS data in various environments. This is
under ongoing study by the French Space Agency (SPRING provider) in different types of
environments.
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3.1.3.2 SPRING limitations

As SPRING simulations aim to approximate PR errors using GNSS signal propagation,
we discuss here how multipath interference is generated within a GNSS receiver. The PR
measurements are generated within the GNSS receiver using the code measurements. However,
the reflected MP signals distort the code correlation peak within the receiver, which bias the
PR measurements estimation. This PR error depends on the path delays of the reflected
signals with respect to LOS signal, the magnitude of the these signals, the phase lag between
LOS signal and different reflected signals and the receiver design. Therefore, prediction of
multipath errors, using GNSS signal propagation simulations, requires the 3D mapping to be
accurate to cm level and the position of the receiver to be known to cm accuracy in order
to obtain the correct phase log. However, the 3D mapping used in SPRING is not accurate
to cm level. Besides, the position truth reference used for the experiments are not precise to
cm level under all scenarios. Therefore, the uncertainty on multipath interference prediction
using SPRING GNSS simulation is unavoidable.

In addition, it is very complicated to reproduce the physical reality of GNSS signal pro-
pagation in the environment. To do so, it is necessary to know the phase change that occurs
each time a signal is reflected. The 180◦ rule only applies to flat surfaces and angles of inci-
dence less that Brewster’s angle, which varies according to the surface material. Any surface
irregularities will change the phase shift. PR errors also depend on the relative amplitude
of the reflected signals within the receiver. This depends on the reflection coefficient of each
surface that reflects the signal. However, even if it is possible to configure the materials in the
SPRING 3D city model (by modifying the electromagnetic characteristics of these materials),
it is quite complicated to reproduce the reflection coefficient of each surface and therefore the
GNSS signal propagation will not be representative of reality.

Another problem is that GNSS signals are not rays. The Fresnel zone when a signal in-
teracts with a building is of order a metre in diameter, so the surface characteristics in this
whole area must be considered. The relative amplitude of the reflected and direct signals
within the receiver will also depend on the antenna gain, which is different for right-hand
circularly polarised (RHCP) and left-hand circularly polarised (LHCP) signals, as well as
being elevation dependent. Directly received GNSS signals are RHCP, whereas reflected si-
gnals can be LHCP or mixed polarisation. Finally, the pseudo-range error also depends on
which particular GNSS signal is used and on the receiver design, including correlator design,
pre-correlation bandwidth and the use of any advanced discrimination techniques. Receiver
manufacturers consider this information to be a trade secret, thus it is not possible to obtain
the necessary design information for the receivers used in the experiments.

A consequence of these problems is that the pseudo-range errors due to multipath interfe-
rence predicted by the SPRING simulator will have no correspondence to those experienced
by the actual receiver. Only the standard deviation of the multipath error can be estimated,
not the error itself. Applying SPRING-generated multipath corrections to the pseudo-range
measurements will, on average, make them worse. These problems only apply to multipath
interference and not to NLOS reception. For NLOS reception, the ranging error is simply
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equal to the additional path or the path delay.

To enhance the performance of the positioning algorithms that are based on SPRING PR
bias prediction, multipath predictions using SPRING should be removed from the PR errors
and only NLOS predictions should be kept. But, NLOS reception and multipath interference
are merged in SPRING simulations. To discard SPRING-generated multipath corrections,
the software code must be modified. As this code is owned by the CNES and should only
be modified by them (as a partner, we have not access to the simulator code), discarding
SPRING-multipath corrections was not possible. Then, in this chapter, we will present the
positioning performance of our proposed algorithms with SPRING PR errors prediction that
encompass both multipath and NLOS. Better positioning accuracy of these algorithms could
potentially be obtained if SPRING multipath corrections was removed.

3.2 Measurements-Domain GNSS-3D GNSS signal propaga-
tion simulator Integration : Positioning by 3D PR Bias
Bounding

In this section, we evaluate the added-value of deteriorated pseudorange correction, using
complementary aiding information from the 3D GNSS signal propagation simulator SPRING,
in term of localization performance along a deep urban path. It is worthy to note that some
previous works tends to correct pseudorange measurements by subtracting estimated non-
zero mean value from the received PR measurements when detecting as a non-zero jump in
the mean values of measurement residuals using a chi-square based statistical test applied to
residuals [69, 68, 200]. However, a reliable residual test assumes that the previous position used
for residuals computation is accurate enough to be able to detect an error in the pseudorange
measurements. Measurement residuals are not a reliable source of information to detect or
correct PR measurements error as shown in Fig. 3.4. The experiment used to obtain this
figure is the same used in the previous section and is detailed above in 3.1.3.1. In this figure,
we compare residuals with "measured" true bias errors in an urban environment in Toulouse.
The "measured" PR bias is predicted using the algorithm described in section 3.1.3.1 [3].

In this work, we are interested in the scenario where most or all pseudormanges are
contaminated by MP or NLOS errors. In this case, measurement residuals are not reliable to
infer about PR measurements errors. Hence, it is necessary to use external aiding information
about the MP/NLOS bias. We have used the 3D GNSS signal propagation simulator SPRING
to predict these PR biases and then correct them. Instead of using the deterministic bias value
provided by the 3D GNSS signal propagation simulator, as it was classically done in previous
studies [169], we use upper and lower bounds of these PR biases. Using the simulator SPRING,
we predict the most appropriate bounds of the measurement bias. Predicted bias bounds are
then integrated as additional inequality constraints in the position estimation problem for
pseudorange correction and bounding. As GNSS simulation errors are unavoidable, correcting
PR bias using a PR bias bounds is more realistic in reduced satellite visibility scenarios than
relying on instantaneous predicted bias from the 3D GNSS signal propagation simulator.
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Figure 3.4 – Difference between measurement residuals and measured MP/NLOS bias in
urban environment. The experiment is detailed in section 3.1.3.1.

Our proposed algorithm for positioning using 3D PR bias bounding follows these steps :
— Step 1 : Candidate Positions Creation

We start by defining a search area in the environment under study. Within this search
area, we set up an array of candidate positions Γ = {xi = (xi, yi, z)T } with a defined
spacing. The index i refers to the index of the candidate position. The used spacing will
be defined in the experimental section. This array of candidate positions is an array of
2D points Γ = {xi = (xi, yi, z)T } . The height z is computed using terrain height aiding
via the 3D simulator. We use software Q-GIS v2.18. “Las Palmas” on the 3D model of
the search area to define this square grid of regular equidistant points. The size of the
grid and the number of points will be defined in the experimental section.

— Step 2 : Exclusion of Indoor (Inside Building) Positions
Using Q-GIS software, we find the square polygons of grid of positions that overlap with
the polygons of buildings in the considered 3D model, in order to discard them. Once
these points that are inside building are identified, we delete those unwanted points to
end-up with a grid of outdoor candidate positions.

— Step 3 : PR Bias Prediction by 3D SPRING Simulation
For each of these candidate positions, we perform 3D simulation using the 3D GNSS
signal propagation simulator SPRING. At each time step, the 3D simulation is applied
to an input point that allows the calculation and the prediction of the PR bias error on
each received signal at this point. Providing an input position and a GNSS time, the
3D simulator SPRING is used to predict the corresponding PR biases for each received
ranging measurement, i.e. for this grid of outdoor candidate positions Γ, we estimate
a bank (per satellite and candidate position) of PR bias vectors Ω = {b3D(xi) =
(b3D(xi)1, · · · ,b3D(xi)N )T }. The index i refers to the index of the candidate position.
N refers to the number of received PR measurements. The main steps used for 3D PR
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bias estimation at each candidate position are summarized in the following algorithm 1.
It must be emphasised that the receiver clock bias is omitted in 3D signal propagation
simulation as the receiver is supposed to be synchronized with emitted satellites. This is
used in SPRING simulation to avoid satellite/receiver synchronization and to simplify
the prediction of PR bias, but it is not how GNSS positioning normally works.

Algorithm 1 3D GNSS signal propagation simulation
Inputs : GPS Time, Satellite ephemeris, 3D city Model and candidate position xi
Output : 3D bias b3D(xi)

1: Compute satellite positions
2: Determine LOS distance between each satellite and the candidate position

For each satellite Satj , compute PRLOSi = ‖xi − xSatji ‖2. The index j refers to the index
of the PR measurement and the index i refers to the index of the candidate position.

3: Predict 3D received PR measurements
For each satellite Satj , predict PR3D

j , using the 3D model, ray-launching algorithm and
the receiver model implemented in SPRING.

4: Compute PR bias
As the other ranging errors are not modelled, the PR bias is the difference between
predicted PR measurements and LOS distance : [b3D(xi)]j = PR3D

j − PRLOSj .

— Step 4 : Upper and Lower PR Bounds Computation
Once the bank of MP/NLOS bias vectors is computed using the 3D GNSS signal pro-
pagation simulators SPRING, we consider only the upper and lower values of these 3D
PR bias for each received satellite. In other words, for each received satellite, we predict
the PR bias at different locations, i.e. different xi, using SPRING to get different 3D
PR bias for that satellite depending on the considered location and we finally consider
only the highest and the lowest 3D PR bias. We have chosen maximum and minimum
PR biases here as metrics but other quantiles could be chosen.

l3D = min
xi∈Γ

(b3D(xi)), u3D = max
xi∈Γ

(b3D(xi)) (3.1)

Where l3D refers to the lower bound of PR bias and u3D is the upper bound of PR bias.
They are vectors with one row per satellite.

— Step 5 : PR Correction and Bounding
Using equation 1.4,this PR bias bounding allows bounding the predicted measurement
innovation vector Hx :

cinf ≤ Hx ≤ csup (3.2)

Where cinf = y− u3D − 3(σ)i=[1,...,N ] is the lower bound of the vector Hx and csup =
y−l3D+3(σ)i=[1,...,N ] is the upper bound of the vector Hx and σ2

i = Ri,i, ∀i = [1, . . . , N ].
The other terms are defined in section 1.2.2. N refers to the number of received PR
measurements and R is the covariance matrix of the measurements noise n.
Assuming that the MP/NLOS bias is Gaussian between these upper and lower bounds
and since the MP-NLOS bias b and the measurement noise n are independent, the
total noise n + b have a non-zero Gaussian distribution with a mean of u3D + l3D

2 and
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a covariance matrix equal to :

Rb = R + diag((u3D − l3D/6)2
j=1...N ) (3.3)

The factor 6 is obtained based on simple mathematical derivations as we suppose that

bj ∼ N
(

uj3D + lj3D
2 , [u

j
3D − lj3D

6 ]2IN
)
, for each satellite j. The mean value of the total

noise distribution must be subtracted from the PR measurement vector when estimating
the state vector. We hence get a new corrected PR measurement vector corrected with
the mean value of 3D predicted MP/NLOS bias bounds (as we suppose that bj ∼

N
(

uj3D + lj3D
2 , [u

j
3D − lj3D

6 ]2IN
)
, for each satellite j) :

ycor = y− (u3D + l3D)/2 (3.4)

— Step 6 : Final Position Estimation
We get finally a constrained state estimate with PR measurements correction using 3D
predicted PR bias bounds (CLS for constrained LS) :x̂CLS = argmin

x
‖ycor −Hx‖Rb = argmin

x
‖y− (u3D + l3D)/2−Hx‖Rb

cinf ≤ Hx̂CLS ≤ csup
(3.5)

This constrained quadratic problem is resolved using the Matlab routine "quadprog"
[201].

This obtained solution is termed the constrained solution and can be combined with a motion
model to obtain a constrained EKF with bias bounding (CEKF). The proposed approach is
summarized in the following algorithm 2. The main innovations in this algorithm are :

4 PR measurements correction based on the mean of 3D PR bias bounds

4 Augmented noise covariance matrix based on 3D PR bias bounds

4 Constrained search area using equation 3.2

In summary, this proposed approach is illustrated in Fig. 3.5.
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Algorithm 2 constrained EKF with bias bounding (CEKF)
Inputs : linearized PR measurement vector y, Measurement matrix H
Output : CEKF solution (position incrementation+Rx clock bias) x̂CEKF

1: Outdoor Candidate Positions :
Define an array of 2D points Γ = {xi = (xi, yi, z)T }, where the height z is obtained using
terrain height aiding via the 3D simulator and exclude indoor positions using Q-GIS
software.

2: Bank of 3D PR bias measurements :
Predict a bank (per satellite and candidate position) of PR bias Ω = {b3D(xi) =
(b3D(xi)1, · · · ,b3D(xi)N )T } using SPRING.

3: Lower and upper PR bias bounds :
Define lower and upper bias bounds as : l3D = min

xi∈Γ
w(b3D(xi)), u3D = max

xi∈Γ
(b3D(xi)).

4: Lower and upper bound of the vector Hx :
Compute cinf = y− u3D − 3(σ)i=[1,...,N ] the lower bound, csup = y− l3D + 3(σ)i=[1,...,N ]
the upper bound and Rb = R + diag([(u3D − l3D)/6]2).

5: Final Estimate : EKF applied to corrected PR with augmented covariance noise ma-
trix and LOS PR bounding (Where EKF [y,R] means applying the EKF algorithm to
measurement vector y and noise covariance matrix R) :{

x̂CEKF = EKF [y− (u3D + l3D)/2,Rb]
cinf ≤ Hx̂CEKF ≤ csup

Figure 3.5 – PR Measurement correction with 3D bias Bounding using SPRING
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3.3 Position-Domain GNSS-3D GNSS signal propagation si-
mulator Integration : 3D Positioning over Candidate Po-
sitions

3.3.1 AML-3D : 3D Approximate Maximum Likelihood

3.3.1.1 Principle

Since the computation of the general likelihood cost function of the GNSS problem, pre-
sented in chapter 1, is potentially biased without any prior information on the PR bias, we
propose in this section a new approximate cost function that approximates this theoretical
maximum-likelihood cost function. To do that, we make use of the simulator SPRING.

In this method, we use the 3D GNSS signal propagation simulator SPRING to characterize
ranging errors and define this approximate maximum-likelihood cost function. To do this, our
proposed algorithm follows these following steps :
— Step 1 : Outdoor Candidate Positions Definition

As shown in the previous section, using the software Q-GIS and the 3D city model, we
define an outdoor of candidate position in the search area of the environment under
study. This 2D array of equidistant candidate positions will be termed as Γ = {xi =
(xi, yi, z)T }, where the height z is obtained using terrain height aiding via the 3D GNSS
signal propagation simulator. The index i refers to the index of the candidate position.
The used spacing will be defined in the experimental section. The size of the grid, the
number of candidate position will be defined in the experimental section.

— Step 2 : PR Bias Prediction by 3D SPRING Simulation
As explained in algorithm 1, we perform 3D SPRING simulation for each of these
candidate positions. 3D simulator SPRING allows predicting the corresponding PR
biases for each received ranging measurement for this array of candidate positions :
Ω = {b3D(xi) = (b3D(xi)1, · · · ,b3D(xi)N )T }. The index i refers to the index of the
candidate position. N refers to the number of received PR measurements.

— Step 3 : Approximate Maximum-likelihood Cost Function
Based on predicted 3D PR bias, we define the approximate maximum-likelihood cost
function as (→ and 7→ are common functional declarations) :

P : Γ→R
xi 7→ P (y|xi,b3D(xi)) = ‖y−Hxi − b3D(xi)‖2R−1

(3.6)

Where, as defined in section 1.2.2, y is the linearised pseudorange (PR) measurements
vector. H contains the unit line-of-sight (LOS) vectors between satellites and reference
point x0 = (x0, y0, z0)T . xi = (xi − x0, yi − y0, zi − z0, bRx)T is candidate state vector
containing an incremental deviation from the known reference point x0, i.e. the three
coordinates of the candidate position (xi, yi, zi)T and the receiver clock bias bRx. R =
E[nnT ] is the covariance matrix of the white Gaussian noise n. This new cost function
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is based on predicted 3D PR bias and is approximating the maximum-likelihood cost
function of the GNSS problem by substituting the unknown MP/NLOS bias b with the
3D predicted PR bias from SPRING b3D(xi).

— Step 4 : Final Estimate
By evaluating the previous approximate maximum-likelihood cost function (score func-
tion) on the array of candidate positions, we define an approximate maximum likelihood
(AML) estimator as :

x̂AML = argmin
xi

P (y|xi,b3D(xi)) (3.7)

This AML estimator represents the candidate position that minimizes likelihood scores
(approximate maximum-likelihood function) for the set of candidate positions. A weigh-
ted average is likely to give a better result and this is taken into account in 3.3.1.3. Li-
kelihood surfaces of this cost function will be presented in the experimental validation
section in 3.4.3.2.

3.3.1.2 Physical Interpretation

The approximate maximum-likelihood function in (3.6) can be seen as a scoring function
applied to a candidate positions Γ = {xi} by evaluating the similarity between true received
PR measurements innovation y at the user unknown location and 3D predicted PR measure-
ments, using SPRING simulation, at each candidate position Hxi+b3D(xi). It can be seen also
as PR bias similarity between 3D predicted PR bias, using 3D simulation at each candidate po-
sition b3D(xi) and true PR bias at each candidate position y−Hxi (as, by using the notation
of this dissertation provided in 1.2.2, Hxi = h(xi)−h(x0) = h(xi)−(z−y+c.dTi

Sat−Ii−Ti),
which gives y −Hxi = z − (h(xi) − c.dTi

Sat + Ii + Ti), i.e. the difference between received
PR and LOS PR at each candidate position). AML-3D positioning is then based on PR mea-
surement similarity scoring or PR bias similarity scoring of an array of candidate positions.
By way of illustration, a block diagram of our proposed algorithm is given in Fig. 3.7. The
physical interpretation of the AML-3D algorithm is explained in Fig. 3.6.

3.3.1.3 Practical Implementation

Practical Computation of the Scoring Function
Even if it has been proven that the AML estimator converges to the most efficient ML esti-
mator under the assumption of an accurate 3D simulation, the expression of such estimator
is very computationally intensive since it requires a minimum search over a grid of candidate
position containing four unknowns. These unknowns are the user position (x, y, z) and the
clock bias bRx (common between all the received satellites).

To reduce the estimation complexity, a standard method [66] consists of using the 3D city
model to avoid the estimation of the height information. Given the horizontal coordinates of
each grid point, a height is associated to this point using the 3D city model which avoids the
computational load over a 3D search area.
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Figure 3.6 – AML-3D : Physical interpretation
Figure 3.7 – AML-3D algo-
rithm block diagram

For the sake of simplification, the receiver clock bias is eliminated by proceeding to a diffe-
rencing of all ranging measurements across satellites using a reference satellite. The selection
of reference satellite is quite important. This satellite must have a reliable and almost “clean”
ranging measurement. Basic indicators for this selection process include elevation angle and
C/N0 values. Ref. [3] proposes a reference satellite selection using LOS probability obtained
via experimental data. This LOS probability is computed using signal power distributions
with tuning parameters fixed using experimental data. It can be expressed as :

PLOS = ln pLOS(C/N0|θ)
pNLOS(C/N0|θ)

Where PLOS is the LOS probability for a considered satellite, θ is the vector containing the sa-
tellite elevation angles, expressed in degrees. C/N0 is the carrier-to-noise-density ratio vector,
expressed in dB-Hz. pLOS(C/N0|θ) and pNLOS(C/N0|θ) are the signal power distributions of
LOS and NLOS satellites, which depend on fixed tuning parameters. Further details about
these tuning parameters may be obtained in [3].

Since the proposed approach is 3D-simulation-accuracy-dependent, we propose to estimate
the uncertainty in the bias estimation provided by the 3D GNSS signal propagation simulator.
As shown in the SPRING simulator reliability sub-section 3.1.3.1, PR biases of high elevation
signals are usually correctly estimated by 3D GNSS signal propagation simulations, as the
signal have less interactions with the environment surrounding the receiver contrary to low
or medium elevation signals. Then, we propose the following formula as estimation for this
uncertainty in the bias prediction. This formula is proposed to ensure a low inaccuracy for
high elevation satellites.

(δ̃3D)j = αMax−Inaccuracy exp(θj/(θj − 90◦)) (3.8)

where αMax−Inaccuracy refers to the highest error on bias estimation, obtained using ex-
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perimental data and θ are satellite elevation angles, expressed in degrees. In this dissertation,
this uncertainty in the bias prediction δ̃3D is not used to correct the 3D PR bias prediction
using SPRING because we aim to present a general implementation of the algorithm. Ho-
wever, this aspect have been studied in the author’s paper [202]. We have shown in [202]
that this correction of the uncertainty of SPRING simulation improves the accuracy of our
algorithm. The parameter αMax−Inaccuracy is fixed to 5 meters in [202]. Finally, we remind
that δ̃3D is a vector with N components where N is the number of received satellites.

Once a reference satellite is selected, we modify the approximate maximum-likelihood cost
function (3.6) as follows :

P̃ (y|xi) = ‖y− yref1N − (H− 1NH(ref, :))xi − b3D(xi)− δ̃3D‖2R−1 (3.9)

Where yref is the ranging measurement of the reference satellite and H(ref, :) is the row
of observation matrix H corresponding to the reference satellite. The observation matrix H
is defined in the notation section in 1.2.2. 1N refers to the vector containing N elements with
all components being equal to 1. N being the number of received satellites. P̃ is the approxi-
mate maximum-likelihood cost function defined in (3.6) and P̃ is the modified approximate
maximum-likelihood cost function used for the practical implementation of the AML-3D al-
gorithm, that take into account the receiver clock bias compensation, the height aiding and
the correction of the uncertainty on 3D PR bias prediction.

Practical Estimation of the Final AML-3D Position
Considering the final position as the candidate position having the lowest score, i.e. minimi-
zing the approximate maximum-likelihood cost function in (3.9), could gives a bad estimate.
Therefore, we propose to estimate the final AML-3D solution as a weighted average of the
candidate positions with the lowest scores, i.e. the highest PR measurements matching, as :

x̂AML =

NTh∑
i=1

(P̃ (y|xΩ
i ) < Th)xΩ

i

NTh∑
i=1

(P̃ (y|xΩ
i ) < Th)

(3.10)

Where Th is the threshold used for selecting the lowest scores, NTh corresponds to the
number of grid points with a matching score lower than the threshold Th and the set Ω =
{xΩ

i , i = 1, · · · , NTh} refers to the subset of candidate positions with the lowest scores. Th
is determined using experimental data. The used value of Th is detailed in the experimental
section 3.4.3.2. Finally, the proposed approach is summarized in algorithm 3 below :
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Algorithm 3 AML Estimation
Inputs : linearized PR y, Measurement matrix H and maybe the uncertainty on 3D PR

bias prediction by SPRING simulation δ̃3D
Output : incremental deviation in 2D x̂AML

1: Reference satellite selection using elevation criterion
2: Define search area and grid of outdoor candidate positions

Define an array of 2D outdoor points Γ = {xi = (xi, yi, z)T } using Q-GIS software and
the 3D city model

3: Estimate a bank of PR biases over candidate positions
Estimate PR biases, using 3D GNSS signal propagation simulation, for the considered
array of candidate positions Ω = {b3D(xi) = (b3D(xi)1, · · · ,b3D(xi)N )T }

4: Likelihood scoring for each candidate position
Compute P̃ (y|xi) using (3.9)

5: AML-3D position estimation
Estimate AML-3D solution x̂AML using (3.10)

3.3.1.4 Innovation compared to the state of the art

Much of the previous research described in section 2.6.2 has focused on using 3D model
for position candidates scoring among an array of candidate positions using different scoring
functions. The proposed method in this section is based on defining a likelihood function
based on similarity between received PR measurements and predicted PR measurement at
each candidate by use of 3D predicted PR biases from the 3D GNSS signal propagation
simulator SPRING. In this work, we eliminate the receiver clock bias from the problem
estimation by computing the difference between all ranging measurements across satellites
and a reference satellite selected using different indicators such as elevation angles, C/N0
levels and LOS probability. This point represents the main difference compared to the work
in [168], where the receiver clock bias is used (the clock bias is not estimated but instead the
value of receiver clock bias estimated by the commercial receiver is directly used). Besides,
in this work, we prove that this likelihood function is an approximation of the maximum
likelihood function of the GNSS problem, which, to the best of our knowledge, have not
been proven before. Another innovative aspect compared to the state of the art (in particular
[168]) is the derivation of the theoretical performance of this method in case of accurate bias
estimation by a 3D GNSS signal propagation simulator. This derivation is provided in the
appendix B. A further innovative aspect is the new modelling of the uncertainty on the bias
prediction by 3D signal propagation simulation that have been taken into account to improve
the accuracy of the proposed approach.
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3.3.2 PM-3D : 3D Position Matching

3.3.2.1 Principle

In this sub-section, we use the 3D GNSS signal propagation simulator SPRING to estimate
PR errors and define another scoring function based on position matching (the reason for
this denomination will be explained in section 3.3.2.2) and not measurement matching as in
the previous method. This position matching metric evaluates the similarity between each
point of a set of candidate positions Γ = {xi = (xi, yi, z)T }i and each point of a set of
calculated positions Γ1 = {H+(y − b3D(xi))}i obtained via LS-type projection (using H+)
applied to corrected linearized PR measurements using 3D predicted PR biases from SPRING
simulations. This proposed algorithm follows these following steps :
— Step 1 : Outdoor Candidate Positions Definition and PR Bias Prediction

As detailed in the AML-3D algorithm, we define a 2D array of equidistant outdoor
candidate positions Γ = {xi = (xi, yi, z)T } in the environment under study, using the
software Q-GIS and the 3D city model. The index i refers to the index of the candidate
position. The used spacing, the size of the grid and the number of candidate position
will be defined in the experimental section 3.4.3.2. For each candidate position, we
predict the corresponding PR bias using SPRING to obtain a bank (per satellite and
per candidate position) of 3D PR bias : Ω = {b3D(xi) = (b3D(xi)1, · · · ,b3D(xi)N )T }.

— Step 2 : Define a Reference Satellite
Based on C/N0 ratios or elevation angles or LOS probabilities, we define a reference
satellite : satellite having the most reliable and "healthy" PR measurements.

— Step 3 : Estimate 3D PR bias prediction uncertainty
Estimate the uncertainty on 3D PR bias prediction using SPRING simulation δ̃3D based
on the presented model in (3.8).

— Step 4 : Position Matching Cost Function
Based on predicted 3D PR bias, we define the following cost function Ψ as :

Ψ : Γ→R
xi 7→ Ψ(y|xi,b3D(xi)) = ‖H+(y− b3D(xi))− xi‖22 = ‖H+[P (y|xi,b3D(xi))]‖22

= ‖H+(Hxi + b3D(xi))− x̂LS‖22

(3.11)

Where→ and 7→ are common functional declarations, x̂LS = H+y = (HTR−1H)−1HTR−1y
is the LS solution of the GNSS problem and ‖z‖22 = zT z is the norm 2 for any vector
z. y is the linearised pseudorange (PR) measurements vector. H contains the unit
line-of-sight (LOS) vectors between satellites and reference point x0 = (x0, y0, z0)T .
xi = (xi − x0, yi − y0, zi − z0, bRx)T is candidate state vector containing an incremental
deviation from the known reference point x0, i.e. the three coordinates of the candidate
position (xi, yi, zi)T and the receiver clock bias bRx. This new cost function is based on
predicted 3D PR bias. This metric represents a projection of the previous metric P (the
approximate maximum-likelihood function of the AML-3D estimator) from the measu-
rement level onto the position level using the operator H+ = (HTR−1H)−1HTR−1.
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As for the AML-3D cost function, the practical implementation of this metric will require
the use of a reference satellite for receiver clock bias elimination. The modified position
matching cost function is then the following :

Ψ̃(y|xi,b3D(xi)) = ‖(H+ − 1MH+(:, ref))(y− yref1N − b3D(xi)− δ̃3D)− xi‖22
(3.12)

Where yref is the ranging measurement of the reference satellite and H+(ref, :) is the
row of matrix H+ corresponding to the reference satellite. 1N and 1M refer to vectors
containing N and M elements with all components being equal to 1, respectively. N
being the number of received satellites andM the number of unknowns to be estimated.
As in the AML-3D estimator, Ψ̃ is an approximation of the cost function Ψ that takes
into account the receiver clock bias compensation, the height aiding and the correction
of the uncertainty on 3D PR bias prediction.

— Step 5 : Final Estimate
By evaluating the previous cost function on the array of candidate positions, we define
the position matching (PM) estimator as :

x̂PM =

NTh∑
i=1

(Ψ̃(y|xΩ
i ) < Th)xΩ

i

NTh∑
i=1

(Ψ̃(y|xΩ
i ) < Th)

(3.13)

Where Th is the threshold used for selecting the lowest scores, NTh corresponds to the
number of grid points with a matching score lower than the threshold Th and the set
Ω = {xΩ

i , i = 1, · · · , NTh} refers to the subset of candidate positions with the lowest
scores. This PM estimator represents a weighted average of the candidate positions with
the lowest scores, i.e. the highest matching. Th is determined using experimental data.
The used value of Th is detailed in the experimental section 3.4.3.2.

3.3.2.2 Physical Interpretation

The position matching metric evaluates the similarly between candidate positions and
position obtained by PR measurement correction, over an array of candidate positions.

If the 3D GNSS signal propagation simulator is sufficiently accurate, the projection of the
"LS" type applied to simulated PR measurements (predicted by the SPRING-3D simulator)
obtained by SPRING simulation at a candidate position xi close to the true position x, will
give a solution close to the LS solution obtained by applying the LS algorithm to true PR
measurements received at the true unknown position. The physical interpretation of PM-3D
algorithm is explained in Fig. 3.8. By way of illustration, a block diagram of our proposed
PM-3D algorithm is given in Fig. 3.9.
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Figure 3.8 – PM-3D : Physical interpretation
Figure 3.9 – PM-3D algorithm
block diagram

3.3.2.3 Innovation and differences with AML-3D

The proposed method in this section is based on a likelihood function computing the si-
milarity between a conventional Least-Squares (LS) solution, obtained by a LS-like projection
of the true received PR measurements at the unknown user location, and a virtual LS solu-
tion obtained by a LS-like projection of predicted PR measurements, obtained by use of the
3D GNSS signal propagation simulator SPRING at a set of candidate points. This method
belongs to the class of methods using 3D modelling to score an array of candidate positions.

In this work, we use PR bias prediction from a 3D GNSS signal propagation simulator
to define a new scoring function. To compute this function, we eliminate the receiver clock
bias by computing the difference between all ranging measurements across satellites and a
reference satellite. A derivation of this function is also provided in the author paper [203].
The theoretical performance of this estimator is provided in the appendix B.

The defined scoring function in the section above represents a projection onto the position
level of the AML-3D scoring function presented in the previous section. In fact, the AML-3D
scoring function represents the similarity between true observations and predictions (from
SPRING simulation) using the PR measurements information. By projecting this similarity
onto the position level, we define it using the position information.

3.4 Experimental Validation

We have chosen in this section to evaluate separately the positioning performance of the
proposed algorithm based on PR correction and the positioning performance of the proposed
algorithms based on scoring over candidate positions.
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3.4.1 Experimental Settings

Experiments have been carried out in Toulouse to assess the level of performance of
the proposed positioning algorithms in this chapter. GPS L1 C/A code PR measurements
were recorded along the “Capitole Square” in Toulouse using a Septentrio AsteRx3 receiver.
A Novatel SPAN system including a DGPS receiver tightly integrated with an FSAS-IMU
(from iMAR), with decimetre level of positioning accuracy is used as the reference system.
Measurements from both receivers were sampled at 10 Hz. For this test, we used a 4-min
trajectory along a deep urban environment characterized by narrow streets and buildings
alongside the streets. Fig. 3.10 shows the number of GPS satellites obtained during this
measurement campaign.

Figure 3.10 – Number of GPS Satellites across time (SPRING figure without possible mo-
dification of font-size)

An overview of the considered urban environment and the Sky-plot of the GPS received
satellites in the deep urban section are shown in Fig. 3.11.

(a) Tested Urban Environment (b) Sky-Plot of GPS Satellites

Figure 3.11 – Tested Urban Environment and the obtained Sky-Plot

These recorded PR measurements collected using the AsteRx3 Septentrio receiver along
this urban canyon environment show how poor the GNSS positioning performance is, using
conventional LS estimation, in the presence of MP and NLOS bias. The obtained results are
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shown in Fig. 3.12. This figure presents also the cumulative distribution function (CDF) of
the trajectory position error with respect to the reference trajectory in each ENU direction
using a conventional least squares with GPS signal only.

(a) Positioning using Least Squares solution : Blue dots refer to the reference trajectory ; red
dots refer to the LS trajectory

(b) Localization errors distribution of the Least Squares solution : North (Blue color), East
(Red color) and Vertical (Pink color) positioning errors in urban environments (SPRING figure

without possible modification of font-size)

Figure 3.12 – Example vehicular results in Toulouse

The performance of the PR Correction using Bias Bounds algorithm, termed as the CEKF
algorithm for Constrained EKF, will be evaluated in the next sub-section using bias bounds
predicted using the 3D GNSS signal propagation simulator SPRING (realistic case).

For the validation of the algorithms based on candidate positions scoring, we have selected
a trajectory along an urban environment characterized by narrow streets and medium-height
buildings. We have used the elevation angle as criterion for reference satellite selection for
both AML-3D and PM-3D estimation, by considering the reference satellite, i.e. the satellite
having no PR bias, at each candidate position as the satellite having the highest elevation
angle. For the performance assessment of these two methods, we have used PR measurements
collected using an Ublox 6T receiver and with the same Novatel SPAN reference system. The
measurements from the Ublox receiver were sampled at 4 Hz and those of the Novatel SPAN
system were sampled at 10 Hz and down-sampled to 4 Hz.
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For illustration of the used grid of candidate positions, Fig. 3.13 shows the used array
of positions. In this experimental evaluation of our algorithms, we have used 1600 outdoor
candidate positions in a square area in the region of interest. These positions are uniformly
distributed in this search area with a spacing of 1m. A pre-processing algorithm is implemented
to exclude the indoor points based on the 3D model of the city and using the software Q-GIS.
Hence, this grid of candidate positions contains only outdoor locations. The red cubes refer to
the used reference trajectory, while white cubes represent the considered candidate positions.
For the performance assessment of AML-3D and PM-3D algorithms, because of the excessive
computational loads of SPRING simulations, we have selected a 20-seconds trajectory along
this urban environment (red dots in Fig. 3.13) with a rate of 4 Hz. Hence, for the experimental
analysis in 3.4.3.2, 80 epochs are considered.

Figure 3.13 – Used Grid of candidate positions

3.4.2 GNSS Measurements correction by bias bounding using a 3D GNSS
signal propagation simulator

In this sub-section, we use the 3D GNSS signal propagation simulator SPRING to define
upper and lower bias bounds. We have used the same data recorded in the same urban canyon
environment studied in the previous example above. For PR bias bounds prediction, we have
used algorithm 1 with a grid of 3 × 3 points centred in the true position and spaced by
approximately 1 meter in north and east directions. We have used a small grid of points
because of the heavy computational loads of SPRING simulation in the case of a large grid
with a 4-min trajectory.

After the PR bias bounds estimation using this grid, the CEKF position can be computed
and compared to the conventional EKF position. Performances will depend on the quality of
the PR bias bounds prediction using the 3D GNSS signal propagation simulators. By way of
illustration, the variation of the bias bounds using the 3D simulator SPRING is drawn in Fig.
3.14(a) for PRN 28 for example. PRN 28 has been chosen by way of illustration and the other
satellites give similar results. PRN 28 is a medium elevation satellite of approximately 35◦ of
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elevation angle as shown in Fig. 3.11. Fig. 3.14(b) provides the CDF of horizontal positioning
errors of both solutions.

(a)

(b)

Figure 3.14 – Positioning performances using 3D bias bounds : 3.14(a) 3D Bias Bounds and
"measured" true bias using [3] for satellite PRN 28 ; 3.14(b) CDF of horizontal errors along the
considered trajectory using 3D bias bounds estimation. Experimental settings are described
in section 3.4.1.

The gaps observed in Fig. 3.14(a) are caused by the non-reception of satellite PRN 28
during these epoch times. The predicted PR bias bounds have a different variation compared
to the "measured" true PR bias which means that the 3D estimated mean bias bounds have
a higher variation than the measured "true" unknown PR bias variation (estimated using the
algorithm described in 3.1.3.1). The previous CDF figure shows that the CEKF estimator
gives a performance improvement compared to EKF with bias bounds estimated using a 3D
GNSS signal propagation simulators especially for high positioning errors.

The proposed method based on PR bias bounds is essentially sensitive to these PR bias
correction by mean bias bounds (as CEKF algorithm is based on PR correction based on mean
bias bounds as described in algorithm 2) and then to the bias bounds prediction as it will
be studied and proven in section 3.5. We propose in this section 3.5 to study the acceptable
level of PR bias estimation using a 3D simulator to obtain better positioning accuracy than
a conventional algorithm such as LS. This admissible region of inaccuracy will be defined
theoretically in section 3.5 and validated using real GNSS data.
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3.4.3 Performance of Algorithms Based On Candidate Positions Scoring

3.4.3.1 Comparison Algorithm : Shadow-Matching (SM-3D)

Shadow Matching solution [157] uses 3D building models to improve cross-track positio-
ning accuracy in harsh environments by predicting which satellites are visible from different
candidate locations and comparing this information with the measured satellite visibility
to determine the final user solution. This positioning approach is based on GNSS and 3D
model fusion for satellite shadows scoring of candidate positions. By achieving metre-order
cross-street positioning in urban canyons, it was implemented for smartphone applications
[161, 162]. The basic Shadow-Matching approach can be summarized in algorithm 4.

Algorithm 4 Shadow-Matching Estimation
Inputs : C/N0 Measurements (for satellite visibility)
Output : x̂SM

1: Define search area and grid of outdoor candidate positions
2: Building Boundaries (BB) computation [47]

For each candidate position, predict building edges using the 3D city model
3: Predict satellite visibility

For each candidate position, predict satellite visibility using the Building Boundaries
4: Measure satellite visibility

Use C/N0 ratios to determine the observed satellite visibility using the LOS probability
model and the same parameters as presented in [158].

5: Scoring of candidate positions
Based on predicted and measured satellite visibility matching, score each candidate posi-
tion. We have used the same scoring presented in [158].

6: Final position estimation
Estimate the final user position based on weighting of position having the highest scores
as presented in [158] with the same parameters.

In this experiment, we have used our implementation of a Shadow Matching solution
to compare and assess the performance of our proposed algorithm. The Shadow Matching
algorithm has been implemented using GPS and GLONASS signals. Our proposed AML-3D
and PM-3D algorithms have been implemented using GPS signals only since 3D GNSS signal
propagation simulation using the GLONASS constellation is not yet developed by the CNES
in the current version of the SPRING simulator.

3.4.3.2 Positioning Performance of AML-3D and PM-3D

For this validation test, we assess the positioning performance of the AML-3D and PM-3D
solutions. We have set the uncertainty of the bias prediction using SPRING δ̃3D to zero and
we fixed the threshold Th to 15% of positions having the highest scores for both AML-3D
and PM-3D estimators. As AML-3D, SM-3D and PM-3D are all epoch-by-epoch solutions,
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we have chosen to compare them with a conventional least-squares algorithm (an epoch-by
epoch solution). Fig. 3.15 shows the cumulative distribution function of the horizontal position
errors of the proposed AML-3D solution, the proposed PM-3D solution, Shadow-Matching
solution (SM-3D) and the conventional solution in the considered scenario.

Figure 3.15 – CDF of Horizontal Positioning Errors

It is apparent from the CDF figure in Fig. 3.15 that our approach AML-3D gives the
highest positioning performance in this scenario. Positioning performance of our proposed
AML-3D and PM-3D algorithm are enhanced compared to the conventional GNSS solution.
AML-3D and PM-3D solutions give almost the same horizontal positioning accuracy as the
Shadow-Matching solution (SM-3D : ISAE Version) in this scenario.

We have compared the positioning performance using AML-3D and PM-3D solutions,
Shadow-Matching solution (SM-3D), the Ublox receiver solution and a conventional Least-
Squares solution. AML-3D, PM-3D, SM-3D and the Least-Squares solution are all epoch-by-
epoch solutions. The Ublox solution is a filtered solution. We compare horizontal positioning
errors (HPE) for these estimators in this scenario. Results are shown in Table 1.1. We notice
that AML-3D outperforms, on average, all other solutions. However, PM-3D algorithm is
more robust to large errors than the AML-3D algorithm.

The scoring map of the proposed AML-3D solution and the different solution for a fixed
time epoch is shown in Fig. 3.16. Experimental settings are described in section 3.4.1. The
selected epoch is at the end of the selected trajectory. We have chosen to add the position
estimated by the Septentrio receiver used in these experiments jointly with the Ublox receiver.
In this plot, scores of candidate positions are normalized between 0 and 100%.

Fig. 3.16 illustrates the effectiveness of the proposed AML-3D and PM-3D algorithms even
in degraded conditions. Positioning performance of the solutions based on candidate positions
scoring exceed that of the receiver solutions. Taking into account that the 3D simulator
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Table 3.1 – Horizontal Positioning Performance of AML-3D and PM-3D

AML-3D PM-3D SM-3D UBLOX Conventional Algorithm (LS)

Mean of HPE [m] 3.18 3.41 4.22 7.27 6.6

HPE at 95% [m] 5.86 6.36 7.95 11.65 14.66

HPE at 97% [m] 6.66 6.5 9.15 11.85 15.78

HPE at 99% [m] 9.18 8.64 9.56 12.41 18.32

Figure 3.16 – AML-3D scoring map with different estimation solution

SPRING is continuously improved by CNES, these performance obtained by AML-3D and
PM-3D might reach higher positioning accuracy. Finally, further analysis on the parameters
used in these methods, and especially the enhancement obtained by applying a 3D bias
uncertainty prediction, are provided in author’s ION GNSS 2017 [202] and ITNST 2017 [203]
papers. We have chosen to not add these analysis in the dissertation for the sake of clarity
and ease of comprehension.

Despite this performance enhancement, the proposed approaches (AML-3D and PM-3D)
are computationally intensive because of the bias estimation using the 3D GNSS signal pro-
pagation simulators. By way of comparison, Table 3.2 gives the computational loads of these
algorithms compared to SM-3D for the same grid of positions. Nevertheless, with technolo-
gical progress, this method may be implemented on a server and send the 3D biases to the
mobile receiver to compute its position. It is worth recalling that Building Boundary (BB)
computation in the SM-3D algorithm is performed using Matlab without the use of SPRING
simulation. For the bias bounding algorithm (CEKF), the computational loads will be simi-
lar to those of the AML-3D and PM-3D solutions because these 3 algorithms use the same
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SPRING simulations.

Table 3.2 – Computational loads for the whole trajectory (presented in Fig. 3.13) with 80
samples of AML-3D, PM-3D and SM-3D

AML-3D
(SPRING Simulation)

PM-3D
(SPRING Simulation)

SM-3D
( Only BB

computation - ISAE
Implementation)

Software SPRING V4.1.0.7137 SPRING V4.1.0.7137 Matlab 2013a
CPU i7-4770 3.4GHz i7-4770 3.4GHz i5-3470 3.2GHz
Time [s] 10640 (2h57min) 10640 (2h57min) 3981.65 (1h6min)

3.5 Minimum Acceptable Level of 3D Bias Prediction

It is obvious that the PR biases predicted by GNSS simulation can not be instantaneous
and certainly accurate. The proposed method based on PR measurements correction based on
PR bias bounds, presented in section 3.2, is very sensitive to these 3D PR bias predictions and
correction as shown in the experimental section. This PR correction step is a sensitive task :
poor PR biases prediction engenders an erroneous PR correction and then may sensitively
reduce the position estimation accuracy instead of enhancing it. Consequently, we study in this
section the influence of the inaccuracy on the prediction of PR bias, by GNSS simulation or
other means, on positioning performance of algorithms based on PR measurements correction.

The fundamental question addressed in this sub-section is : how accurate the PR bias
estimation, by a 3D simulator or others tools, should be to ensure that any algorithm based
on PR correction, termed here as a CLS algorithm for Corrected Least-squares, gives better
performance in term of positioning accuracy compared to conventional positioning algorithms
such as the LS. This accuracy condition defines the acceptable/permissible level of imprecision
on the estimation of PR bias that any 3D GNSS signal propagation simulators must not exceed
in order to improve the positioning performance by correcting PR measurements. First, we
formulate the general formulation of this accuracy condition on PR bias prediction. Then, this
condition is tested on real measurements collected in the city of Toulouse. Finally, a detailed
analysis of the maximum level of acceptable inaccuracy in PR bias prediction is carried out by
type of environment (urban, suburban and rural) and by satellite elevation angles and CN0
levels. The performance condition for defining this maximum level of acceptable inaccuracy on
PR bias prediction is defined by comparing the accuracy of the solution obtained by correcting
PR measurements with a conventional LS. However, this methodology remains general and
other estimators can be used. Also, the following analysis is valid for any other source of
information allowing the prediction of PR bias, including multi-sensor navigation.
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3.5.1 Theoretical condition on bias prediction for PR measurements cor-
rection

The maximum acceptable level of inaccuracy in PR bias prediction to achieve better
performance by PR measurements correction compared to conventional LS can be defined
based on the overall MSE of both the CLS and LS estimators as :

OMSE[x̂CLS ] = Tr{MSE(x̂CLS)} ≤ OMSE[x̂LS ] = Tr{MSE(x̂LS)} (3.14)

In the case of uncorrelated MP/NLOS bias b between satellites, this relation leads to :

Tr{H+
bE{δbδb

T }H+
b } ≤ Tr{H+E{bbT }(H+)T } − βb (3.15)

Proof : See Appendix C.

Where δb = c− b the error in the PR bias prediction, c is the predicted PR bias (using
3D simulation or other tools), H+ = (HTR−1H)−1HTR−1 is the pseudo-inverse of matrix
H weighted by the inverse of noise covariance matrix R, H+

b = (HTR−1
b H)−1HTR−1

b is
the pseudo-inverse of H weighted by the noise covariance matrix of the CLS algorithm Rb
that might be different from the noise covariance matrix of the LS algorithm R and βb =
Tr{(HTR−1

b H)−1} − Tr{(HTR−1H)−1}.

In the theoretical case of only one faulty measurement in the ranging measurement from
one satellite j, i.e. b contains only one non-zero value (if we compensate ionospheric, tropos-
pheric, ephemeris and satellite clocks errors using some models and neglect the PR measure-
ments noise), the condition (3.15) can be simplified as :

(E{δbδbT })j ≤

∑
k

[(H+)k,j ]2∑
k

[(H+
b )k,j ]2

(E{bbT })j −
βb∑

k
[(H+

b )k,j ]2
(3.16)

If we define the damping coefficient εj =

∑
k

[(H+)k,j ]2∑
k

[(H+
b )k,j ]2

, then we have :

(E{δbδbT })j ≤ εj(E{bbT })j − (βb/
∑
k

[(H+
b )k,j ]2) (3.17)

This damping coefficient appears because we have augmented the noise covariance matrix
Rb using the PR bias prediction c, i.e. Rb takes into account the prediction of PR bias c
and may be different from R. If we haven’t use this augmentation, i.e. Rb = R, then the
damping coefficient εj will be equal to 1 and βb = 0 . Thus, the condition (3.17) becomes :

(E{δbδbT })j ≤ (E{bbT })j (3.18)
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This condition means that the bias bound prediction error must have a lower variation
than the true unknown PR bias variation to obtain better performance by correcting the
PR measurement. The damping coefficient allows widening the admissible region of bias
estimation inaccuracy since it is higher than 1, in general.

Finally, the condition (3.15) is a general condition that any positioning algorithm based
on PR measurements correction must verify to ensure lower estimation errors than conventio-
nal LS algorithm without PR measurement correction. This condition defines the maximum
acceptable level of uncertainty on the PR bias prediction in term of positioning accuracy.

3.5.2 Experimental calculation of maximum acceptable imprecision on PR
bias prediction

In this sub-section, we will experimentally evaluate and validate the previous found maxi-
mum acceptable level on PR bias prediction inaccuracy for different GNSS satellites. The
procedure for the experimental validation (using the experimental settings introduced in sub-
section 3.4.1) is as follows :
— First, the PR measurements of all satellites are corrected using the measured "true" bias

value, predicted using [3]. This method was explained in subsection 3.1.3.1.
— Then, we model the error on the prediction of PR bias of the satellite (δb)j under study

by a Gaussian distribution with a variable mean and variance, i.e. (δb)j ∼ N (µ, σ2).
— Finally, the values of the mean µ and the variance σ2 of this Gaussian distribution

(of (δb)j) are varied until reaching the condition of equality between the positioning
errors of LS and CLS algorithms, i.e. LS algorithm and CLS algorithm based on PR
of the satellite "j" correction using the correction value (δb)j , i.e. OMSE[x̂CLS ] =
OMSE(µ, σ) = OMSE[x̂LS ].

It is highlighted that in this particular case of a Gaussian error distribution of the estimate
of the satellite bias "j", the mean square error of the CLS estimation is written as :

OMSE(µ, σ) = Tr{(HTR−1
b H)−1}+

∑
k

[(H+
b )k,j ]2(σ2 + µ2) (3.19)

Proof : See Appendix C.

In this case, the condition on the mean µ and the variance σ2 of this bias estimation
error on satellite "j" (δb)j to obtain better positioning performance than the LS algorithm
is obtained from equation (3.17) with E{δbδbT }j = σ2 + µ2 as (δb)j ∼ N (µ, σ2). It is as
follows :

(σ2 + µ2) ≤ εj(E{bbT })j − (βb/
∑
k

[(H+
b )k,j ]2) (3.20)

If no augmentation is present on the noise covariance matrix of the CLS estimator, ie.
Rb = R, the maximum acceptable level on the PR bias of the satellite "j" error estimation,
termed in the following equation as (E{δbδbT })j , is equal to :
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(E{δbδbT })j = (σ2 + µ2) Where σ and µ satisfy OMSE(µ, σ) = OMSE[x̂LS ] (3.21)

Fig. 3.17(a) illustrates the overall mean squares errors OMSE variation as a function of
the mean and variance of the error on the prediction of the bias of a GPS satellite in an urban
environment. The used GPS satellite is PRN 28. It have been chosen by way of illustration.
PRN 28 is a medium elevation satellite of approximately 35◦ of elevation angle as shown in
Fig. 3.11.PRN 28 have been chosen by way of illustration and the other satellites give similar
results. PRN 28 is a medium elevation satellite of approximately 35◦ of elevation angle as
shown in Fig. 3.11. The experimental settings are the same used in previous sections and
are described in 3.4.1. The constant curve corresponds to the variation of the OMSE of the
LS solution. It is normal that this OMSE is constant as a function of the mean and the
variance of the error on the prediction of PR bias (δb)j since the LS algorithm is applied
to uncorrected PR measurements. The other curve corresponds to the variation of OMSE
obtained using the correction of PR measurement from the tested satellite. This figure shows
that a poor prediction of the bias will lead to higher positioning errors by correcting the PR
measurements with respect to the LS estimator. In Fig. 3.17(b), the top view of the OMSE
curves is presented. This view illustrates an area of acceptable error on bias prediction of this
satellite. This zone is defined as the region where the correction of PR bias, using predicted PR
bias, allows performance enhancement compared to the conventional positioning algorithms
such as the LS algorithm in this case. This figure shows a region of the maximum acceptable
error on the prediction of the PR bias using a 3D GNSS signal propagation simulator, thus
the minimum degree of realism of the 3D modelling necessary to make the PR measurement
correction information useful for positioning.

The same experimental procedure described at the beginning of this subsection is carried
out on several satellites and in various environments in order to estimate the experimental
maximum acceptable level of error on the PR bias prediction for different satellites and in
different environments. The results are analysed in the following subsections.

3.5.3 Minimum PR bias prediction error by environment and satellite

In this subsection, we will experimentally evaluate the levels of maximum acceptable
uncertainty on PR bias prediction for different satellites in an urban environment. We analyse
these levels of uncertainty according to the elevation angles of different satellites. In general,
the higher the angle of elevation, the less the signal is blocked or reflected by a building.
Therefore, the maximum acceptable uncertainty level should decrease as the elevation angle
increases. For this part, all the data of the urban section presented in section 3.4.1 are used.
The selected urban section consists of an approximately 4-min trajectory with a sampling rate
of 10 Hz, which gives 2400 data samples. The presented result in Fig. 3.18(a) is the average
of the required PR accuracy for each satellite using all data in this urban section.

Also, an analysis of the maximum acceptable levels on the prediction of the PR bias is
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(a) RMS error variation as a function of PR bias estimation error for one satellite in an urban environment

(b) Uncertainty bias prediction area in an urban environment

Figure 3.17 – Experimental minimum acceptable PR bias prediction error for a satellite
(PRN 28) in an urban area. Experimental settings are described in section 3.4.1.

carried out. Three types of environments are considered : an urban environment, a suburban
environment and an open environment. Since GNSS signals are generally of good quality in
open environments, the maximum acceptable levels on PR prediction must be lower than
those in urban environments. For this analysis, we have used the same equipment and data
collection described in section 3.4.1, but we have selected three kinds of environments (urban,
suburban and open environment). The selected suburban and open-sky sections consist of
approximately 6-min and 10-min trajectory, respectively, with a sampling rate of 10 Hz, which
gives 3600 data samples for the suburban section and 6000 data samples for the open-sky one.

The following figure shows the variation of these levels of maximum acceptable uncer-
tainties as a function of the elevation angles in Fig. 3.18(a) and for two GPS satellites with
different elevation angles in different environments Fig. 3.18(b). The used two satellites are
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PRN 13, with an elevation angle of approximately 60◦, and PRN 28, with an elevation angle
of approximately 30◦ as it can be seen in Fig. 3.2.

(a) Experimental maximum PR bias uncertainty as a function of satellite elevation in an urban environment

(b) Experimental maximum PR bias uncertainty in different environments for two GPS satellites

Figure 3.18 – Experimental minimum acceptable PR bias prediction error. Experimental
settings are described above and in section 3.4.1.

This study makes it possible to identify PR measurements that are very difficult to correct
on average, i.e. those of good quality and therefore should not be predicted using the 3D GNSS
signal propagation simulator. However, this has not been tested in real-time. In this scenario,
these signals are generally those of the high-elevation satellites. Also, the problem of GNSS
signal degradation is much more prominent in urban and suburban setting as oppose to
open-sky environments. This explains the difference between maximum acceptable PR bias
uncertainties between urban and open-sky environments as shown in Fig. 3.18(b).

Then, it is useful to use the 3D GNSS signal propagation simulator to correct PR mea-
surement in environments with high theoretical acceptable inaccuracy on bias estimation.
However, 3D GNSS signal propagation simulation should not be performed in open sky en-
vironments with a small theoretical acceptable inaccuracy on bias estimation, since there is
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a great risk of deteriorating PR measurements by modifying them. Also, satellite elevation
is not an absolute criterion to qualify the quality of the GNSS signal in urban environment.
Indeed, the configuration of the urban environment means that high elevation signals can
be reflected or received in NLOS situations, as is the case with the PRN 13 satellite at 53◦
elevation in this scenario.

3.5.4 Bias Estimation Using SPRING

In order to evaluate the PR bias prediction using SPRING and compare it with the
maximum acceptable uncertainty level on bias prediction, Table 3.3 gives the variation of
these two variables versus satellite elevation angles in an urban environment. This selected
urban section consists of the same urban environment present in 3.4.1 with approximately 4-
min trajectory at a sampling rate of 10 Hz (2400 data samples). Results consist of an average
using all data in this urban section.

Table 3.3 – Experimental maximum acceptable bias estimation uncertainty and bias esti-
mation error using SPRING. Experimental settings are described above and in section 3.4.1
with 2400 data samples

Average
Satellite
Elevation

(◦)

Average PR Bias
Estimation Error
using SPRING

Simulation [Meters]

Average Experimental
Maximum Acceptable

Uncertainty Level on PR
bias Estimation [Meters]

GPS 22 5.93 0.83 44.45
GPS 12 21.47 26.30 37.53
GPS 28 26.35 4.53 9.94
GPS 24 47.23 0.39 1.38
GPS 13 52.47 7.22 8.2
GPS 15 82.29 0.25 0

This comparison leads to the conclusion that the PR bias prediction error using SPRING
simulation (computed by comparing SPRING predictions with the measured "true" PR bias
obtained using [3]) is lower than the maximum acceptable on PR bias prediction error in
this particular environment presented in section 3.4.1. This result validates the use of the
3D GNSS signal propagation simulators SPRING for pseudorange bias correction in this
environment, which enhances slightly the positioning performance compared to conventional
algorithms as shown in section 3.4.2. It should be stressed that this study have been carried
out in a particular scenario and environment. Other results, using the same methodology,
should performed to validate PR bias prediction (on average) using SPRING. Unfortunately,
this was not performed during the thesis, because of the excessive computational loads of
SPRING simulations.
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This original study makes it possible to identify environments where it is useful to use a 3D
GNSS signal propagation simulator to predict PR biases in order to correct PR measurements.
Therefore, it allows the production of a map representing the environments where it is useful to
use a correction of PR measurements by prediction of PR biases via SPRING-3D simulation,
or other tools. If the same methodology explained above is performed in other scenarios and
environments, we can get these maps, that can be called "Bias Prediction Readiness Correction
Availability Maps". This study allows also the production of a requirement metric on PR bias
prediction by 3D GNSS signal propagation simulation. This metric express the average PR
bias estimation error for each 3D GNSS signal propagation simulator. Having this metric
allows to classify different 3D GNSS signal propagation simulators.

3.6 Summary and Conclusions

In the typical case of urban environments, the use of aiding information is generally
mandatory. In this chapter, we propose the exploitation of the characteristics of the receiver
environment using the CNES 3D GNSS signal propagation simulator SPRING to provide
aided information to the GNSS receiver.

This simulator is hybridized with the GNSS receiver in different ways : hybridization in
the measurements domain is based on the use of 3D predicted bounds on PR bias for PR
measurements correction. Another hybridization scheme is proposed in the position domain
which is based on scoring of an array of candidate positions using the 3D information from
the 3D GNSS signal propagation simulator. The proposed positioning algorithms are based on
the use of a grid of input positions introduced to the SPRING 3D GNSS signal propagation
simulator to predict PR biases on these candidate points and retain the position with the
best similarity between measurements and simulations based on two metrics : the metric of
PR matching between measured pseudoranges and those predicted one via bias prediction
by SPRING-3D, and the metric of position matching between candidate positions and posi-
tion obtained by PR measurement correction using SPRING-3D, over an array of candidate
positions. These proposed methods are summarized in Fig. 3.19.

Figure 3.19 – Proposed 3D Simulator/GNSS Integration architecture
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The proposed algorithms have been tested in an urban environment in Toulouse and
allow a significant accuracy improvement of 52% compared to the conventional LS solution in
deep urban environments. The disadvantage of these positioning algorithms, assisted by 3D
information, is mainly the need for the availability of large computational resources because of
SPRING simulations. However, other studies have used similar techniques with lighter GNSS
signal propagation algorithms working in real-time [168].

Finally, we have addressed the question of the merit of integrating a 3D simulator with
a GNSS receiver. This study enables the definition of the maximum level of inaccuracy on
bias estimation that any 3D GNSS signal propagation simulators, or any other tools used
for PR bias prediction, mustn’t exceed. This first study gives a methodology that permit the
identification of areas where on average a PR measurement correction is not useful or difficult
to obtain ; i.e. when bias correction will probably engender more performance degradation
than enhancement. This result would require applying the same methodology to different
environments and using more data samples. This study has also justified the use of the
SPRING simulator since 3D bias prediction using this tool is on average below the maximum
acceptable level on PR bias prediction in the particular urban environment studied in this
thesis. This result shows also the usefulness and the potential of these tools (3D models or 3D
GNSS signal propagation simulator) for positioning enhancement in presence of PR biases.
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Bornes inférieures de l’erreur
d’estimation GNSS en conditions

MP/NLOS

Introduction aux bornes inférieures

En estimation paramétrique, les performances d’un estimateur sont généralement carac-
térisées par son Erreur Quadratique Moyenne (EQM). Afin de quantifier les performances
ultimes pour un problème donné, des bornes inférieures sur l’EQM, indépendantes de la tech-
nique d’estimation employée, ont été établies dans la littérature.

En effet, la distribution de probabilité des échantillons de données reçues permet de déduire
certaines informations utiles sur les paramètres à estimer, ce qui permet d’estimer les bornes
inférieures sur l’EQM d’estimation. Dans cette optique, il semble nécessaire de disposer d’une
métrique quantifiant l’utilité de l’information fournie par la distribution de probabilité pour
l’estimation de paramètres inconnus. Une telle mesure peut être utilisée pour trouver des
limites inférieures (LB) sur les erreurs d’estimation de paramètres inconnus et ainsi donner
un aperçu des limites inhérentes au problème.

Par conséquent, les bornes inférieures de l’EQM donnent les expressions des erreurs d’esti-
mation minimales pouvant être obtenues de manière asymptotique (dans la limite d’un grand
nombre d’observations indépendantes) lors de l’estimation des paramètres. Ces bornes in-
férieures sont généralement dérivées pour des classes données d’estimateurs biaisés ou non
biaisés. Elles fournissent également des références auxquelles on peut comparer les perfor-
mances des estimateurs afin d’évaluer la qualité de l’estimation. Par exemple, parmi toutes
les bornes inférieures disponibles pour les estimateurs non biaisés, la plus utilisée est la borne
de Cramer-Rao (BCR), qui fournit la précision maximale possible des estimateurs du maxi-
mum de vraisemblance (EMV). Dans ce chapitre, nous nous intéressons à la déduction de
telles bornes inférieures (BI) dans le contexte GNSS en présence de dégradations sur les me-
sures de code, c’est-à-dire des échantillons de données reçues, provoqués par la réception de
trajets multiples et de NLOS.

En effet, étant donné que de nombreux facteurs affectent la précision du positionnement
final d’un récepteur GNSS en milieu urbain, il est judicieux de pouvoir analyser leur impact
respectif sur la limite minimale de précision de l’estimation de la position, et en particulier
pour les applications critiques qui englobent des exigences financières ou juridiques. C’est
l’objectif de ce chapitre.
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Non-Gaussianité de l’erreur GNSS

Comme indiqué dans les chapitres précédents, prévoir le niveau de dégradation de la
précision du positionnement de l’utilisateur en milieu urbain à l’aide uniquement des mesures
de pseudo-distances GNSS est une tâche très ardue. La prévision de ce niveau de précision
maximal nécessite la modélisation de toutes les sources d’erreur de positionnement afin de
définir la fonction de densité de probabilité (p.d.f.) des observations GNSS, une condition
essentielle pour la dérivation des bornes inférieures de l’erreur quadratique moyenne. Les
erreurs liées aux satellites (erreurs orbitales ou biais d’horloge satellite) et à la propagation
(retards ionosphériques et troposphériques) sont généralement faciles à modéliser ou à réduire
à partir d’observations à l’aide de modèles adéquats comme dans le SBAS (EGNOS, WAAS,
...). Cependant, dans les zones urbaines, les signaux GNSS directes deviennent rares. La
plupart des signaux sont vulnérables aux réflexions et aux erreurs causées par la propagation
du GNSS dans l’environnement, telles que la réception par trajets multiples. Ces erreurs sont
donc très difficiles à modéliser avec précision. Généralement, dans ces zones urbaines, les
erreurs GNSS sont non-gaussiennes.

Dans ces environnements sub-urbains et urbains, nous souhaitons évaluer la précision de
positionnement asymptotique du GNSS, ce qui soulève les questions suivantes :

1. Les bornes inférieures et l’estimateur de maximum de vraisemblance standard peuvent-
ils être calculés dans de tels environnements ?

2. Si les bornes inférieures standards ne peuvent pas être calculés, pouvons-nous dériver
des bornes inférieures modifiées, qui sont calculables ?

3. Si l’estimateur de maximum de vraisemblance standard ne peut pas être calculé, pouvons-
nous proposer un substitut, potentiellement sous-optimal mais calculable ?

Bornes inférieures modifiées

Malheureusement, comme déjà mentionné ci-dessus, dans le contexte GNSS en présence
de erreurs non gaussiens, la d.d.p. marginale des observations GNSS n’a pas de forme analy-
tique en raison de la présence de la contribution non gaussienne des MPs. En conséquence,
aucune des méthodes de caractérisation de la performance d’estimation existantes telles que
les bi ne peut être utilisée dans ce cas. En effet, pour cette classe de problèmes d’estimation
paramétrique déterministe, la d.d.p. paramétrée par des paramètres déterministes inconnus
résulte de la marginalisation d’une d.d.p. jointe qui dépend de variables aléatoires inconnuEs.
Dans le cas général, cette marginalisation est mathématiquement intraitable, ce qui empêche
d’utiliser les BI déterministes standard connues sur l’EQM.

On peut résoudre ce problème en plongeant l’espace d’observation initial dans un espace
hybride plus grand où tout BI standard peut être transformé en une borne inférieure modifiée
adaptée à une estimation déterministe non standard, au prix toutefois d’une éventuelle perte
de proximité à l’EQM vraie des EMVs.
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En effet, la forme modifiée d’une BI est plus optimiste (inférieure ou égale) que la forme
standard de cette BI. Cela met en évidence le compromis associé aux BI modifiée dans une
estimation non standard : une formulation aux dépens de la précision. Deuxièmement, en
termes de BI relatives, c’est-à-dire destinées à caractériser l’estimateur (asymptotiquement
sous-optimales) de maximum de vraisemblance non-standard, on montre que toute borne
inférieure standard a une version non standard qui limite l’EQM de l’estimateur de maximum
de vraisemblance non-standard.

Cependant, ces deux solutions n’ont pas été explicitement illustrées dans le contexte du
GNSS en raison d’un manque de temps (toutefois, des exemples d’applications de BI modifiée
et de BI non standard se trouvent en Radar et en Telecom). Une suite naturelle de ce travail
consiste à quantifier ces BI modifiées et BI non standard dans le contexte du GNSS dans
des environnements urbains non-gaussiens. Ce serait un axe fructueux pour des recherches
ultérieures.
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In parameter estimation problems, the probability distribution of samples of received data
allows deduction of some useful information about the parameters to be estimated. With this
in mind, it seems necessary to have a metric quantifying the usefulness of the information
provided by the probability distribution on unknown parameters estimation. Such a measure
can be used to find lower bounds (LBs) on the estimation errors of unknown parameters and
hence give insight on the inherent limitations of the problem.

Hence, lower bounds on the mean squared error (MSE) give the expressions of the minimal
estimation errors that can be obtained asymptotically (in the limit of large sample support)
when estimating the parameters. These lower bounds are generally derived for given classes
of biased or unbiased estimators and provide references to which performance of these esti-
mators can be compared to evaluate the quality of estimation. For instance, among all the
available lower bounds for unbiased estimators, the most used one is the Cramer-Rao bound
(CRB) which is the lowest lower bound and provides the maximum achievable estimation
accuracy of maximum likelihood estimators (MLEs), under reasonably general conditions on
the observation model [204, 205]. In this chapter, we are interested in deriving such LBs in the
GNSS context in presence of degradations on code measurements, i.e. received data samples,
caused by reception of multipaths and NLOS. This chapter is divided into 6 sections :
— Section 4.1 : Introduction of the motivation and the objectives behind lower bounds

derivation in the GNSS context.
— Section 4.2 : Description of the limitation of the classical standard deterministic lower

bounds (LBs) on MSE in the case of non-Gaussian measurement errors.
— Section 4.3 : Derivation of the proposed alternative to circumvent the previous pro-

blem : modified lower bounds (MLBs).
— Section 4.4 : Derivation of sub-optimal non-standard MLEs (NSMLEs) as alternative

to MLEs in non-standard deterministic estimation.
— Section 4.5 : A summary of the principal conclusions of this chapter.

4.1 Motivation and Objectives

Today, GNSS is used as a primary technology for positioning in a broad range of applica-
tions in urban areas, including critical applications with potential financial and legal impacts.
For instance, ecological taxations, termed as EcoTax, are based on GNSS as a main techno-
logy in a road congestion pricing system depending on position solution. Road user charging
is another illustration of successfully implemented road applications based on GNSS and in-
volving financial aspects. Hence, it is necessary for constrained environments, where reliable
GNSS positioning is difficult to achieve, to define the maximum positioning performance that
GNSS can achieve to decide if the final applications requirement at the user level will be met
or not in these harsh areas.

As many factors affect the final positioning accuracy of a GNSS receiver in urban environ-
ments, there is a pressing need to know the minimum bound of position estimation accuracy
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especially for critical applications which encompass financial, legal or safety-of-life stringent
requirements. This is the objective of this chapter.

As shown in previous chapters, predicting the level of positioning degradation and the final
user positioning accuracy in urban environment using only GNSS pseudorange measurements
is a very challenging task. Predicting this maximum accuracy level requires modelling of all
positioning error sources in order to define the probability density function (p.d.f.) of the
GNSS observations, an essential requirement for lower bounds derivation. Satellite-related
errors (orbital errors or satellite clock bias) and propagation-related errors (ionospheric and
tropospheric delays) are generally easy to model, or to be reduced from observations using
some adequate models as in SBAS (EGNOS, WAAS, ...). However, in urban areas where
direct GNSS signals become too scarce and most signals are vulnerable to reflections, receiver-
related errors caused by GNSS propagation in the environment, such as multipath reception,
are very hard to be modelled accurately. However, in order to highlight the problem, two
standard signal models are recalled in the next paragraph : 1) the case with only LOS signals,
2) the case with LOS and MP signals.

GNSS observation models including LOS and MP : Firstly, we recall a standard first
order model of the GNSS observations in the case of a single reception antenna and without
considering signal reflections [206]. We assume that K scaled, delayed and Doppler-shifted
front waves, transmitted by each in-view satellite impinge on a GNSS receiver antenna. Under
the narrowband assumption, the complex baseband model can be written as follows :

s(t) =
K−1∑
k=0

αk.ck(t− τk).e2iπfkt + n(t) (4.1)

where
— αk denotes each complex satellite signal amplitude, supposed to be deterministic and

unknown,
— ck(t) stands for the transmitted complex baseband navigation signal spread by the

pseudo-random code corresponding to the k-th satellite,
— n(t) corresponds to an additive zero-mean white Gaussian noise with variance σ2,
— and τk, fk are respectively the delay and Doppler frequency shift of the k-th satellite

signal, observed from the receiver.

We suppose that N snapshots are sampled at a Fs = 1
Ts rate from s(t), so that we can write :

s = s(θd) = A(η)α+ n, θd = (ηTαT )T (4.2)

where
— x = (x(0), ..., x((N − 1)Ts))T ,
— A = [a0, ...,aK−1] is the manifold corresponding to all in-view satellite signals, with

ak = (ck(−τk), ..., ck((N − 1)Ts − τk).e2iπfk(N−1)Ts)T ,
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— η = (τ1, ..., τK , f1, ..., fK)T is the vector of unknown deterministic parameters of primary
interest (delays, Doppler-frequency shifts,...).

— α = (α0, ..., αK−1)T and,

— n = (n(0), ..., n((N − 1)Ts))T

Secondly, we consider now the case of a single reception antenna in the presence of NMP

signal reflections. Then, under the narrowband assumption, the complex baseband model
(4.1) must be updated as follows :

s(t) =
K−1∑
k=0

αk.ck(t− τk).e2iπfkt +
NMP∑
i=1

αr,i.ck(t− τr,i).e2iπfr,it + n(t) (4.3)

where

— αr,i denotes each complex satellite signal amplitude after signal reflections, supposed to
be random and unknown,

— and τr,i, fr,i are respectively the delay and Doppler frequency shift after signal reflec-
tions, observed from the receiver, and supposed to be random and unknown.

We suppose that N snapshots are available as in (4.2), so (4.2) becomes :

s = s(θd,θr) = A(η)α+ m(ηr,αr) + n; θd = (ηTαT )T , θr = (ηTr αTr )T (4.4)

where, m(ηr,αr) =
NMP∑
i=1

Bi(ηr,i)αr,i represents the contribution of all MP and :

— ∀i ∈ [1, NMP ], Bi is the manifold corresponding to transmitted signal after signal re-
flections for the i-th multipath (may be different from MP to MP).

— ηr = (ηr,1, ..., ηr,NMP
)T is the vector of unknown nuisance parameters which may re-

present, in this case of GNSS in non-Gaussian environments, the delay and the Doppler
frequency shift, of each MP after reflections.

— αr = (αr,1, ..., αr,NMP
)T refers to the vector of GNSS signal amplitudes of each MP after

reflections.

Illustration of GNSS p.d.f errors in different environments : The signal model (4.2)
without MPs have been extensively studied in the open literature where it is generally referred
to as the conditional signal model (CSM) [207]. Asymptotically, i.e. at high signal-to-noise-
ratio and/or large number of snapshots, the maximum-likelihood estimator of η is unbiased,
Gaussian distributed, and its covariance matrix is equals to the deterministic Cramer-Rao
bound.

In contrast, in the presence of MP and NLOS signals as in (4.4), the GNSS problem falls
into the situation where the p.d.f. p (s;θd), where θd = (ηT ,αT )T , parametrized by unknown
deterministic parameters (θd) results from the marginalization of a joint p.d.f. depending
on random variables as well (the delays, Doppler frequency shifts and amplitudes of MPs).
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Indeed, in that case, this p.d.f. can be expressed as :

p (s;θd) =
∫
p (s|θr;θd) p (θr;θd) dθr; θd = (ηT ,αT )T , θr = (ηTr ,αTr )T (4.5a)

p (s|θr;θd) = p (s|ηr,αr;η,α) = CN
(
A(η)α+ m(ηr,αr), σ2I

)
(4.5b)

Then, the resulting p.d.f p (s;θd) is, in general, no longer Gaussian, which leads to a
maximum-likelihood estimator of η which is no longer asymptotically Gaussian distributed,
possibly biased and generally non efficient (its covariance matrix become greater than the
Cramer-Rao bound). As an illustration, dynamic positioning experiments have been carried
out in different types of environment in Toulouse using a low-cost GNSS receiver. The tested
trajectory can be classified in three main kinds of environments : open-sky areas, suburban
areas and urban areas. An overview of the considered environments is provided in Fig. 4.1.

Figure 4.1 – Classification of the tested trajectory in Toulouse by environmental category :
Green : Open-sky, Yellow : Suburban, Red : Urban

These extensive recorded measurements are used to model GNSS pseudorange errors cau-
sed by multipath (MP) reflections by type of environment. True MP errors are predicted using
the algorithm proposed in [3]. This algorithm is explained in section 3.1.3.1. Fig. 4.2 shows
GNSS MP errors on PR measurements 1 in different environments and for a GNSS satellite
with a medium to high elevation angles (more than 35◦).

Fig. 4.2 illustrates the evolution of the PR Errors distribution in different environments,
from Gaussian (open-sky areas) to non-Gaussian distribution (suburban and urban areas) as
explained above. Hence, these environments are termed as non-Gaussian environment in this
chapter.

1. The error of the maximum-likelihood estimate of the PR after ionospheric and tropospheric errors com-
pensation using models.
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Figure 4.2 – PR Errors distribution in different environments. The used equipments, for
data collection, are described in section 3.4.1.

In these suburban and urban environments, we want to assess GNSS asymptotic positio-
ning accuracy, which raises the following questions :

1. Can standard LBs and MLEs be computed in these environments ?

2. If standard LBs can not be computed, can we derive modified LBs that are computable ?

3. If standard MLEs can not be computed, can we derive a substitute, potentially suboptimal
but computable ?

Relation with a general framework : Actually, the problem under consideration belongs
to the general deterministic estimation problem consisting of the following four components 2 :

1. a parameter space Θd,

2. an observation space S,

3. a probabilistic mapping from parameter vector space Θd to observation space S, that
is the probability law that governs the effect of a parameter vector value θd on the
observation s

4. an estimation rule, that is the mapping of the observation space S into vector parameter
estimates θ̂d (s).

In the GNSS scenarios where MPs occur, as in many estimation problems [212, 213, 214,
215], the probabilistic mapping results from a two step probabilistic mechanism involving
an additional random vector θr (for instance, in the case of GNSS, θr may represent the
parameters of MPs (delays, Doppler frequency shifts,...)), θr ∈ Θr ⊂ RPr , that is i) θd → θr ∼

2. In this paragraph, we adopt the notation proposed in several works involving both deterministic and
random parameters [208, 209, 210, 211].
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p (θr;θd), ii) (θd,θr)→ s ∼ p (s|θr;θd), and leading to a compound probability distribution :

p (s;θd) =
∫

Θr

p (s,θr;θd) dθr, (4.6a)

p (s,θr;θd) = p (s|θr;θd) p (θr;θd) , (4.6b)

where p (s|θr;θd) is the conditional probability density function (p.d.f.) of s given θr, and
p (θr;θd) is the prior p.d.f. of θr, parameterized by θd.

For the sake of brevity, in the following θd will be simply denoted θ, since this does not
introduce any ambiguity with the random parameters notations which remains θr.

Throughout this chapter, we divide deterministic estimation problems into two subsets :
the subset of “standard” deterministic estimation problems for which a closed-form expression
of p (s;θ) is available, and the subset of “non-standard” deterministic estimation problems
for which only an integral form of p (s;θ) (4.6a) (4.5a) is available.

In the next section, we provide an overview of a general method to derive the standard
deterministic lower bounds on MSE when the marginal pdf p (s;θ) is available. In case of
reception of non-Gaussian MP/NLOS signals, these bounds can not be computed. This mo-
tivates the derivation of modified lower bounds in section 4.3, to circumvent the limitation of
non-computable standard LBs. In this chapter and for the sake of simplicity, unless otherwise
stated, we will focus on the estimation of a single unknown real deterministic parameter θ (for
instance the pseudo-range associated to a single non-moving satellite), although the results
are easily extended to the estimation of multiple functions of multiple parameters.

4.2 An overview of lower bounds for standard estimation

4.2.1 Notations

In this chapter, we adopt the following notations :
• SX , SX ,Θr , SX|θr , SΘr and SΘr|s denote, respectively, the support of p (s; θ), p (s, θr; θ),
p (s|θr; θ), p (θr; θ) and p (θr|s; θ), i.e., SS =

{
s ∈ CM | p (s; θ) > 0

}
,

SS,Θr =
{

(s, θr) ∈ CM × RPr | p (s,θr; θ) > 0
}
, SS|θr =

{
s ∈ CM | p (s|θr; θ) > 0

}
,

SΘr =
{
θr ∈ RPr | p (θr; θ) > 0

}
, and SΘr|s =

{
θr ∈ RPr | p (θr|s; θ) > 0

}
3.

• Es;θ [g (s)], Eθr;θ [g (θr)] and Es,θr;θ [g (s,θr)] denote, respectively, the statistical expectation
of the vector of functions g ( ) with respect to s, to θr, to s and θr, parameterized by θ, and
satisfy :

Es,θr;θ [g (s,θr)] = Es;θ
[
Eθr|s;θ [g (s,θr)]

]
= Eθr;θ

[
Es|θr;θ [g (s,θr)]

]
.

3. The Barankin approach [216] (see Section 4.2) and its extensions to non-standard estimation (see Sections
4.3 and 4.4) require that all the supports be independent of θ.
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• L2(SS), L2(SS,Θr) and L2(SS|θr) denote, respectively, the real inner product space of square-
integrable real-valued functions w.r.t. p (s; θ), p (s,θr; θ) and p (s|θr; θ),
• 1A (θr) denote the indicator function of subset A of RPr .

4.2.2 On Lower Bounds and Norm Minimization

In the search for a LB on the MSE of unbiased estimators, two fundamental properties
of the problem at hand, introduced by Barankin [216], must be noticed. The first property
is that the MSE of a particular estimator θ̂0 ∈ L2 (SS) of θ0, i.e., θ̂0 , θ̂0 (s), where θ0 is a
selected value of the parameter θ, is the square of a norm ‖ ‖2θ associated the scalar product
〈 | 〉θ :

MSEθ0

[
θ̂0
]

=
∥∥∥θ̂0 (s)− θ0

∥∥∥2

θ0
, (4.7a)

〈g (s) | h (s)〉θ = Es;θ [g (s)h (s)] . (4.7b)

This property allows the use of two equivalent fundamental results : the generalization of the
Cauchy-Schwartz inequality to Gram matrices (generally referred to as the “covariance inequa-
lity" [217, 218]) and the minimization of a norm under linear constraints [219, 220, 221, 222].
Nevertheless, we shall prefer the "norm minimization" form as its use :
• provides a straightforward understanding of the hypotheses associated with the different
LBs on the MSE expressed as a set of linear constraints,
• allows to resort to the same rationale for the derivation of LBs whatever the observation
space considered,
• allows to easily reveal LBs inequalities and tightness conditions without the complex
derivations (based on the use of the covariance inequality) introduced by previous works
[223, 210, 224].
The second property is that an unbiased estimator θ̂0 ∈ L2 (SS) of θ0 should be uniformly
unbiased :

∀θ ∈ Θd : Es;θ
[
θ̂0 (s)

]
=
∫
SS

θ̂0 (s) p (s; θ) ds = θ. (4.8a)

If SS , i.e. the support of p (s; θ), does not depend on θ, then (4.8a) can be recasted as :

∀θ ∈ Θd : Es;θ0

[(
θ̂0 (s)− θ0

)
υθ0 (s; θ)

]
= θ − θ0, (4.8b)

where υθ0 (s; θ) = p (s; θ) /p
(
s; θ0) denotes the Likelihood Ratio (LR). As a consequence, the

locally-best (at θ0) unbiased estimator in L2 (SS) is the solution of a norm minimization under
linear constraints :

min
θ̂0∈L2(SS)

{∥∥∥θ̂0 (s)− θ0
∥∥∥2

θ0

}
under

〈
θ̂0 (s)− θ0 | υθ0 (s; θ)

〉
θ0

= θ − θ0, ∀θ ∈ Θd. (4.9)

Unfortunately, as recalled hereinafter, if Θd contains a non empty interval of R, then the
norm minimization problem (4.9) leads to an integral equation (4.13a) with no analytical
solution in general. Therefore, since the seminal work of Barankin [216], many studies quoted
in [218, 220, 225, 226] have been dedicated to the derivation of “computable” LBs approxi-
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mating the MSE of the locally-best unbiased estimator, which defines the Barankin bound
(BB). All these approximations derive from sets of discrete or integral linear transform of the
"Barankin" constraint (4.8b) and can be easily obtained (see next Section) using the following
well known norm minimization lemma [227]. Let U be an Euclidean vector space on the field
of real numbers R which has a scalar product 〈 | 〉. Let (c1, . . . , cK) be a family of K linearly
independent vectors of U and v ∈ RK . The problem of the minimization of ‖u‖2 under the
K linear constraints 〈u | ck〉 = vk, k ∈ [1,K] then has the solution :

min
{
‖u‖2

}
= ‖uopt‖2 = vTG−1v, (4.10)

uopt =
K∑
k=1

αkck, α = G−1v, Gk′,k = 〈ck | ck′〉 .

4.2.3 Lower Bounds via linear transformations of the McAulay-Seidman
bound

The McAulay-Seidman bound (MSB) is the BB approximation obtained from a discretiza-
tion of the Barankin unbiasedness constraint (4.8b). Let θN =

(
θ1, . . . , θN

)T
∈ ΘN

d be a vector
ofN selected values of the parameter θ (aka test points), υθ0

(
s;θN

)
=
(
υθ0
(
s; θ1) , . . . , υθ0

(
s; θN

))T
be the vector of LRs associated to θN , ξ (θ) = θ − θ0 and ξ

(
θN
)

=
(
ξ
(
θ1) , . . . , ξ (θN))T .

Then, any unbiased estimator θ̂0 ∈ L2 (SS) verifying (4.8b) must comply with the following
subset of N linear constraints :

Es;θ0

[(
θ̂0 (s)− θ0

)
υθ0

(
s;θN

)]
= ξ

(
θN
)
, (4.11a)

yielding, via the norm minimization lemma (4.10), the MSB [228] :

MSEθ0

[
θ̂0
]
≥ ξ

(
θN
)T

R−1
υθ0
ξ
(
θN
)
,
(
Rυθ0

)
n,m

= Es;θ0 [υθ0 (s; θm) υθ0 (s; θn)] , (4.11b)

which is a generalization of the Hammersley-Chapman-Robbins bound (HaCRB) previously
introduced in [229] and [230] for 2 test points (N = 2). Obviously, any given set of K (K ≤ N)
linear transformations of (4.11a) :

Es;θ0

[(
θ̂0 (s)− θ0

)
HT
Kυθ0

(
s;θN

)]
= HT

Kξ
(
θN
)
, HK = [h1, . . . ,hK ] , hk ∈ RN , 1 ≤ k ≤ K,

(4.12a)
where HK has a full rank, provides, via the norm minimization lemma (4.10), another LB on
the MSE :

MSEθ0

[
θ̂0
]
≥ ξ

(
θN
)T

R†HK
ξ
(
θN
)
, R†HK

= HK

(
HT
KRυθ0

HK

)−1
HT
K . (4.12b)

It is worth noting that, for a given vector of test points θN , the LB (4.12b) reaches its
maximum if, and only if, the matrix HK is invertible (K = N) [228][231, Lemma 3], which
represents a bijective transformation of the set of constraints associated with the MSB (4.11a).
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Thus :
MSEθ0

[
θ̂0
]
≥ ξ

(
θN
)T

R−1
υθ0
ξ
(
θN
)
≥ ξ

(
θN
)T

R†HK
ξ
(
θN
)
.

The BB [216, Theorem 4] is obtained by taking the supremum of (4.12b) over all the existing
degrees of freedom

(
N,θN ,K,HK

)
. All known LBs on the MSE deriving from the BB can be

obtained with appropriate instantiations of (4.12b), that is with appropriate linear transfor-
mations of the MSB 4 (4.11b). For example, under mild regularity conditions on p (s; θ), the
CRB is the limiting form of the HaCRB, that is the MSB where N = 2, θ2 =

(
θ0, θ0 + dθ

)T
and dθ → 0 [216, 229, 230, 228, 231]. More generally, appropriate linear transformations
of the MSB (4.12a-4.12b) for finite values of N and K lead to the Fraser-Gutman bound
(FGB ) [232], the Bhattacharyya bound (BaB) [233], the McAulay-Hofstetter bound (MHB),
the Glave bound (GlB) [219], and the Abel bound (AbB) [218]. Furthermore, the class of
LBs introduced lately in [225] can also be obtained as linear transformations of the MSB
(4.12a-4.12b) in the limiting case where N,K → ∞. It suffices to define each hk as a vector
of samples of a parametric function h (τ, θ), τ ∈ Λ ⊂ R, integrable over Θd, ∀τ ∈ Λ, i.e.,
hTk =

(
h
(
τk, θ

1) , . . . , h (τk, θN)), 1 ≤ k ≤ K. In such a setting, one obtains the integral form
of (4.12b) (see [221, Section 2] for details) released in [225, (34-36)] :

MSEθ0

[
θ̂0
]
≥ TTBh

θ0 =
∫
Λ

Γhθ0 (τ)βhθ0 (τ) dτ, (4.13a)

where Γhθ0 (τ) =
∫

Θd
h (τ, θ)

(
θ − θ0) dθ, and βhθ0 (τ) is the solution of the following integral

equation :

Γhθ0
(
τ ′
)

=
∫
Λ

Kh
θ0
(
τ ′, τ

)
βhθ0 (τ) dτ, (4.13b)

Kh
θ0
(
τ, τ ′

)
=
∫

Θ2
d

h (τ, θ)Rυθ0
(
θ, θ′

)
h
(
τ ′, θ′

)
dθdθ′, (4.13c)

Rυθ0
(
θ, θ′

)
= Es;θ0

[
p (s; θ)
p (s; θ0)

p (s; θ′)
p (s; θ0)

]
. (4.13d)

Note that if h (τ, θ) = δ (τ − θ) (limiting case of HN = IN where N = K → ∞) then
Kh
θ0 (τ, τ ′) = Rυθ0 (τ, τ ′) and (4.13a) becomes the expression of the BB [220, (10)][222, (6-7)].

As mentioned above, in most practical cases, it is impossible to find an analytical solution of
(4.13b) to obtain an explicit form of the TTBh

θ0 (4.13a), which somewhat limits its interest.
Nevertheless, as highlighted in [225], this formalism allows to use discrete or integral linear
transforms of the LR, possibly non-invertible, possibly optimized for a set of p.d.f. (such as
the Fourier transform) in order to get a tight approximation of the BB.

4. Since there is a one-to-one correspondence between a LB and a set of linear constraints, in the following,
a linear transformation of a given LB actually refers to the LB obtained from a linear transformation of the
corresponding set of linear constraints.
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4.2.4 On the uncomputability of standard LBs in GNSS harsh environ-
ments

Unfortunately, as already mentioned above, in the GNSS context in presence of non-
Gaussian MPs, the marginal p.d.f. of the GNSS observations has not an analytical form
because of the presence of non-Gaussian MP fluctuation p.d.f.. As a consequence, none of the
standard existing estimation performance characterization methods such as the previously
presented LBs can be used in this case. This situation is known as deterministic parameter
estimation, where the p.d.f. parametrized by unknown deterministic parameters results from
the marginalization of a joint p.d.f. depending on random variables as well. In the general
case, this marginalization is mathematically intractable, which prevents from using the known
standard deterministic LBs on MSE. Actually, this case can be tackled by embedding the
initial observation space in a hybrid one where any standard LB can be transformed into a
modified one fitted to non-standard deterministic estimation, at a possible expense of tightness
however. This derivation will be the objective of the next section.

4.3 Modified Lower Bounds for Non-Standard Estimation

Interestingly enough, in many estimation problems [212]–[215] p (s,θr; θ) is known in the
form of a compound probability distribution, i.e., p (s,θr; θ) = p (s|θr; θ) p (θr; θ), where both
closed-forms of p (s|θr; θ) and p (θr; θ) are known. Therefore, it just makes sense to look
for LBs based on p (s,θr; θ) instead of p (s; θ). Moreover, in the previous Section 4.2.3, we
have pointed out that in standard estimation, the computability of the MSB (4.11b) is the
cornerstone to generate the class of LBs on the MSE of uniformly unbiased estimate deriving
from Barankin’s work [216]. Therefore it seems sensible to check whether or not the MSB is
computable where only p (s,θr; θ) is known.

4.3.1 A new look at modified lower bounds

If SS,Θr , i.e. the support of p (s,θr; θ), is independent of θ, then :

Es,θr;θ [g (s,θr)] = Es,θr;θ0 [g (s,θr) υθ0 (s,θr; θ)] , υθ0 (s,θr; θ) = p (s,θr; θ)
p (s,θr; θ0) . (4.14)
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Therefore, for any unbiased estimator θ̂0 ∈ L2 (SS), (4.11a) can be reformulated as, ∀n ∈
[1, N ] :

θn − θ0 = Es;θ0

[(
θ̂0 (s)− θ0

)
υθ0 (s; θn)

]
= Es;θn

[
θ̂0 (s)− θ0

]
= Es,θr;θn

[
θ̂0 (s)− θ0

]
= Es,θr;θ0

[(
θ̂0 (s)− θ0

)
υθ0 (s,θr; θn)

]
,

that is in vector form :

ξ
(
θN
)

= Es;θ0

[(
θ̂0 (s)− θ0

)
υθ0

(
s;θN

)]
= Es,θr;θ0

[(
θ̂0 (s)− θ0

)
υθ0

(
s,θr;θN

)]
, (4.15)

where
(
υθ0

(
s,θr; θ1) , . . . , υθ0

(
s,θr; θN

))
= υTθ0

(
s,θr;θN

)
. Additionally, since θ̂0 ∈ L2 (SS),

then :
Es;θ0

[(
θ̂0 (s)− θ0

)2
]

= Es,θr;θ0

[(
θ̂0 (s)− θ0

)2
]
. (4.16)

Therefore :

min
θ̂0∈L2(SS)

{
Es;θ0

[(
θ̂0 (s)− θ0

)2
]}

under ξ
(
θN
)

= Es;θ0

[(
θ̂0 (s)− θ0

)
υθ0

(
s;θN

)]
,

(4.17a)
is equivalent to :

min
θ̂0∈L2(SS)

{
Es,θr;θ0

[(
θ̂0 (s)− θ0

)2
]}

under ξ
(
θN
)

= Es,θr;θ0

[(
θ̂0 (s)− θ0

)
υθ0

(
s,θr;θN

)]
.

(4.17b)
Note that the equivalence between (4.17a) and (4.17b) holds only if θ̂0 ∈ L2 (SS). Unfortuna-
tely, since L2 (SS) is a subspace of L2 (SS,Θr), the solution of (4.17b) cannot be given by the
minimum norm lemma (4.10) in general, since the lemma provides a solution in L2 (SS,Θr),
that is the solution of :

min
θ̂0∈L2(SS,Θr )

{
Es,θr;θ0

[(
θ̂0 (s,θr)− θ0

)2
]}

under ξ
(
θN
)

= Es,θr;θ0

[(
θ̂0 (s,θr)− θ0

)
υθ0

(
s,θr;θN

)]
,

(4.17c)
yielding the following modified MSB :

MSEθ0

[
θ̂0
]
≥ ξ

(
θN
)T

R−1
υθ0
ξ
(
θN
)
,
(
Rυθ0

)
n,m

= Es,θr;θ0 [υθ0 (s,θr; θm) υθ0 (s,θr; θn)] ,
(4.18)

in the sense that it is a LB for unbiased estimates belonging to L2 (SS,Θr). One noteworthy
point is that the modified MSB (4.18) is obtained from the MSB (4.11b) by substituting
Es,θr;θ0 [ ] for Es;θ0 [ ] and υθ0

(
s,θr;θN

)
for υθ0

(
s;θN

)
. More generally, since (4.17a) and

(4.17c) share a similar formulation, reasoning by analogy, one can state that any approxi-
mation of the BB deriving from linear transformations of the set of constraints associated
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with the MSB (4.12a-4.12b), has an analog formulation in non-standard estimation obtained
by substituting Es,θr;θ0 [ ] for Es;θ0 [ ] and υθ0

(
s,θr;θN

)
for υθ0

(
s;θN

)
. Actually, this is

obtained by substituting p (s,θr; θ) for p (s; θ) in any approximation of the BB. This result
holds whatever the prior p.d.f. depends or does not depend on the deterministic parameters. In
the end, we have simply embedded the search of the locally-best unbiased estimator initially
performed in the vector space L2 (SS) (4.9) into a larger vector space containing L2 (SS),
namely L2 (SS,Θr), where the search of the locally-best unbiased estimator is formulated as :

min
θ̂0∈L2(SS,Θr)

{
Es,θr;θ0

[(
θ̂0 (s,θr)− θ0

)2
]}

under Es,θr;θ
[
θ̂0 (s,θr)− θ0

]
= θ − θ0, ∀θ ∈ Θd.

(4.19)
Indeed, if θ̂0 ∈ L2 (SS) ⊂ L2 (SS,Θr), then (4.19) reduces to (4.9). From this perspective,
it seems appropriate to refer to these LBs for unbiased estimates belonging to L2 (SS,Θr) as
modified LBs (MLBs) as it has been proposed initially in [215] and [223] for the modified CRB.
Since (4.17a) and (4.17b) are equivalent and L2 (SS) ⊂ L2 (SS,Θr), it follows naturally that
the modified form of a LB is looser (lower or equal) than the standard form of the LB. This
highlights the trade-off associated with MLBs in non-standard estimation : computability at
the possible expense of tightness. However, it is possible to increase the tightness of MLBs
by adding constraints to restrict the class of viable estimators θ̂0 ∈ L2 (SS,Θr) and therefore
to increase the minimum norm obtained from (4.17c) as shown hereinafter in section 4.3.2.

Old and new modified lower bounds :

In the light of the above, the MCRB is obtained directly from the CRB :

CRBθ = Es;θ

[
∂ ln p (s; θ)

∂θ

∂ ln p (s; θ)
∂θT

]−1
→MCRBθ = Es,θr;θ

[
∂ ln p (s,θr; θ)

∂θ

∂ ln p (s,θr; θ)
∂θT

]−1
,

(4.20)
and one can assert that CRBθ ≥ MCRBθ, without having to invoke neither the Jensen’s
inequality [215] nor to prove specific matrix inequality [223, (4)]. Furthermore, the MCRB
expression (4.20) is still valid if the prior depends on θ, which extends the historical results
provided in [215] and [223] under the restrictive assumption of a prior independent of θ. In
the same way, the MBaB of order K is obtained from the BaB [233][222, (19)] :∣∣∣∣∣∣∣
BaBθ = eT1 Es;θ

[
% (s; θ) % (s; θ)T

]−1
e1,

% (s; θ)T = 1
p(s;θ)

(
∂p(s;θ)
∂θ , . . . , ∂

Kp(s;θ)
∂Kθ

) →

∣∣∣∣∣∣∣
MBaBθ = eT1 Es,θr;θ

[
% (s,θr; θ) % (s,θr; θ)T

]−1
e1,

% (s,θr; θ)T = 1
p(s,θr;θ)

(
∂p(s,θr;θ)

∂θ , . . . , ∂
Kp(s,θr;θ)
∂Kθ

)
,

where eT1 = (1, 0, . . . , 0). Therefore, with the proposed approach, we not only extend the
result introduced in [234, (4)] under the restrictive assumption of a prior independent of θ,
but we can also assert that BaBθ ≥MBaBθ, which has not been proven in [234].
As with the CRB and the BaB, the modified form of all remaining BB approximations released
in the open literature, namely the FGB [232], the MHB [235], the GlB [219], the AbB [218],
and the CRFB [225, (101-102)], can be easily obtained with the proposed framework. For
instance, the modified form of the general class of LBs (4.13a-4.13d) proposed in [225, (34-
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36)] is obtained simply by updating the definition of Rυθ0 (θ, θ′) (4.13d) as follows :

Rυθ0
(
θ, θ′

)
= Es,θr;θ0

[
p (s,θr; θ)
p (s,θr; θ0)

p (s,θr; θ′)
p (s,θr; θ0)

]
, (4.21)

and one can also assert that TTBh
θ0 ≥MTTBh

θ0 .

4.3.2 A general class of tighter modified lower bounds and its relationship
with hybrid lower bounds (HLBs)

As mentioned above, it is possible to increase the tightness of MLBs by adding constraints
in order to restrict the class of viable estimators θ̂0 ∈ L2 (SS,Θr) and therefore to increase
the minimum norm obtained from (4.17c). However, such additional constraints must keep on
defining a subset of L2 (SS,Θr) including the set of unbiased estimates belonging to L2 (SS),
as shown in appendix D with two general subsets of additional constraints. The first subset
is related to historical works on hybrid LBs [214, 210] but addressed in a different way.
The second subset is a generalization of [208, (8)] reformulated according to the proposed
framework. The derivation of tighter MLBs with these two subsets of added constraints is
provided in appendix D. Since these two tighter MLBs derive from two different subset of
constraints, a comparison between these two forms is not possible.

Lastly, even more tighter MLBs can be derived based on the combination of the two above
subset of constraints as shown in (D.10) in appendix D. This proposed unified framework
allows to draw new interesting results regarding LBs derivation. Firstly, it provides a common
framework for the formulation of MLBs for all known LBs on the MSE, without any regularity
condition on the (nuisance) random vector estimates, since θr is neither required nor expected
to be estimated. Secondly, since any modified LB obtained from (D.10) is lower than or equal
to its standard form (4.17a), one can assert that the deterministic part of any HLB 5 is looser
(or equal) than the corresponding standard LB, which is a new general result. Thirdly, the
deterministic part of any HLB is a valid MLBs whatever the prior depends on or does not
depend on the deterministic parameter θ, which is another new general result. Tighter MLBs
are exemplified in the case of the CRB in subsection D.1.4 of appendix D.

4.3.3 On closeness, tightness, regularity conditions and implementation of
modified lower bounds

4.3.3.1 On the closeness of MLBs to LBs

Actually, a "closeness condition" required to obtain a modified LB equal to the standard LB

5. The deterministic part of a HLB denotes the HLB’s submatrix which is a LB on the MSE of the
determinisitic parameter vector.
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is quite simple to express : it is necessary, and sufficient, that the estimator solution of the
norm minimization under linear constraints (4.17c)(D.4)(D.9)(D.10) belongs to L2 (SX ), that
is according to (4.10) :

θ̂0 (s,θr)opt − θ0 =
K∑
k=1

αk (cθ0 (s,θr))k ∈ L2 (SS) , (4.22)

a closeness condition fulfilled by a class of joint p.d.f. p (s,θr; θ) which depends on the vector
of constraint functions chosen. For example, if we consider the MCRBθ0 (D.12) then the
tightness condition is :

θ̂ (s,θr)opt − θ = ∂ ln p (s,θr; θ)
∂
(
θ,θTr

) α (θ) = θ̂ (s)opt − θ. (4.23)

Since eT1 F (θ)−1 = MCRBθ

(
1,−F−1

θr
fθr,θ (θ)

)
, therefore (4.23) is equivalent to :

∂ ln p (s,θr; θ)
∂θ

− fθ,θr (θ) F−1
θr

(θ) ∂ ln p (s,θr; θ)
∂θr

=
θ̂ (s)opt − θ
MCRBθ

,

leading to the necessary, and sufficient, condition :

∂ ln p (s,θr; θ)
∂θ∂θTr

= fθ,θr (θ) F−1
θr

(θ) ∂ ln p (s,θr; θ)
∂θr∂θ

T
r

, (4.24)

which has been introduced in [224, (34)] at the expense of a quite complex proof.

4.3.3.2 On tightness, regularity conditions and implementation of MLBs

As mentioned above, the trade-off associated with MLBs is computability at the possible
expense of tightness. Indeed, a key feature of the simplest form of the MLBs deriving from
the MMSB (4.18), is to be essentially free of regularity conditions both on the joint p.d.f.
p (s,θr; θ) w.r.t the random parameters θr, and on the support SΘr|s. This feature still holds
for the tighter MLBs obtained with Bayesian LB-generating functions (D.9)(D.11a-D.11b). In
contrast, none of the existing HLBs, which are all obtained via linear transformations on the
CLR function [211], can be used if SΘr|s does not satisfy (D.5), that is, for instance, if SΘr|s is
a connected set of RPr and in most cases, if SΘr|s is a disconnected subset of RPr . Off course,
any time an existing HLB can be derived, its deterministic part provides a tighter LB than
the corresponding MLB deriving from (4.18), however at the expense of an increased compu-
tational cost (see (D.12)). Thus, the proposed unified framework is a useful tool to look for
the best possible trade-off between tightness, regularity conditions and computational cost, in
the choice of a MLB for a given non-standard estimation problem. In that perspective, non-
standard estimation can take advantage of the works on computable approximations of the
BB in standard estimation [218, 220, 225], which have shown that the CRB and the BB can
be regarded as key representatives of two general classes of bounds, respectively the Small-
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Error bounds and the Large-Error bounds. Indeed, it is now well known that the Small-Error
bounds, such as the CRB, are optimistic bounds in a non-linear estimation problem where the
outliers effect generally appears [236, 237, 238]. This outliers effect leads to a characteristic
threshold behaviour of estimators MSE which exhibits a “performance breakdown” highligh-
ted by Large-Error bounds [228]. Furthermore, it has been underlined that under the norm
minimization approach, the Small Error bounds derive from linear constraints expressed at the
true value θ0 only, whereas the Large-Error bounds derive from linear constraints expressed
at vectors of test points θN+1 including the true value [228, 219, 218, 220, 225]. The tightness
of a given Large Error bound is at the expense of some computational cost ; indeed as its
tightness depends on the used vector of test points [225, 239], it generally incorporates the
search of an optimum over a set of vectors of test points. As a consequence, the final practical
form proposed by each author is an attempt to optimize the trade-off between tightness and
computational cost. For example, in [228] the main goal was to reduce the complexity of use
of the BB by substituting the simplified form (4.11b) for the initial form (4.12b). In [235] and
generalized in [219] and [218], the rationale is to combine a Small Error bound (CRB [235, 219]
or BaB [218]) with a Large Error bound (MSB [228]) in order to obtain a bound which ac-
counts for both local and large errors and is able to handle the threshold phenomena. Indeed
the use of derivatives is also helpful to decrease the computational burden since it allows to
resort to smaller sets of tests point vectors to achieve similar tightness [218, 225], however at
the expense of the existence of the derivatives (although this condition is mild and generally
satisfied). Last, the norm minimization approach naturally incorporates possible tightness
comparison between two MLBs. Indeed, if the subset of linear constraints associated with a
MLB is included into the subset of linear constraints associated with another MLB, then the
latter one is tighter. To wrap up, when looking at a MLB, the following questions should be
answered : i) is the strong regularity condition (D.5) satisfied ?, e.g., is SΘr|s , RPr ?, ii) is
the joint p.d.f. p (s,θr;θ) differentiable w.r.t the random parameters ? iii) which regions of
operation of estimators, among the asymptotic region, the threshold region and the a priori
region [237], are of interest ?, iv) are analytic forms of Es,θr;θ0

[
ψ
(
s,θr; θ0)υTθ0

(
s,θr;θN

)]
and Es,θr;θ0

[
ψ
(
s,θr; θ0)ψ (s,θr; θ0)T ] available ? For instance, if the asymptotic and thre-

shold regions are of interest, and if the answers to i), ii), iv) are positive, then at the expense
of non negligible computational burden, the tightest MLBs will be probably obtained by de-
riving from (D.10) a combination of the tight version of the modified GlB (or of the modified
CRFB) with Bayesian LB-generating functions (D.6), since the MLB obtained will incorpo-
rate most of the meaningful constraints available. If the asymptotic and threshold regions
are of interest, and if the answers to i), ii), iv) are negative, then at the expense of a non
negligible computational burden, the tightest MLBs is the MMSB (4.18).

4.4 Proposed Non-Standard Maximum Likelihood Estimator
for Deterministic Estimation

Let us recall that the widespread use of MLEs in deterministic estimation originates
from the fact that, under reasonably general conditions on the observation model [204, 205],
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the MLEs are asymptotically uniformly unbiased, Gaussian distributed and efficient when
the number of independent observations tends to infinity. Additionally, if the observation
model is Gaussian complex circular, some additional asymptotic regions of operation yielding
uniformly unbiased Gaussian and efficient MLEs have also been identified at finite number of
independent observations [207, 240, 241, 242, 243]. If a closed-form of p (s; θ) does not exist
or if a closed-form of p (s; θ) does exist but the resulting expression is intractable to derive
the standard MLE of θ :

θ̂ML (s) = arg max
θ∈Θd

{p (s; θ)} , (4.25a)

a sensible solution in the search of a realizable estimator based on the ML principle is to look
for : (

θ̂r (s) , θ̂ (s)
)

= arg max
θ∈Θd,θr∈SΘr |s

{p (s|θr; θ)} . (4.25b)

In the following θ̂ (s) and θ̂r (s) (4.25b) are referred to as "non-standard" MLEs (NSMLEs).
The underlying idea is that, since in many estimation problems [212, 213, 214, 215] p (s,θr; θ)
is a compound probability distribution, i.e., p (s,θr; θ) = p (s|θr; θ) p (θr; θ), the closed-form
of p (s|θr; θ) is known and the NSMLEs (4.25b) take advantage not only of the aforementio-
ned properties, and in particular of the asymptotic uniform unbiasedeness w.r.t. p (s|θr; θ),
but also of the extensive open literature on MLE closed-form expressions or approximations
[212]. These key features clearly make the "non-standard" maximum likelihood estimation
more attractive than the two known following alternative approaches. The first alternative
approach consists in deriving the joint maximum a posteriori-maximum likelihood estimate
(JMAPMLE) of the hybrid parameter vector

(
θTr , θ

)
:

(
θ̂rJ (s) , θ̂J (s)

)
= arg max

θ∈Θd,θr∈SΘr |s
{p (s,θr; θ)} , (4.26)

but suffers from a major drawback : the JMAPMLE is biased and inconsistent whatever the
number of independent observations [244], except for a class of hybrid estimation problems
yielding (4.25b) when the number of independent observations tends to infinity [245, p. 6,
12]. One point worthy of note is that the JMAPMLE may outperform the MLE (4.25a)
in terms of MSE, especially with short data records, where MLE is indeed disarmed of its
asymptotic optimality [244]. However the biasedness of the JMAPMLE prevents from the
comparison of its MSE with deterministic LBs. Indeed, if any known bias can be taken into
account in deterministic LBs formulation [216], the bias depends on the specific estimator and,
furthermore, is hardly ever known in practice. The second alternative approach consists in
resorting to the expectation-maximization (EM) algorithm [246]. In the general case the EM
algorithm converges to a stationary point of ln p (s; θ). The stationary point need not, however,
be a local maximum. Indeed, if it is shown that, under suitable regularity conditions [247],
it converges to the MLE (4.25a), it is also shown [248] that it is possible for the algorithm
to converge to local minima or saddle points in unusual cases. Moreover, in non-standard
estimation, the EM algorithm consists in the following iterative procedure :

θn+1 = arg max
θ∈Θd

{
Eθr|s;θn [ln p (s,θr; θ)]

}
, (4.27)
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which is unlikely to be of practical use in many estimation problems of interest where p (θr; θ)
is not a conjugate prior for the likelihood function p (s|θr; θ) and p (θr|s; θ) is not computable.
Last, in any case where the EM algorithm converge to the MLE (4.25a), its MSE is lower
bounded by the MLBs.

4.4.1 Strict-sense and wide-sense unbiased estimators

Let us denote φ =
(
θ,θTr

)T
∈ Θd × RPr , p (s|φ) , p (s|θr; θ) and Es|φ [ ] , Es|θr;θ [ ].

Then any estimator φ̂T =
(
θ̂, θ̂

T

r

)
∈ L2 (SS,Θr), i.e., φ̂ , φ̂ (s,θr), of a selected vector value

φ 6 uniformly strict-sense unbiased [224], i.e., w.r.t. p (s|φ), must comply with :

∀φ′ =
(
θ′

θ′r

)
∈ Θd × RPr : Es|φ′

[
φ̂
]

= φ′, (4.28)

which implies that :

∀θ′ ∈ Θd : Es,θ′r;θ′
[
φ̂
]

= Eθ′r;θ′
[
φ′
]

=
(

θ′

Eθ′r;θ′
[
θ′r
]), (4.29)

that is φ̂ ∈ L2 (SS,Θr) is a uniformly wide-sense unbiased 7 [224] estimate of g (θ)T =(
θ,Eθr;θ

[
θTr

])
, i.e., w.r.t. p (s,θr; θ). As the reciprocal is not true :

∀θ′ ∈ Θd : Es,θ′r;θ′
[
φ̂− φ′

]
= 0 ; ∀φ′ ∈ Θd × RPr : Es|φ′

[
φ̂− φ′

]
= 0,

then US (SS,Θr ) =
{
φ̂ ∈ L2 (SS,Θr ) verifying (4.28)

}
⊂ UW (SS,Θr ) =

{
φ̂ ∈ L2 (SS,Θr ) verifying (4.29)

}
8.

Let US (SS) and UW (SS) denote the restriction to L2 (SS) of US (SS,Θr) and UW (SS,Θr).

4.4.2 Performance comparison

One can establish that the NSMLE of θ, which belongs to US (SS), is in general an asymp-
totically (when the number of independent observations tends to infinity) suboptimal esti-
mator of θ (in the MSE sense) in comparison with the MLE of θ, which belongs to UW (SS),
within the set of unbiased estimates in the Barankin sense (4.8a)(see subsection D.2.1 of ap-
pendix D for details). Therefore, from a theoretical as well as a practical point of view, it is of
interest to investigate on a possible quantification of the suboptimality of the NSMLE, which
can be obtained in some extent by LBs derivation and comparison.

6. In this section, for sake of legibility, φ denotes either the vector of unknown parameters or a selected

vector value φ , φ
0 =

(
θ0,
(
θ0
r

)T)T .
7. Regarding the deterministic parameter θ, uniform wide-sense unbiasedeness is another name for unbia-

sedeness in the Barankin sense (4.8a).
8. In most cases, the inclusion is strict leading to strict inequalities (D.15a-??)
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4.4.3 Non-standard lower bounds

For any φ̂ ∈ US (SS,Θr), let Cφ

(
φ̂
)

= Es|φ

[(
φ̂− φ

) (
φ̂− φ

)T ]
denotes its covariance

matrix w.r.t. p (s|φ). Then by noticing that, ∀φ̂ ∈ US (SS,Θr) :

Es,θr;θ

[(
φ̂− φ

) (
φ̂− φ

)T ]
= Eθr;θ

[
Cφ

(
φ̂
)]
, (4.30)

one can derive LBs on the MSE of NSMLEs as follows. Firstly, the rationale outlined in
Sections 4.2.3 and 4.3.1 is generalizable to vector parameter [228, 220], that is any LB on
Cφ

(
φ̂
)
, φ̂ ∈ US (SS), can be expressed as linear transformations of the ad hoc form of the

MSB, that is in the present case, w.r.t. to p (s|φ) and for strict-sense unbiased estimates (4.28)
satisfying :

Es|φ
[(
φ̂− φ

)
υTφ

(
φN

)]
= Ξ

(
φN

)
, (4.31a)

where φN =
[
φ1 . . . φN

]
, Ξ

(
φN

)
=
[
φ1 − φ . . . φN − φ

]
,

υφ
(
φN

)
, υφ

(
s;φN

)
=
(
υφ
(
s;φ1

)
, . . . , υφ

(
s;φN

))T
and υφ

(
s;φ′

)
= p

(
s|φ′

)
/p (s|φ).

By resorting to the generalization of (4.10) to a vector of estimators [220, Lemma 1], the
solution of :

min
φ̂∈US(SS)

{
Cφ

(
φ̂
)}

under Es|φ
[(
φ̂− φ

)
υTφ

(
φN

)]
= Ξ

(
φN

)
, (4.31b)

is given by :

Cφ

(
φ̂MSB

)
= Ξ

(
φN

)
R−1
υφ

(
φN

)
Ξ
(
φN

)T
, φ̂MSB −φ = Ξ

(
φN

)
R−1
υφ

(
φN

)
υφ
(
s;φN

)
,

(4.31c)
where Rυφ

(
φN

)
= Es|φ

[
υφ
(
φN

)
υTφ

(
φN

)]
. Therefore :

Cφ

(
φ̂MSB

)
≤ min
φ̂∈US(SS)

{
Cφ

(
φ̂
)}

, (4.32a)

leading to (4.30) :

Eθr;θ
[
Cφ

(
φ̂MSB

)]
≤ min
φ̂∈US(SS)

{
Es,θr;θ

[(
φ̂− φ

) (
φ̂− φ

)T ]}
. (4.32b)

In any asymptotic region of operation of NSMLEs, since NSMLEs belong to US (SS), then
Eθr;θ

[
Cφ

(
φ̂MSB

)]
is a LB on the covariance matrix of NSMLEs. Therefore it seems sensible

to refer to Eθr;θ
[
Cφ

(
φ̂MSB

)]
as a non-standard MSB (NSMSB) to make the difference

with the modified MSB (4.18). Indeed, the NSMSB is a LB for φ̂ ∈ US (SS), i.e., strict-
sense unbiased estimates, whereas the MMSB is a LB for φ̂ ∈ UW (SX ,Θr), i.e., wide-sense
unbiased estimates (see Section 4.3.1). In the same vein, any Barankin bound approximation
(BBA) on the MSE of MLEs resulting from a linear transformation of the MSB (4.11b), has
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a non-standard version, referred to as NSBBA or as NSLB hereinafter, and defined as :

NSBBA = Eθr;θ
[
Cφ

(
φ̂BBA

)]
, (4.33)

where Cφ

(
φ̂BBA

)
is the LB resulting from the same linear transformation of (4.31c). As well

as the NSMSB, any NSBBA is a lower bound on the MSE of NSMLEs in any asymptotic
region of operation. Note that in general, the NSLBs cannot be arranged in closed form due
to the presence of the statistical expectation. They however can be evaluated by numerical
integration or Monte Carlo simulation [249].
Unfortunately, φ̂BBA /∈ US (SS) and φ̂BBA /∈ UW (SS,Θr) in general, therefore no general result
can be drawn on the ordering between NSBBA and min

φ̂∈UW (SS)

{
Es|θ

[(
φ̂− g (θ)

)(
φ̂− g (θ)

)T]}
,

or any BBA computed on UW (SS).

4.4.4 Lower bounds comparison

If in general we cannot compare directly the performance of the NSMLEs and the MLEs,
however it would be desirable to be able to compare their associated LBs. Actually, some
comparisons are possible but for a restricted class of non-standard estimation problems, as
shown in the following. Using the rationale outlined in Section 4.3.1, one can state that all
MLBs on φ̂ ∈ UW (SS,Θr) derive from sets of discrete or integral linear transform of :

∀n ∈ [1, N ] , g (θn)− g (θ) = Es,θr;θ
[(
φ̂ (s,θr)− g (θ)

)
υθ (s,θr; θn)

]
, (4.34)

and yields the general form of the MMSB for unbiased estimates of functions of θ :

MMSB = Ξ
(
θN
)

R−1
υθ

(
θN
)

Ξ
(
θN
)T

, (4.35)

where Ξ
(
θN
)

=
[

g
(
θ1)− g (θ) . . . g

(
θN
)
− g (θ)

]
and

Rυθ

(
θN
)

= Es,θr;θ
[
υθ
(
s,θr;θN

)
υTθ

(
s,θr;θN

)]
.

If p (θr; θ) does not depend on θ, i.e. p (θr; θ) = p (θr), then :

υθ
(
s,θr; θ′

)
= p (s,θr; θ′)
p (s,θr; θ)

= p (s|θr; θ′)
p (s|θr; θ)

= p (s|θr; θ′)
p (s|θr; θ)

= υφ
(
s;φ′

)
.

Therefore, if φN =
[
φ1 . . . φN

]
, φn =

(
θn

θr

)
, 1 ≤ n ≤ N , then :

Es,θr;θ0

[
υ(θr;θ0) (s;φn)υT(θr;θ0)

(
s;φn′

)]
= Es,θr;θ0

[
υθ0 (s,θr;θn)υTθ0

(
s,θr;θn

′)]
,

that is :
Eθr;θ0

[
Rυ(θr ;θ0)

(
φN

)]
= Rυ(θr ;θ0)

(
φN

)
.
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By the Jensen inequality :

Eθr;θ0

[
R−1
υ(θr ;θ0)

(
φN

)]
≥ Eθr;θ0

[
Rυ(θr ;θ0)

(
φN

)]−1
= R−1

υ(θr ;θ0)

(
φN

)
,

leading to :

Ξ
(
θN
)

R−1
υθ

(
θN
)

Ξ
(
θN
)T
≤ Ξ

(
θN
)
Eθr;θ0

[
R−1
υ(θr ;θ0)

(
φN

)]
Ξ
(
θN
)T

,

where Ξ
(
θN
)

=

 ξ (θN)T
0

 = Ξ
(
φN

)
. Finally, one obtains the following inequality :

Ξ
(
θN
)

R−1
υθ

(
θN
)

Ξ
(
θN
)T

︸ ︷︷ ︸
MMSB

≤ Eθr;θ

[
Ξ
(
φN

)
R−1
υφ

(
φN

)
Ξ
(
φN

)T ]
︸ ︷︷ ︸

NSMSB

. (4.36a)

In particular, regarding the estimation of θ, since θ =
(
1,0T

)
φ, one obtains :

ξ
(
θN
)T

R−1
υθ

(
θN
)
ξ
(
θN
)
≤ Eθr;θ

[
ξ
(
θN
)T

R−1
υφ

(
φN

)
ξ
(
θN
)]
. (4.36b)

Interestingly enough, it is straightforward to extend (4.36a-4.36b) by introducing tighter
NSLBs. It suffices to note that the addition of any subset of K constraints :

∀k ∈ [N + 1, N +K] ,φk − φ = Es|φ
[(
φ̂ (s,θr)− φ

)
υφ
(
s;φk

)]
,φk =

(
θk,
(
θkr

)T)T
,

to (4.34) restricts the class of viable estimators φ̂ ∈ UW (SS,Θr) and therefore increases the
associated NSBBA (4.31c), leading to :

Ξ
(
θN
)

R−1
υθ

(
θN
)

Ξ
(
θN
)T
≤ Eθr;θ

[
Ξ
(
φN

)
R−1
υφ

(
φN

)
Ξ
(
φN

)T ]
≤ Eθr;θ

[
Ξ
(
φN+K

)
R−1
υφ

(
φN+K

)
Ξ
(
φN+K

)T ]
, (4.37a)

and, regarding the estimation of θ, to :

ξ
(
θN
)T

R−1
υθ

(
θN
)
ξ
(
θN
)
≤ Eθr;θ

[
ξ
(
θN
)T

R−1
υφ

(
φN

)
ξ
(
θN
)]

≤ Eθr;θ
[
ξ
(
θN+K

)T
R−1
υφ

(
φN+K

)
ξ
(
θN+K

)]
, (4.37b)

where φN+K =
[
φN ,

[
θN+1 . . . θN+K

θN+1
r . . . θN+K

r

]]
, Ξ
(
φN+K) =

[
Ξ
(
φN
)
,

[
ξ
(
θN+1) . . . ξ

(
θN+K)

θN+1
r − θr . . . θN+K

r − θr

]]
,

and ξ
(
θN+K

)
=
(
ξ
(
θN
)T

, ξ
(
θN+1

)
, . . . , ξ

(
θN+K

))T
. Then one can take advantage of the
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use of the numerous (standard) BBAs derived for parameter vector [220, 225], however, at a
cost of numerical integration or Monte Carlo simulation to evaluate their statistical expecta-
tion.

Non-standard LBs are exemplified in the case of the CRB and the BaBs in subsection D.2.2
of appendix D. In particular, the non-standard CRB (NSCRB) example illustrates that the
tightest form of any NSLB is obtained when the set of unbiasedness constraints are expressed
for φ as in (4.37b) and not only for θ as in (4.36b).

4.4.5 Non-standard lower bounds (continued)

Any of the NSLBs mentioned in the previous section can be derived in the general case
where p (θr; θ) does depend on θ, except that no general inequalities between MBBA and
NSBBA can any longer be exhibited. Interestingly enough, since any existing standard LB
can be obtained from (4.31c) as Cφ

(
φ̂BBA

)
(a multiple parameters version of (4.12b)), it

has a non-standard counterpart Eθr;θ
[
Cφ

(
φ̂BBA

)]
, which includes the FGB [232], the MHB

[235], the GlB [219], the AbB [218], and the CRFB [225, (101-102)]. Last, let us recall that
in general φ̂BBA /∈ UW (SS,Θr), therefore the associated NSLB cannot be compared a priori
neither with the MSE of θ̂ML ∈ UW (SS) nor with any of its LBs (computed with p (s; θ)). In
particular, NSLBs are not in general neither upper bounds on the MSE of θ̂ML nor on any of
its LBs.

4.5 Conclusions

In the present chapter, we have addressed deterministic parameter estimation and the
situation where a closed-form of the conditional p.d.f. does not exist or where a closed-
form does exist but the resulting expression is intractable to derive either LBs or MLEs. To
summarize, we have provided a unified framework allowing to extend the previous theoretical
works released on that problem [213, 214, 215, 210, 223, 234, 250, 211, 208, 224]. First, in
terms of intrinsic LBs by showing that any standard LB can be transformed into a modified
one fitted to non-standard deterministic estimation, at the expense of tightness however.
Second, in terms of relative LBs, i.e. dedicated to characterize the asymptotically suboptimal
NSMLEs, by showing that any standard LB has a non-standard version lower bounding the
MSE of NSMLEs.

In the practical GNSS problem in presence of non-Gaussian errors caused by signal reflec-
tions, a closed-form of the conditional p.d.f. does not exist. In this situation, the deterministic
parameters of interest are the LOS delays and Doppler-frequency shifts and the nuisance ran-
dom variables are the MPs delays, Doppler-frequency shifts and amplitude. In suburban and
urban environments, MP p.d.f. are different from the Gaussian distribution which induces
a marginal p.d.f of GNSS observations without any analytical form. In this case, none of
the existing estimation performance characterization methods (for instance standard lower
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bounds) can be used as marginalization of joint p.d.f is mathematically intractable. Besides,
standard MLEs can not be computed in this situation either. This motivates the derivation
of the proposed MLBs and NSMLEs as alternatives to circumvent the previous problems.
However, these two solutions have not been explicitly exemplified in the context of GNSS due
to a lack of time (however application examples of MLBs and NSLBs can be found in Radar
and Telecom (see [251, §V.A])). A natural sequel of this work is to quantify these MLBs and
NSMLEs in the context of GNSS in real-life non-Gaussian environments. This would be a
fruitful area for further researches.
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Conclusions et Recommandations

Conclusions

Dans cette thèse, les conclusions suivantes peuvent être tirées :
1. Conclusions concernant le positionnement GNSS assisté par simulation 3D :

Nous avons proposé une intégration du GNSS avec un simulateur de propagation de
signaux GNSS 3D fournissant des informations utiles sur l’environnement géométrique
de réception. Les conclusions finales de cette partie sont les suivantes :
— Les résultats expérimentaux montrent que les méthodes basées sur la correspon-

dance entre des positions candidates offrent une meilleure précision de positionne-
ment par rapport à celles basées sur la correction des mesures PR. Cela s’explique
par le fait que les corrections de MP générées par SPRING ne sont pas fiables et
ne doivent pas être utilisées dans la correction des mesures PR.

— Les algorithmes proposés basés sur la correspondance entre des positions candidates
offrent une amélioration significative de précision de 52% par rapport à la solution
conventionelle de LS dans des environnements urbains.

— Les algorithmes proposés basés sur la correspondance entre des positions candi-
dates utilisant les informations de propagation du signal GNSS ont été comparés à
une méthode basée sur la correspondance entre des positions candidates utilisant
la visibilité des satellites GNSS sans simulations de propagation du signal. Les
résultats expérimentaux montrent que ces deux méthodes donnent approximati-
vement les mêmes performances de positionnement. Mais les méthodes basées sur
des simulations de propagation de signal nécessitent plus de charge de calcul que
le second type de méthodes.

2. Conclusions concernant le niveau de précision de positionnement maximal dans des en-
vironnements non gaussiens :
Premièrement, nous avons montré que, dans le cas où des bornes inférieures sur l’EQM
standards ne peuvent pas être calculées, toute borne inférieure standard peut être trans-
formée en une borne inférieure modifiée, aux dépens de la pertinence ("tightness") de
cette borne. Deuxièmement, dans cette situation où les EMVs standard ne peuvent pas
être calculés non plus, nous avons proposé un EMV non standard asymptotiquement
sous-optimal comme alternative. Cependant, ces deux solutions n’ont pas été explicite-
ment illustrées dans le contexte des GNSS par manque de temps.

Recommandations

Sur la base des résultats de cette thèse, plusieurs perspectives pour les travaux futurs
peuvent être esquissées. Parmi celles-ci, les suivantes sont les plus intéressantes :
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1. Evaluation des approches proposées dans d’autres contextes urbains :
Les différents algorithmes proposés dans cette thèse de recherche devraient être vérifiés
et validés à l’aide d’autres données GNSS d’autres villes.

2. Fusion d’un simulateur 3D / GNSS au niveau des blocs de réception :
En ce qui concerne les boucles de poursuite, il serait intéressant d’étudier si les simu-
lations GNSS peuvent permettre le suivi des signaux MP/NLOS dégradés à l’aide de
boucles à verrouillage de délai vectoriel (VDLL).

3. Fusion simulateur 3D/GNSS en utilisant les mesures Doppler :
Nos travaux se sont concentrés sur la fusion simulateur 3D/GNSS utilisant des mesures
de codes. Il serait très intéressant d’étendre ce travail aux mesures Doppler, qui per-
mettent d’estimer la vitesse du récepteur. La modélisation 3D peut également aider à
bien estimer ces mesures car elle permet de simuler les effets Doppler subis par chacun
des signaux parvenant au récepteur.
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Chapitre 5

Conclusions and Recommendations
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5.1 Brief summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 133
5.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . 134
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This chapter presents the conclusions of this research and draws some recommendations
for future work. Potential applications of the proposed methods are also presented.

5.1 Brief summary and Conclusions

In this dissertation, the following conclusions can be drawn :

— Conclusions regarding 3D mapping aided GNSS positioning :
As signal processing based algorithms have generally limited positioning accuracy in
urban areas, it is necessary to counteract the disadvantages of GNSS positioning in
these areas using complementary information. In this research thesis, we have proposed
an integration of the GNSS with a 3D GNSS signal propagation simulator providing ai-
ding information about the geometric environment of reception. The following questions
concerning this 3D GNSS simulator/GNSS fusion have been dealt with :

1. What is the required level of realism of the information provided by 3D simulation
to be constructively used for GNSS positioning ?

2. How could information from the 3D GNSS Simulator be used to enhance positioning
performance ? At what level of processing this information should be used ?

The final conclusions of this part are the following :

1. The integration of 3D GNSS signal propagation information has been made using
either PR measurements correction or candidate positions scoring. Experimental
results show that methods based on candidate positions scoring give better po-
sitioning accuracy compared to those based on PR measurements scoring. This
is explained by the fact that SPRING-generated multipath corrections are not
reliable and should not be used in the PR measurements correction.
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2. The proposed algorithms based on candidate positions scoring give a significant
accuracy improvement of 52% compared to the conventional LS solution in deep ur-
ban environments. These solutions have been compared to the LS solution because
they are epoch-by-epoch solutions.

3. The proposed algorithms based on candidate positions scoring using 3D GNSS si-
gnal propagation information have been compared to a method based on candidate
positions scoring using satellite visibility without signal propagation simulations.
Experimental results shows that these two methods gives approximately the same
positioning performance. But, methods based on signal propagation simulations
need more computational load than the second kind of methods (i.e. without si-
gnal propagation simulations). However, other studies have used similar techniques
based on GNSS signal propagation with lighter computational load [168].

4. When a GNSS signal propagation simulator is used to predict PR errors in urban
areas with the aim of correcting these errors, we have presented a methodology
to validate the prediction of these tools for a constructive use of PR errors. The
conclusion of this part is that SPRING simulator is within the maximum acceptable
level of uncertainty on PR errors predictions in the specific environment studied
in this research thesis. However, other extensive analysis must be performed in
various conditions to validate the SPRING simulator.

— Conclusions regarding the maximum achievable positioning accuracy level
reached in non-Gaussian environments
In this research thesis, we study the lower bounds on position estimation accuracy in
presence of non-Gaussian observations. First, we have shown that, in the case where
standard LBs can not be computed, any standard LB can be transformed into a mo-
dified one fitted to non-standard deterministic estimation, at the expense of tightness
however. Second, in this situation where standard MLEs can not be computed either,
we have proposed a asymptotically suboptimal NSMLE as alternative. However, these
two solutions have not been explicitly exemplified in the context of GNSS due to a lack
of time.

5.2 Recommendations for Future Work

Based on the results of this thesis, several recommendations for future work are noticeable.
Among them, the following ones are of greatest interest :
— Evaluation of the proposed approaches in other urban settings :

Different proposed algorithms in this research thesis should be verified and validated
using more measurement samples obtained from various cities. With these intensive ana-
lysis, further assessment on the performance of positioning algorithms may be conduc-
ted. Other 3D city models are worth being investigated for this purpose. In fact, urban
canyons characterized by very narrow streets but with low to medium buildings, such
as those found in Toulouse, greatly reduce the visibility of satellites but do not give rise
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to NLOS signals with a very high bias. It would be necessary to have a 3D map and a
measurement campaign in an environment such as Manhattan in order to validate the
performance of our 3D-mapping aided positioning approaches on real GNSS data.

— 3D Simulator/GNSS fusion at the receiver level :
On the tracking aspects, it would be interesting in the future to study whether 3D GNSS
simulations can allow the tracking of degraded MP/NLOS signals using Vector Delay
Lock Loops (VDLL). This amounts to consider the 3D aided information provided by
the 3D GNSS simulator at the signal level (inside the receiver). Indeed, in its traditional
configuration, a VDLL predicts delays for the pseudorange observations as a function
of the direct receiver/satellite path. This may disadvantage the tracking of reflected
signals by ignoring their additional bias. However, because of the reflection undergone
by the environment, reflected NLOS signals generally have very reduced power com-
pared to LOS signals which make their tracking more difficult. 3D GNSS simulations
of the receiver reception status can help to continue the tracking of these signals while
estimating their additional bias using adaptation of the VDLL principle.

— 3D Simulator/GNSS fusion using Doppler measurements :
Our work has concentrated on 3D simulator/GNSS fusion using pseudoranges measu-
rements, and more specifically on ways to help the receiver to obtain, correct them or
use them constructively through 3D simulations. It would be very interesting to extend
this work to the Doppler measurements, which allow estimation of the speed of the
receiver. 3D modeling can also help with these measurements because it can simulate
the Doppler effects undergone by each of the signals reaching the receiver. This would
be an additional aid to enhance the navigation solution in a constrained environments.

5.3 Potential Applications

The research in this thesis has led to a development of novel positioning methods that
can be applied in commercial GNSS receiver following different configurations :
— Proposed 3D mapping aided positioning methods : Operating the proposed

methods on a graphics processing unit (GPU) of a mobile device will surely increase
the power consumption of the user devices. These problems apply to our proposed
approaches and not to 3DMA GNSS in general. Besides, since these methods relies on
information provided by 3D GNSS simulators and as computing these 3D data using
these tools is generally computationally intensive, a possible adaptation of these methods
can be performed in a server-based mode interacting with the user receiver or send as
information like Assisted-GPS. In order to further reduce the computational loads of
these methods, a binary data format should be used to minimize the capacity required.

— Proposed MLBs and NSMLEs : A natural sequel of the presented work on LBs
in chapter 4 is to quantify the MLBs and NSMLEs in the context of GNSS in real-life
non-Gaussian environments, involving for instance, Multivariate Elliptically Contoured
Distributions, and in particular Generalized Gaussian Distribution used to characterize
the clutter in radar [252].
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Annexe A

Appendix : Multipath and NLOS
Reception : Theoretical

Consideration

In this paragraph, we will mathematically demonstrate the adverse effect of MP/NLOS
phenomena on user position estimation using GNSS signals. First, for ease of notation, throu-
ghout this dissertation, the MP/NLOS bias will be denoted simply as b = bMP−NLOS . Let
us define the following scalar product related to the noise covariance matrix R and its cor-
responding norm as :

∀a, c ∈ RN , 〈a, c〉R−1 = aTR−1c; ∀a ∈ RN , ‖a‖2R−1 = aTR−1a (A.1)

Let H⊥ be the subspace orthogonal to H with regard to the scalar product (A.1). We can
define the orthogonal projection on the observation matrix H and on the subspace orthogonal
H⊥ with regard to this scalar product as :

∀a ∈ RN , ΠH
R−1a = H(HTR−1H)−1HTR−1a; ∀a ∈ RN , ΠH⊥

R−1a = a −ΠH
R−1a (A.2)

The cost function of the navigation equation (1.4) is expressed as [30] :

J(y|x,b) = ‖y−Hx− b‖2R−1 (A.3)

The likelihood function can be expressed as :

J(y|x,b) = ‖y−Hx− b‖2R−1

= ‖ΠH
R−1(y−Hx− b)‖2R−1 + ‖ΠH⊥

R−1(y−Hx− b)‖2R−1

= ‖ΠH
R−1(y− b)−Hx‖2R−1 + ‖ΠH⊥

R−1(y− b)‖2R−1

The maximum likelihood (ML) estimate of equation (1.4) is the state vector minimizing the
previous cost function. By definition, the maximum likelihood (ML) estimator is the estimator
minimizing the likelihood function :

x̂ML = argmin
x

J(y|x,b)
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This yields the following expression for the ML estimator :

x̂ML = argmin
x

(‖ΠH
R−1(y− b)−Hx‖2R−1 + ‖ΠH⊥

R−1(y− b)‖2R−1)

= argmin
x
‖ΠH

R−1(y− b)−Hx‖2R−1

= argmin
x
‖H(H+(y− b)− x)‖2R−1

where H+ = (HTR−1H)−1HTR−1 is the pseudo-inverse of H weighted by the inverse of the
measurements covariance matrix R. This last expression gives the final expression of the ML
estimator :

x̂ML = H+(y− b) = (HTR−1H)−1HTR−1(y− b) ⇐⇒ Hx̂ML = ΠH
R−1(y− b) (A.4)

The maximum likelihood state estimation is equal to the least squares solution by considering
the PR measurement corrected by the MP/NLOS bias. This state estimation can be seen as
a sum of a bias free-estimate computed as if no MP and NLOS bias were present and a bias-
correction term. Without knowing the MP/NLOS bias value, the ML estimation of the state
vector will be inaccurate. Then, we aim to estimate this MP/NLOS bias and then use this
estimation to correct pseudorange measurements as in equation (A.4). The MP/NLOS bias
can be estimated by minimizing the cost function (A.3) regard to b :

b̂ = argmin
b

J(y|x̂ML,b) (A.5)

As ‖ΠH
R−1(y− b)−Hx̂ML‖2R−1 = 0, then :

b̂ = argmin
b
‖ΠH⊥

R−1y−ΠH⊥
R−1b‖2R−1 (A.6)

Let us define yb = ΠH⊥
R−1y. Then, we express the MP/NLOS bias b projection on subspace

orthogonal to the observation matrix H⊥ as :

ΠH⊥
R−1b = Hbb (A.7)

Where Hb = IN −HH+ and H+ is the pseudo-inverse matrix of matrix H. The solution of
the equation (A.6) is then given by :

b̂ = (HT
b R−1Hb)−1HT

b R−1(yb) (A.8)

Noting that b = ΠH⊥
R−1b + ΠH

R−1b, we conclude that what we have estimated in (A.8), in
fact, the orthogonal projection of the MP/NLOS bias b on the subspace H⊥ since yb is the
orthogonal projection of y on this subspace. Then, we have b̂ = ΠH⊥

R−1b. Then, we can only
estimate (N −M) components of the MP/NLOS bias vector which is equals to the dimension
of the subspace H⊥ where M denotes the size of the state vector and N is the number of
PR measurements. To correctly estimate the MP/NLOS bias, we have to estimate the other
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components of the MP/NLOS bias b on the observation space H. The error estimation in
state vector ML estimate in (A.4) is equal to :

δxML = x̂ML − x = H+n (A.9)

Where n is the receiver measurements noise defined in (1.4). The Mean Square Error (MSE)
of this ML estimation can be expressed as :

MSE[x̂ML] = E[δxMLδxTML] = E[(H+n)(H+n)T ]
= E[H+nnT (H+)T ] = H+E[nnT ](H+)T

As E{nnT } = R, then this yields :

MSE[x̂ML] = H+R(H+)T

= (HTR−1H)−1HTR−1RR−1H(HTR−1H)−1

= (HTR−1H)−1

Without estimating the MP/NLOS bias, a possible estimation of the state vector is given
by the Least Squares (LS) solution in (1.5). The error of this LS estimation is given by the
following :

δxLS = x̂LS − x = H+(n + b) (A.10)

Using the same derivation as the MSE of the ML estimator, we can prove the MSE derivation
of the LS estimator :

MSE[x̂LS ] = E[δxLSδxTLS ]
= E[(H+(n + b))(H+(n + b))T ]
= E[H+nnT (H+)T ] + E[H+bbT (H+)T ]
= (HTR−1H)−1 + H+E[bbT ](H+)T

The overall MSE (OMSE), defined as the trace of MSE matrix, of this LS estimator can
be expressed and compared to the OMSE of the ML estimation as :

(OMSE[x̂LS ] = Tr{(HTR−1H)−1}+Tr{H+E[bbT ](H+)T }) ≥ (Tr{(HTR−1H)−1} = OMSE[x̂ML])
(A.11)

This previous equation illustrates the effect of MP/NLOS biases on the final positioning
error. Indeed, without knowing these biases, we have the previous inequality and then the LS
estimation, under MP/NLOS conditions, will be degraded.
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Annexe B

Appendix : AML-3D and PM-3D
efficiency

B.1 AML-3D efficiency

In this following sub-section, we will derive some properties on AML estimator x̂AML and
cost function that demonstrate the convergence of this estimator to the ML estimator in some
conditions.

It is evident that the predicted bias and errors from the 3D simulation cannot be instan-
taneous and accurate. The quality and reliability of the PR bias estimation depends on many
factors such as the accuracy of signal propagation modeling, the precision of 3D city modeling,
receiver setting, etc... We want here to quantify the loss in AML-3D estimation compared to
ML estimation by substituting the unknown MP/NLOS bias b with 3D predicted MP/NLOS
bias b3D(xi). Since the bias estimation by 3D simulations cannot be accurate, we define the
uncertainty on the bias estimation as :

δ3D = ‖b− b3D(x)‖2R−1 (B.1)

We can prove the following lemmas :

B.1.1 Lemma 1 : Convergence of cost function to maximum-likelihood cost
function :

If we consider η � 1 and the maximum-likelihood cost function J expressed in chapter 1,
then :

|min
xi

P (y|xi,b3D(xi))−min
xi

J(y|xi,b)| ≤ (1 + η)δ3D (B.2)

Proof : If we consider η � 1 , then :∣∣∣∣min
xi

P (y|xi,b3D(xi))−min
xi

J(y|xi,b)
∣∣∣∣ ≤ (1 + η)δ3D (B.3)
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Proof : Using the reverse triangle inequality, the difference between the two cost functions
can be increased by :

|P (y|xi,b3D(xi))− J(y|xi,b)| ≤ ‖[y−Hxi − b3D(xi)]− [y−Hxi − b]‖2R−1

It follows :
|P (y|xi,b3D(xi))− J(y|xi,b)| ≤ ‖[b− b3D(xi])‖2R−1

Using the following inequality :

‖b− b3D(xi)‖2
R−1 ≤ ‖b− b3D(x)‖2

R−1 + ‖b3D(x)− b3D(xi)‖2
R−1

We can conclude that :∣∣∣∣min
xi

P (y|xi,b3D(xi))−min
xi

J(y|xi,b)
∣∣∣∣ ≤ δ3D + min

xi
‖b3D(x)− b3D(xi)‖2R−1

If the array of candidate positions is wisely chosen, the true position will be close or among
the considered grid of candidate positions and hence we will get :

min
xi
‖b3D(x)− b3D(xi)‖2R−1 ≤ ηδ3D

This proves lemma 1.

B.1.2 Lemma 2 : Convergence of AML estimator to true position :

Tr{MSE(x̂AML)} −→
δ3D→0

Tr{MSE(x̂ML)} (B.4)

Proof : We start by computing the expression of x̂AML :

x̂AML = argmin
xi
{ ∂

∂xi
(P (y|xi,b3D(xi)) = 0)}

We compute the derivative of the cost function :

∂

∂xi
(P (y|xi,b3D(xi))) = −2(HT + ∂

∂xi
b3D(xi))R−1G(xi)

Where G(xi) = y−Hxi−b3D(xi). Then, we get the following expression for the approximate
maximum likelihood :

y−Hx̂AML − b3D(x̂AML) = 0

Since the MSE matrix is diagonal, the overall mean square error of the AML estimation is
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expressed as :

Tr{MSE[x̂AML]} = Tr{E[(x̂AML − x)(x̂AML − x)T ]}
= E[‖x̂AML − x‖22]

The AML estimation error can be expressed as :

‖x̂AML − x‖22 = ‖H+(Hx̂AML −Hx)‖22 = ‖H+(b− b3D(x̂AML) + n)‖22

The previous expression gives :

Tr{MSE[x̂AML]} ≤ E{‖H+(b− b3D(x̂AML))‖2
2}+ E{‖H+n‖2

2}

By developing the two parts of this inequality, we show that :

E[‖H+n‖22] = Tr{(HTR−1H)−1} = Tr{MSE[x̂ML]}

E[‖H+(b− b3D(x̂AML))‖2
2] = Tr{(H+E[δAML

3D (δAML
3D )T ](H+)T )}

Where δAML
3D = b− b3D(x̂AML). Besides, we have the following inequality for all candidate

positions :

‖b− b3D(xi)‖2R−1 ≤ ‖b− b3D(x)‖2R−1 + ‖b3D(xi)− b3D(x)‖2R−1

And then, we deduce that :

‖δAML
3D ‖2R−1 = min

xi
‖b− b3D(xi)‖2R−1 ≤ δ3D + min

xi
‖b3D(xi)− b3D(x)‖2R−1 ≤ (1 + η)δ3D

where η � 1 and then lemma 2 is proven.

B.1.3 Lemma 3 : Convergence of AML estimator to ML estimator :

If we suppose that all the diagonal values of the covariance matrix are equals, i.e R = σI,
then we have :

‖x̂AML − x̂ML‖22 ≤
N ×GDOP

σ2 (1 + η)δ3D (B.5)

where GDOP is the Geometric Dilution Of Precision, N is the number of received GNSS
signals and η � 1.

Proof : We start from the following relation for the AML solution :

y−Hx̂AML − b3D(x̂AML) = 0

Let us compute the AML and ML solutions difference, which can be expressed as :

‖x̂AML − x̂ML‖22 = ‖H+(Hx̂AML − y + b)‖22 = ‖H+(b− b3D(x̂AML))‖22
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By definition of the operator norm of matrix H+ :

‖x̂AML − x̂ML‖22 ≤ ‖R−1/2H+‖2F ‖b− b3D(x̂AML)‖22

Where, we define the Frobenius matrix norm as :

‖R−1/2H+‖F = Tr{(H+)TR−1H+} = Tr{R−1/2H+(H+)TR−1/2}

Since matrix R is diagonal with equal diagonal elements :

‖R−1/2H+‖F = Tr{R−2(HTR−1H)−1}

Matrices in the trace operator are matrices with positive diagonal elements. Then, we get the
following inequality :

Tr{R−2(HTR−1H)−1} ≤ Tr{R−2}Tr{(HTR−1H)−1}

The second term can be expressed as :

Tr{R−2}Tr{(HTR−1H)−1} = N × Tr{DOP}
σ2 = N ×GDOP

σ2

Where DOP = (HTH)−1 is the Dilution of Precision (DOP) matrix,GDOP is the Geometric
Dilution Of Precision, N is the number of received GNSS signals and σ are the diagonal values
of the noise covariance matrix, i.e R = σI. Finally, using the previous proof, we have shown
that :

‖b− b3D(x̂AML)‖2R−1 ≤ (1 + η)δ3D

This proves lemma 3.

Lemma 1 shows that, conditioned by 3D P3D GNSS signal propagation simulators accu-
racy, the minimum of the approximate maximum-likelihood cost function P converges to the
minimum of the maximum-likelihood cost function J . Lemma 2 demonstrates that, conditio-
ned by 3D P3D GNSS signal propagation simulators accuracy, the overall mean square error
(trace of the MSE matrix) of the AML estimator converges to the minimum overall mean
square error of the ML solution of the GNSS problem (most efficient estimator). Lemma 3
proves that, conditioned by 3D P3D GNSS signal propagation simulators accuracy, the AML
estimator converges to the ML estimator, i.e. if the 3D P3D GNSS signal propagation si-
mulators is so accurate, the AML will converge to the ML estimator which is the Minimum
Variance Unbiased Estimator (MVUE) of the GNSS problem. Other key factors are the num-
ber of satellites, the geometric configuration (GDOP) and the PR quality given by the noise
variance σ2.
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B.2 PM-3D efficiency

B.2.1 Lemma 1 : Convergence of PM estimator to true position :

Tr{MSE(x̂PM )} −→
δ3D→0

Tr{MSE(x̂ML)} (B.6)

Proof : We start by computing the expression of x̂PM :

x̂PM = argmin
xi
{ ∂

∂xi
(Ψ(y|xi,b3D(xi)) = 0)}

We compute the derivative of the cost function :

∂

∂xi
(Ψ(y|xi,b3D(xi))) = −2H+(H + ∂

∂xi
b3D(xi))R−1K(xi)

Where K(xi) = H+(y−b3D(xi))−xi. Then, we get the following expression for the position
matching estimate :

K(x̂PM ) = 0 ⇐⇒ x̂PM = H+(y− b3D(x̂PM ))

Since the MSE matrix is diagonal, the overall mean square error of the PM estimation is
expressed as :

Tr{MSE[x̂PM ]} = Tr{E[(x̂PM − x)(x̂PM − x)T ]} = E[‖x̂PM − x‖22]

The PM estimation error can be expressed as :

‖x̂PM − x‖22 = ‖x̂PM −H+Hx‖22 = ‖H+(b− b3D(x̂PM ) + n)‖22

The previous expression gives :

Tr{MSE[x̂PM ]} ≤ E{‖H+(b− b3D(x̂PM ))‖2
2}+ E{‖H+n‖2

2}

By developing the two parts of this inequality, we show that :E{‖H+n‖22} = Tr{(HTR−1H)−1} = Tr{MSE[x̂ML]}
E{‖H+(b− b3D(x̂PM ))‖22} = Tr{(H+E[δPM3D (δPM3D )T ](H+)T )}

Where δPM3D = b − b3D(x̂PM ). Besides, we have the following inequality for all candidate
positions :

‖b− b3D(xi)‖2R−1 ≤ ‖b− b3D(x)‖2R−1 + ‖b3D(xi)− b3D(x)‖2R−1
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And then, we deduce that :

‖δPM3D ‖2R−1 = min
xi
‖b− b3D(xi)‖2R−1 ≤ δ3D + min

xi
‖b3D(xi)− b3D(x)‖2R−1 ≤ (1 + η)δ3D

where η � 1 and then lemma 1 is proven.

B.2.2 Lemma 2 : Comparison between PM estimator and AML estimator :

Tr{MSE(x̂AML)} ≤ Tr{MSE(x̂PM )} (B.7)

Proof : We start the demonstration by expressing a relation between the K and G
functions defined in previous lemmas :

K(xi) = H+(y− b3D(xi))− xi = H+G(xi)

We note λmin(H+) the smallest singular value of matrix H+ that can be proven to be higher
than 1. As ‖v‖2R−1 ≤ λmin(H+)‖v‖2R−1 ≤ ‖H+v‖22,∀v ∈ RN , then this gives :

Ψ(y|xi,b3D(xi)) = ‖K(xi)‖22 = ‖H+G(xi)‖22 ≥ ‖G(xi)‖2R−1 = P (y|xi,b3D(xi))

In particular :

Ψ(y|x̂PM ,b3D(x̂PM )) = min
xi

Ψ(y|xi,b3D(xi)) ≥ P (y|x̂AML,b3D(x̂AML)) = min
xi

P (y|xi,b3D(xi))

Similarly, it can be shown that :

‖H+(b + n− b3D(x̂PM ))‖22 ≥ ‖(b + n− b3D(x̂AML))‖2R−1

By writing the expression of estimation errors for both AML and PM estimators as :‖x̂PM − x‖22 = ‖H+G(x̂PM )−H+(b + n− b3D(x̂PM ))‖22
‖x̂AML − x‖22 = ‖G(x̂AML)− (b + n− b3D(x̂AML))‖2R−1

it yields :
‖x̂AML − x‖22 ≤ ‖x̂PM − x‖22

And, as : Tr{MSE[x̂PM ]} = E{‖x̂PM − x‖22]}
Tr{MSE[x̂AML]} = E{‖x̂AML − x‖22]}

then, lemma 2 is proven.

164



Annexe C

Appendix : PR Bias Prediction
Uncertainty

Proof of Relation (3.15)

We start from the accuracy requirement from (3.14) :

OMSE[x̂CLS ] ≤ OMSE[x̂LS ]

The expressions of the OMSE of CLS and LS estimators are given in (A.11) and in equation
(18) in [253]. They are recalled below :OMSE[x̂LS ] = Tr{(HTR−1H)−1}+ Tr{H+E{bbT }(H+)T }

OMSE[x̂CLS ] = Tr{(HTR−1
b H)−1}+ Tr{H+

b E{δbδb
T }(H+

b )T }

If we define the following term βb = Tr{(HTR−1
b H)−1} − Tr{(HTR−1H)−1}, the accuracy

requirement expressed at the beginning of this appendix can be written as :

Tr{H+
b E{δbδb

T }H+
b } ≤ Tr{H+E{bbT }(H+)T } − βb

Now, the OMSE of both LS and CLS estimators, can be expressed using the trace operator
proprieties as :

OMSE[x̂LS ] = ∑
k,i

[(H+)k,i]2(E{bbT })i,i] + Tr{(HTR−1H)−1}

OMSE[x̂CLS ] = ∑
k,i

[(H+
b )k,i]2(E{δbδbT })i,i] + Tr{(HTR−1

b H)−1}
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Proof of Relation (3.19)

The OMSE of the CLS estimator is given by (details are in equation (18) in [253]) :

OMSE[x̂CLS ] =
∑
k,i

[(H+
b )k,i]2(E{δbδbT })i,i] + Tr{(HTR−1

b H)−1}

In case of only one ranging measurement error from satellite j and when correcting the
ranging errors from all received satellites except satellite j, i.e. (δb)j 6= 0and (δb)i 6=j = 0, the
sum present in the previous expression can be simplified :∑

k,i

[(H+
b )k,i]2(E{δbδbT })i,i] =

∑
k

[(H+
b )k,j ]2E{δbδbT }j,j

As (δb)j ∼ N (µ, σ2), then E{δbδbT }j,j = σ2 + µ2 (because (δb)i 6=j = 0), which proves
relation (3.19).
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Annexe D

Appendix : Properties of Modified
Lower Bounds

D.1 A general class of tighter modified lower bounds and its
relationship with hybrid lower bounds

In this section, the tightness of the modified lower bounds (MLBs) proposed in chapter 5
is increased by adding different subset of constraints.

D.1.1 A first class of tighter modified lower bounds

Since :

p (z; θ) =
∫
SΘr |z

p (z,θr; θ) dθr

=
∫

RPr

p (z,θr; θ) 1SΘr |z
(θr) dθr,

then, after change of variables θr = θ′r + hr and renaming θ′r as θr :

p (z; θ) =
∫

RPr

p (z,θr + hr; θ) 1SΘr |z
(θr + hr) dθr.

Therefore for any hr such that :

1SΘr |z
(θr + hr) = 1SΘr |z

(θr) , ∀θr ∈ RPr , (D.1a)

then :
p (z; θ) =

∫
SΘr |z

p (z,θr + hr; θ) dθr, (D.1b)
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and for any unbiased estimator θ̂0 ∈ L2 (SZ), (4.11a) can be reformulated as, ∀n ∈ [1, N ]

θn − θ0 = Ez;θ0

[(
θ̂0 (z)− θ0

)
υθ0 (z; θn)

]
=

∫
SZ

(
θ̂0 (z)− θ0

)
p (z; θn) dz

=
∫
SZ

(
θ̂0 (z)− θ0

) ∫
SΘr |z

p (z,θr + hr; θn) dθrdz

= Ez,θr;θ0

[(
θ̂0 (z)− θ0

)
υθ0 (z,θr + hr; θn)

]
,

that is in vector form :

ξ
(
θN
)

= Ez;θ0

[(
θ̂0 (z)− θ0

)
υθ0

(
z;θN

)]
= Ez,θr;θ0

[(
θ̂0 (z)− θ0

)
υθ0

(
z,θr + hr;θN

)]
.

(D.2)

The identity (D.2) means that for any θ̂0 ∈ L2 (SZ), the two subsets of N constraints
are equivalent system of linear equations yielding the same vector subspace of L2 (SZ) :
span

(
υθ0

(
z; θ1) , . . . , υθ0

(
z; θN

))
. Therefore, for any θ̂0 ∈ L2 (SZ), any set ofN×K constraints

of the form :
ξ
(
θN
)

= Ez,θr;θ0

[(
θ̂0 (z)− θ0

)
υθ0

(
z,θr + hkr ;θN

)]
, (D.3)

where
{
h1
r , . . . ,hKr

}
satisfy (D.1a), is equivalent to the set ofN constraints (4.15). Fortunately

this result does not hold a priori for all θ̂0 ∈ L2 (SZ,Θr) where the N×K constraints (D.3) are
expected to be linearly independent (not necessarily true in the general case). As mentioned
above, the main effect of adding constraints is to restrict the class of viable estimators θ̂0 ∈
L2 (SZ,Θr) and therefore to increase the minimum norm obtained from (4.10) :

min
θ̂0∈L2(SZ,Θr )

{
Ez,θr ;θ0

[(
θ̂0 (z, θr)− θ0

)2
]}

under ξ
(
θN
)

= Ez,θr ;θ0

[(
θ̂0 (z, θr)− θ0

)
υθ0
(
z, θr + hkr ; θN

)]
,

(D.4)
1 ≤ k ≤ K, which remains smaller (or equal) than the minimum norm obtained for θ̂0 ∈
L2 (SZ) given by (4.17a). This LB ordering was previously introduced in [210, (29)], but only
in the restricted case where the prior does not depend on the deterministic parameter and
SΘr|z = RPr , at the expense of a not straightforward derivation (see Subsections III.C and
III.D in [210]). Note that the regularity condition (D.1a) only imposes on 1SΘr |z

(θr), z ∈ SZ ,
to be of the following form :

1SΘr |z
(θr) =

∣∣∣∣∣∣∣
0 if ∑

hr∈Fz

(∑
l∈Z

1S0
Θr |z

(θr + lhr)
)

= 0,

1, otherwise,
(D.5)

where Fz and S0
Θr|z are subsets of RPr , what means that the complementary of SΘr|z is the

union (possibly uncountable) of periodic subsets of RPr .
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D.1.2 A second class of tighter modified lower bounds

Let us recall that any real-valued function ψ (z,θr; θ) defined on SZ,Θr satisfying∫
SΘr |z

ψ (z,θr; θ) p (z,θr; θ) dθr = 0, (D.6)

is a Bayesian LB-generating functions [254]. A well known example is, for γ ∈]0, 1[ :

ψhr
γ (z,θr; θ) = (p (z,θr + hr; θ) /p (z,θr; θ))γ − (p (z,θr − hr; θ) /p (z,θr; θ))1−γ , (D.7)

if (z,θr) ∈ SX ,Θr , and ψhr
γ (z,θr; θ) = 0 otherwise, yielding the Bayesian Weiss-Weinstein

bound (BWWB). Let ψ (z,θr; θ) be a vector of L linearly independent functions satisfying
(D.6). Then ∀g (.) ∈ L2 (SZ) :

Ez,θr;θ0

[
g (z)ψ

(
z,θr; θ0

)]
= 0, (D.8a)

which means that the subspace L2 (SZ) is orthogonal to span
{
ψ1
(
z, θr; θ0) , . . . , ψL (z, θr; θ0)}

in L2 (SZ,Θr). Therefore, since (4.17a) can be reformulated as (4.17b), it is straightforward
that (4.17a) is equivalent to :

min
θ̂0∈L2(SZ)

{
Ez,θr;θ0

[(
θ̂0 (z)− θ0

)2
]}

under

∣∣∣∣∣∣
ξ
(
θN
)

= Ez,θr;θ0

[(
θ̂0 (z)− θ0

)
υθ0

(
z;θN

)]
0 = Ez,θr;θ0

[(
θ̂0 (z)− θ0

)
ψ
(
z,θr; θ0)] .

(D.8b)
In other words, the addition of the set of L constraints Ez,θr;θ0

[(
θ̂0 (z)− θ0

)
ψ
(
z,θr; θ0)] = 0

to any linear transformation of (4.11a) does not change the associated LB (4.12b) computed for
θ̂0 ∈ L2 (SZ). Fortunately, once again, this result does not hold a priori for all θ̂0 ∈ L2 (SZ,Θr).
Indeed, provided that ψ (x,θr; θ) is chosen such that Ez,θr;θ0

[
υθ0

(
z,θr;θN

)
ψ
(
z,θr; θ0)T ] 6=

0 [231, Lemma 2], one can increase the minimum norm obtained from (4.17c) by computing :

min
θ̂0∈L2(SZ,Θr )

{
Ez,θr;θ0

[(
θ̂0 (z,θr)− θ0

)2
]}

under

∣∣∣∣∣∣
ξ
(
θN
)

= Ez,θr;θ0

[(
θ̂0 (z,θr)− θ0

)
υθ0

(
z,θr;θN

)]
0 = Ez,θr;θ0

[(
θ̂0 (z,θr)− θ0

)
ψ
(
z,θr; θ0)] ,

(D.9)
which remains smaller (or equal) than the minimum norm obtained for θ̂0 ∈ L2 (SZ) given
by (4.17a). First note that it is in general not possible to compare (D.4) with (D.9) since
they derive from different subset of constraints. Second, (D.9) can be used with joint p.d.f.
p (z,θr; θ) which does not satisfy the regularity condition (D.5) since functions (D.7) are
essentially free of regularity conditions [254].
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D.1.3 A general class of tighter modified lower bounds and its relationship
with hybrid lower bounds

The tightest modified LBs are obtained by combination of constraints (D.4) and (D.9) as the
solution of :

min
θ̂0∈L2(SZ,Θr )

{
Ez,θr;θ0

[(
θ̂0 (z,θr)− θ0

)2
]}

under

∣∣∣∣∣∣
ξ
(
θN
)

= Ez,θr;θ0

[(
θ̂0 (z,θr)− θ0

)
υθ0

(
z,θr + hkr ; θN

)]
0 = Ez,θr;θ0

[(
θ̂0 (z,θr)− θ0

)
ψ
(
z,θr; θ0)] ,

(D.10)
1 ≤ k ≤ K, where ψ

(
z,θr; θ0) satisfies (D.6).

Firstly, if we restrict (D.10) to (D.4), that is no function ψ
(
z,θr; θ0) (D.6) is involved, then

the solution of (D.4)(D.10) given by the minimum norm lemma (4.10) yields the deterministic
part of the HLBs obtained as discrete forms [211, (30)] of linear transformations on the CLR
function introduced in [211]. Following from similar argument given in Section 4.2.3 or in
[208, Section III], one obtains the deterministic part of the HLB integral form proposed in
[211], as linear transformations of (D.4) in the limiting case where N,K → ∞. Note that
in [211] two restrictive regularity conditions are assumed : i) SΘr|z = RPr , ii) the prior does
not depend on θ, which are relaxed with the proposed framework : HLBs obtained via linear
transformations on the CLR function are still valid if the prior depends on θ as long as SΘr|z
satisfies (D.5), which includes RPr . In contrast, according to (D.5) such bounds do not exist if
SΘr|z is a connected set of RPr and in most cases, if SΘr|z is a disconnected subset of RPr (not
stated in [211]). Last, since the modified LB obtained from (D.4) is lower than or equal to the
standard LB from (4.17a), one can assert that the deterministic part of any HLB obtained via
the linear transformation on the CLR is looser (or equal) than the corresponding standard
LB (not proven in [211]).

Secondly, if SΘr|z does not satisfy (D.5), e.g., if SΘr|z is an interval, then (D.4) can no
longer be used to increase the minimum norm obtained from (4.17c). One solution is therefore
to restrict (D.10) to (D.9) and, following from similar argument given in Section 4.2.3, to resort
to some of its possible integral forms obtained as the limiting cases where N,K →∞, where
L has a finite value :

min
θ̂0∈L2(SZ,Θr )

{
Ez,θr;θ0

[(
θ̂0 (z,θr)− θ0

)2
]}

under

∣∣∣∣∣∣
Γhθ0 (τ) = Ez,θr;θ0

[(
θ̂0 (z,θr)− θ0

)
ηhθ0 (z,θr; τ)

]
0 = Ez,θr;θ0

[(
θ̂0 (z,θr)− θ0

)
ψ
(
z,θr; θ0)] ,
(D.11a)

where ηhθ0 (z,θr; τ) =
∫

Θd
h (τ, θ) υθ0 (z,θr; θ) dθ and Γhθ0 (τ) =

∫
Θd
h (τ, θ)

(
θ − θ0) dθ, or where

L→∞, if we choose (D.7) :

min
θ̂0∈L2(SZ,Θr )

{
Ez,θr;θ0

[(
θ̂0 (z,θr)− θ0

)2
]}

under

∣∣∣∣∣∣
Γhθ0 (τ) = Ez,θr;θ0

[(
θ̂0 (z,θr)− θ0

)
ηhθ0 (z,θr; τ)

]
0 = Ez,θr;θ0

[(
θ̂0 (z,θr)− θ0

)
κ
(
z,θr; θ0)] ,
(D.11b)

where κ
(
z,θr; θ0) =

∫
γ,hr

ψhr
γ

(
z,θr; θ0) dhrdγ. To the best of our knowledge, (D.11b) defines
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a new class of MLBs, whereas (D.11a) is a particular case of the deterministic part of HLBs
introduced in [208].

Thirdly, if we restrict ourselves to the case where SΘr|z = RPr , then (D.10) and its possible
integral forms provide an extended class of MLBs which can be regarded as the deterministic
part of an extended class of HLBs which includes all known HLBs introduced so far as shown
in [211] and [208].

D.1.4 Old and new tighter modified lower bounds

A typical example is the case of the CRB. A tighter MCRB obtained from (D.4) for N = 2,
K = Pr, where θ2 =

(
θ0 + dθ, θ0) and hkr = ukhkr , 1 ≤ k ≤ Pr, leading to the following subset

of constraints :

v = dθ

(
0
e1

)
= Ez,θr;θ0

[(
θ̂0 (z,θr)− θ0

)
cθ0 (z,θr)

]
,

cTθ0 (z,θr) =
(
υθ0
(
z,θr; θ0) , υθ0

(
z,θr; θ0 + dθ

)
, υθ0

(
z,θr + u1h

1
r; θ0) , . . . , υθ0

(
z,θr + uPr

hPr
r ; θ0))

where e1 = (1, 0, . . . , 0)T and uk is the kth column of the identity matrix IPr . By letting(
dθ, h1

r , . . . , h
Pr
r

)
be infinitesimally small, which imposes that (D.5) reduces to : ∀z ∈ SZ ,

SΘr|z = RPr , the LB obtained from (4.10) is :

MCRBθ0 = eT1 F
(
θ0
)−1

e1, F (θ) = Ez,θr;θ

∂ ln p (z,θr; θ)

∂
(
θ,θTr

)T ∂ ln p (z,θr; θ)
∂
(
θ,θTr

)
 . (D.12)

Since F (θ) =
[

fθ (θ) fTθr,θ (θ)
fθr,θ (θ) Fθr (θ)

]
, therefore :

MCRBθ0 = 1
fθ (θ0)− fTθr,θ (θ0) F−1

θr
(θ0) fθ,θr (θ0)

≥ 1
fθ (θ0) = MCRBθ0 . (D.13)

Actually, (D.12) is also the deterministic part of the HCRB [214] and a similar derivation was
proposed in [210], but under the unnecessary restrictive assumption of a prior independent
of θ, as in [214] which introduced the HCRB as an extension of the Bayesian CRB proposed
in [212]. This condition was relaxed in [255, (20)] with sufficient conditions [255, (21)] unne-
cessary restrictive and which have been an impediment to the dissemination of their result.
However if SΘr|z is an interval of RPr , then the tighter MCRB (D.12) cannot be derived any
longer. Fortunately, as shown with the proposed rationale, an alternative tighter MCRB can
be derived from (D.9). Indeed, for N = 2, where θ2 =

(
θ0 + dθ, θ0), the following subset of
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constraints :

v = dθ

(
0
e1

)
= Ez,θr;θ0

[(
θ̂0 (z,θr)− θ0

)
cθ0 (z,θr)

]
,

cTθ0 (z,θr) =
(
υθ0

(
z,θr; θ0

)
, υθ0

(
z,θr; θ0 + dθ

)
,ψ
(
z,θr; θ0

)T)
yields, as a limiting form where dθ → 0, via Lemma (4.10) :

MCRB
a
θ0 = eT1 Ez,θr;θ0

( ∂ ln p(z,θr;θ)
∂θ

ψ (z,θr; θ)

)(
∂ ln p(z,θr;θ)

∂θ

ψ (z,θr; θ)

)T−1

e1,

that is :
MCRB

a
θ0 = 1

fθ (θ0)− f (θ0) F (θ0)−1 f (θ0)
≥ 1
fθ (θ0) = MCRBθ0 ,

where F (θ) = Ez,θr;θ
[
ψ (z,θr; θ)ψ (z,θr; θ)T

]
, f (θ) = Ez,θr;θ

[
ψ (z,θr; θ) ∂ ln p(z,θr;θ)

∂θ

]
and

fθ (θ) = Ez,θr;θ

[(
∂ ln p(z,θr;θ)

∂θ

)2
]
. In the same way, one could easily proposed an alternative to

the tighter MBaB of order K deriving from (D.4), suitable to estimation problems for which
SΘr|z does not satisfy (D.5). Or for the modified form of any known standard LB.

D.2 Non-standard maximum likelihood estimator performance

D.2.1 Performance comparison with the standard MLE

First, ∀φ̂ ∈ L2 (SZ,Θr) :

Ez,θr;θ

[(
φ̂− g (θ)

) (
φ̂− g (θ)

)T ]
= Ez,θr;θ

[(
φ̂− Ez|φ

[
φ̂
]) (

φ̂− Ez|φ
[
φ̂
])T ]

+

Eθr;θ

[(
Ez|φ

[
φ̂
]
− g (θ)

) (
Ez|φ

[
φ̂
]
− g (θ)

)T ]
. (D.14a)

Therefore, if φ̂ ∈ US (SZ,Θr) :

Ez,θr;θ

[(
φ̂− g (θ)

) (
φ̂− g (θ)

)T ]
= Ez,θr;θ

[(
φ̂− φ

) (
φ̂− φ

)T ]
+ Cθ (φ) , (D.14b)

where :
Cθ (φ) = Eθr;θ

[
(φ− Eθr;θ [φ]) (φ− Eθr;θ [φ])T

]
=
[

0 0T
0 Cθ (θr)

]
.
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Second, as US (SZ) ⊂ UW (SZ) and US (SZ) ⊂ US (SZ,Θr) and, finally :

min
φ̂∈UW (SZ)

{
Ez|θ

[(
φ̂− g (θ)

)(
φ̂− g (θ)

)T]}
≤ min

φ̂∈US(SZ)

{
Ez,θr;θ

[(
φ̂− φ

)(
φ̂− φ

)T]}
+ Cθ (φ) ,

(D.15a)
and, in particular :

min
θ̂∈UW (SZ)

{
Ez|θ

[(
θ̂ − θ

)2
]}
≤ min

θ̂∈US(SZ)

{
Ez|θ

[(
θ̂ − θ

)2
]}

. (D.15b)

If we consider an asymptotic region of operation [204, 205, 207, 240, 241, 242, 243] for both
θ̂ML (z) and θ̂ (z), then θ̂ML (z) is wide-sense unbiased, i.e., θ̂ML ∈ UW (SZ), θ̂ (z) is strict-
sense unbiased, i.e., θ̂ ∈ US (SZ), and (D.15b) holds for θ̂ML and θ̂.

D.2.2 Non-standard lower bounds performance

A typical example is the NSCRB obtained for N = 2, where θ2 = (θ, θ + dθ) leading to the
following subset of constraints :

(
0
dθ

)
= Ez,θr;θ

[(
θ̂ (z,θr)− θ

)( 1SZ,Θr (z,θr)
υθ (z,θr; θ + dθ)

)]
, (D.16a)

which is equivalent to [231, Lemma 3] :(
0
1

)
= Ez,θr;θ

[(
θ̂ (z,θr)− θ

)( 1SZ,Θr (z,θr)
υθ(z,θr;θ+dθ)−1

dθ

)]
, (D.16b)

and can be reduced to [231, Lemma 2] :

1 = Ez,θr;θ

[(
θ̂ (z,θr)− θ

) p (z,θr; θ + dθ)− p (z,θr; θ)
dθp (z,θr; θ)

]
, (D.16c)

since Ez,θr;θ
[
1SZ,Θr (z,θr) (υθ (z,θr; θ + dθ)− 1)

]
= 0. Then by letting dθ be infinitesimally

small, (4.36b) becomes [215, (5)] :

MCRBθ , Ez,θr;θ

[(
∂ ln p (z,θr; θ)

∂θ

)2]−1

≤ NSCRBθ , Eθr;θ

Ez|φ

[(
∂ ln p (z|φ)

∂θ

)2]−1
 ,

(D.17)
where the NSCRBθ is the MCB [213, (7)]. Following the rationale introduced in [232], a
straightforward extension of (D.17) is obtained for θN =

(
θ1, . . . , θN

)T
, θn = θ + (n− 1) dθ,

1 ≤ n ≤ N . Indeed the set of N associated constraints :

dθwN = Ez,θr;θ
[(
θ̂ (z,θr)− θ

)
υθ
(
z,θr;θN

)]
, (D.18a)
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where wT
N = (0, . . . , N − 1), by letting dθ be infinitesimally small, becomes equivalent to

[232][231, Lemma 3] :
v′ = Ez,θr;θ

[(
θ̂ (z,θr)− θ

)
b′θ (z, θr)

]
, (D.18b)

where v′ = (0, 1, 0, . . . , 0)T and b′θ (z,θr) = 1
p(z,θr;θ)

(
p (z,θr; θ) , ∂p(z,θr;θ)∂θ , . . . , ∂

N−1p(z,θr;θ)
∂N−1θ

)T
.

Since v′1 = 0 and Ez,θr;θ
[
(b′θ)1 (z,θr) (b′θ)n (z,θr)

]
= Ez,θr;θ

[
∂np(z,θr;θ)

∂nθ

]
= 0, 2 ≤ n ≤ N − 1,

(D.18b) is actually equivalent to [231, Lemma 2] :

e1 = Ez,θr;θ
[(
θ̂ (z,θr)− θ

)
bθ (z,θr)

]
, (D.18c)

where bθ (z,θr) = 1
p(z,θr;θ)

(
∂p(z,θr;θ)

∂θ , . . . , ∂
N−1p(z,θr;θ)
∂N−1θ

)T
, and (4.36b) becomes an inequality

between the Battacharayya bounds (BaBs) [233] of order N − 1 :

MBaBθ , eT1 Ez,θr;θ
[
bθ (z,θr) bTθ (z,θr)

]−1 e1 ≤ NSBaBθ , Eθr;θ

[
eT1 Ez|φ

[
β (z;φ)βT (z;φ)

]−1
e1

]
,

(D.18d)

where β (z;φ) = 1
p(z|φ)

(
∂p(z|φ)
∂θ , . . . , ∂

N−1p(z|φ)
∂N−1θ

)T
= bθ (z,θr). Therefore, with the proposed

approach, we not only extend the result introduced in [234, (11)] under the restrictive as-
sumption of a prior independent of θ, but we can also assert that MBaBθ ≤ NSBaBθ if the
prior does not depend on θ, which has not been proven in [234].
As with the CRB and the BaB, (4.36b) also allows to derive inequalities between modified
and non-standard forms of all remaining BB approximations released in the open literature,
namely the FGB [232], the MHB [235], the GlB [219], the AbB [218], and the CRFB [225,
(101-102)].
Furthermore, an example of a tighter NSLB can be easily derived from the usual NSCRB
(D.17). Indeed by adding to (D.16a) the following K = Pr constraints :

0 = Ez|φ
[(
θ̂ (z,θr)− θ

)
υφ
(
z; ΦK

)]
,

where φk =
( θ
θr+ukhkr

)
and uk is the kth column of the identity matrix IPr , one obtains the

following equivalent set of constraints [231, Lemma 3+Lemma 2] :

e1 = Ez|φ
[(
θ̂ (z,θr)− θ

)
c
(
z; ΦK+1

)]
,

cT
(
z; ΦK+1

)
=
(
p(z|θr;θ+dθ)
p(z|θr;θ)dθ −

1
dθ ,

p(z|θr+u1h1
r,θ)

p(z|θr;θ)h1
r
− 1

h1
r
, . . . ,

p(z|θr+uKhKr ,θ)
p(z|θr;θ)hKr

− 1
hKr

)
.
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By letting
(
dθ, h1

r , . . . , h
Pr
r

)
be infinitesimally small, then c

(
z; ΦK+1

)
→ ∂ ln p(z|φ)

∂φ and (4.37b)
becomes [249, (24)] :

MCRBθ , Ez,θr;θ

[(
∂ ln p (z,θr; θ)

∂θ

)2]−1

≤ NSCRBθ , Eθr;θ

Ez|φ

[(
∂ ln p (z|φ)

∂θ

)2]−1


≤ NSCRBθ = Eθr;θ

eT1 Ez|φ

[
∂ ln p (z|φ)

∂φ

∂ ln p (z|φ)
∂φT

]−1

e1

 . (D.19)

In [249], NSCRBθ was introduced under the restrictive assumption of a prior independent
of θ, which can be relaxed as shown with the proposed framework.
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Résumé — Les avancées récentes dans le domaine de navigation par satellites (GNSS) ont
conduit à une prolifération des applications de géolocalisation dans les milieux urbains. Pour
de tels environnements, les applications GNSS souffrent d’une grande dégradation liée à la
réception des signaux satellitaires en lignes indirectes (NLOS) et en multitrajets (MP). Ce
travail de thèse propose une méthodologie originale pour l’utilisation constructive des signaux
dégradés MP/NLOS, en appliquant des techniques avancées de traitement du signal ou à
l’aide d’une assistance d’un simulateur 3D de propagation des signaux GNSS. D’abord, nous
avons établi le niveau maximal réalisable sur la précision de positionnement par un système
GNSS "Stand-Alone" en présence de conditions MP/NLOS, en étudiant les bornes inférieures
sur l’estimation en présence des signaux MP/NLOS. Pour mieux améliorer ce niveau de
précision, nous avons proposé de compenser les erreurs NLOS en utilisant un simulateur 3D des
signaux GNSS afin de prédire les biais MP/NLOS et de les intégrer comme des observations
dans l’estimation de la position, soit par correction des mesures dégradées ou par sélection
d’une position parmi une grille de positions candidates. L’application des approches proposées
dans un environnement urbain profond montre une bonne amélioration des performances de
positionnement dans ces conditions.
Mots clés : GNSS, Reception Multi-trajets ou NLOS, Positionnement en urbain, Méthodes
de traitement du signal avancées, Simulateur GNSS, Bornes inférieures.

Abstract — Recent trends in Global Navigation Satellite System (GNSS) applications in
urban environments have led to a proliferation of studies in this field that seek to mitigate
the adverse effect of non-line-of-sight (NLOS). For such harsh urban settings, this dissertation
proposes an original methodology for constructive use of degraded MP/NLOS signals, instead
of their elimination, by applying advanced signal processing techniques or by using additional
information from a 3D GNSS simulator. First, we studied different signal processing frame-
works, namely robust estimation and regularized estimation, to tackle this GNSS problem
without using an external information. Then, we have established the maximum achievable
level (lower bounds) of GNSS Stand-Alone positioning accuracy in presence of MP/NLOS
conditions. To better enhance this accuracy level, we have proposed to compensate for the
MP/NLOS errors using a 3D GNSS signal propagation simulator to predict the biases and
integrate them as observations in the estimation method. This could be either by correcting
degraded measurements or by scoring an array of candidate positions. Besides, new metrics
on the maximum acceptable errors on MP/NLOS errors predictions, using GNSS simulations,
have been established. Experiment results using real GNSS data in a deep urban environment
show that using these additional information provides good positioning performance enhan-
cement, despite the intensive computational load of 3D GNSS simulation.
Keywords : GNSS, Multipath and NLOS reception, Positioning in urban areas, Advanced
signal processing, 3D GNSS simulator, Lower bounds, Non-Standard Estimation.
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