





### Passive Intermodulation Products Radiated from an Antenna Reflector: Theory and Experiments

<u>Jacques Sombrin</u>(1), Isabelle Albert(2), Nicolas Fil(2), Romain Contreres(2), Christian Feat(3), Jérôme Sinigaglia(3) 1: TéSA, 2: CNES, 3: TAS



7 boulevard de la Gare – 31500 Toulouse – France contact@tesa.prd.fr – www.tesa.prd.fr

1

#### **Outline**

- 1. Context
- 2. Theory
- 3. Test bench
- 4. Results
- 5. Conclusions and perspectives

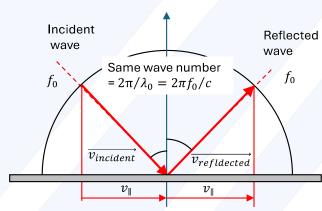


MULCOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025

#### 1. Context

- Main concerns about radiated passive intermodulation products
  - In a transmit-receive multi-horn reflector antenna, PIM products generated by signals transmitted from two or more horns could be reflected either to another horn and its receiver or in a direction outside the antenna coverage
  - PIM theory and measurement should consider this effect and take it into account in the reflector material specification
  - A PIM test bench could be designed to radiate PIM products in a direction different from that of signals to improve the dynamic of the test bench
- Theoretical study then measurements of radiated PIM products



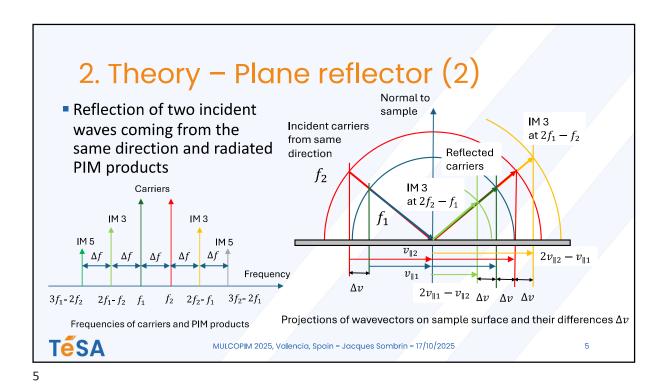

MULCOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025

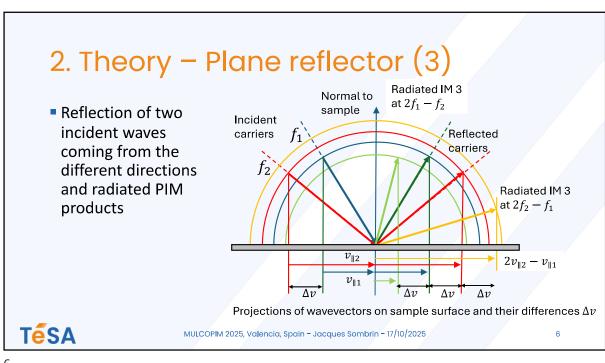
3

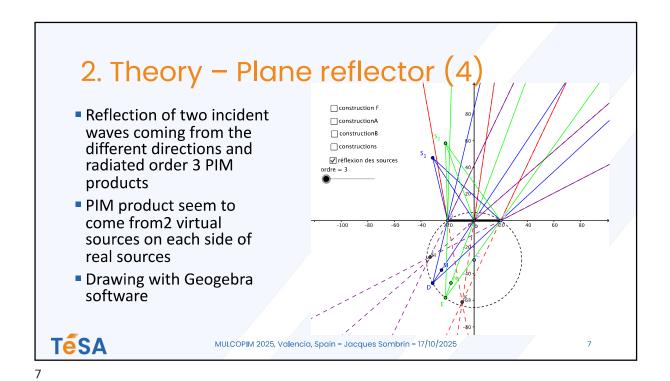
3

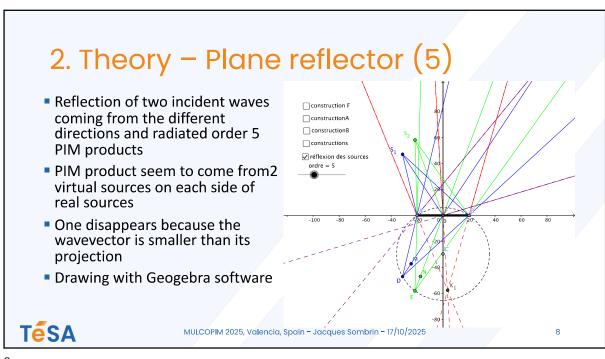
# 2. Theory – Plane reflector (1)

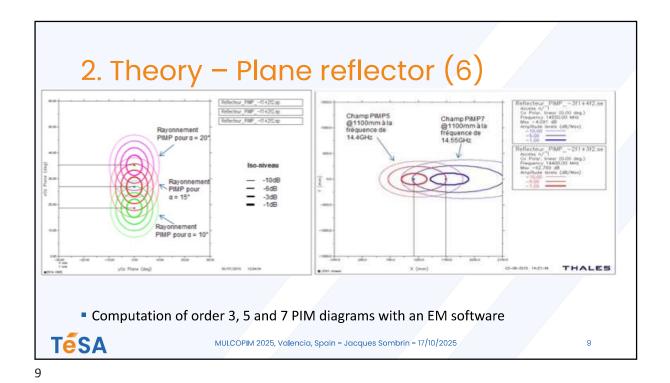
- Reflection of one incident wave
- Classical ray optics
- Wavevector length are the same
- Projections of wavevectors on the reflector plane are the same
- Result in reflection angle equal to incident angle

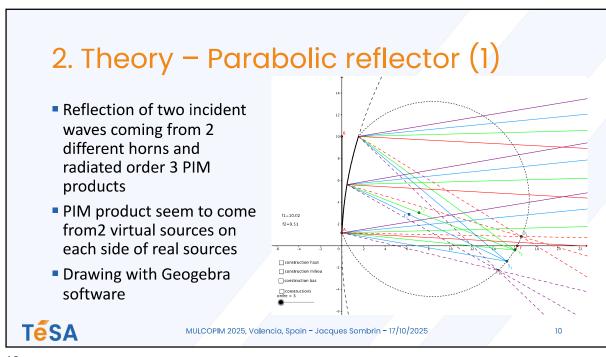


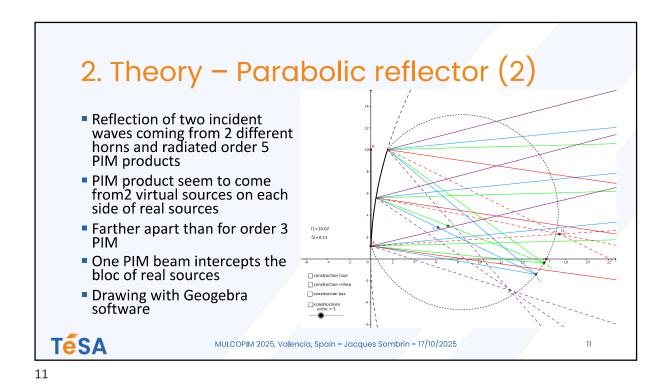


Same projections of wavevectors on sample surface



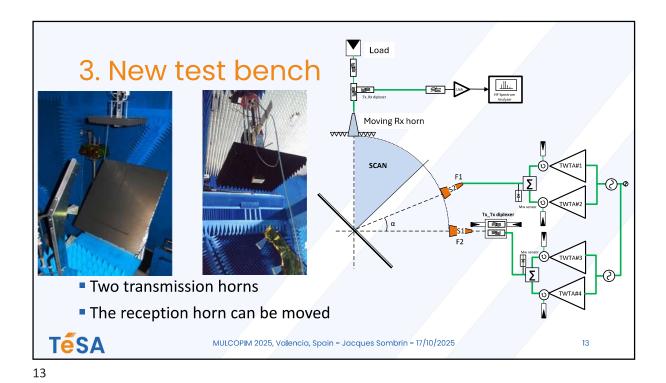


MULCOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025


4












3. Classical test bench Spectrum Rx filter LNA Analyzer Spectrum Rx filter LNA Analyzer Rx horn Power amplifiers Tx / Rx horn Tx filter 1 Reflector material Tx filter 2 sample under test Classical test bench for the measurement of PIM from a sample of reflector material TÉSA MULCOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025



# 4. Results – PIM levels and slopes

| IM<br>order | Transmitted<br>level at 50 dBm<br>per carrier (dBm) | Reflected level<br>at 50 dBm per<br>carrier (dBm) | Slope of<br>radiated<br>IM | Slope of<br>reflected<br>IM |
|-------------|-----------------------------------------------------|---------------------------------------------------|----------------------------|-----------------------------|
| 3           | -106.9                                              | -118.2                                            | 1.74                       | 1.33                        |
| 5           | -126.3                                              | -133.2                                            | 2.09                       | 1.87                        |
| 7           | -135.2                                              | -142.4                                            | 2.27                       | 2.22                        |

- With only one -transmit horn
- PIM levels follow habitual laws, slope around 2
- Slightly different slopes for reflected and transmitted PIM



MULCOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025

14

# 4. Results - radiated PIM angle

| Order | Angle of receive horn (°) |          | Order | Angle of rec | Angle of receive horn (°) |  |
|-------|---------------------------|----------|-------|--------------|---------------------------|--|
|       | Theory                    | Measured |       | Theory       | Measured                  |  |
| 3     | 25,65                     | 26       | 3     | 14,29        | 16 (10)                   |  |
| 3     | 26,65                     | 33       | 3     | 14,29        | 10                        |  |
| 3     | 26,31                     | 26       | 3     | 26           | 24                        |  |
| 3     | -16,13                    | -16      | 5     | 13,64        | 15                        |  |
| 5     | 35,59                     | 31       | 5     | 24,88        | 12                        |  |
| 5     | 36,68                     | 41       | 5     | 0            | 19 (15)                   |  |
| 7     | 45,5                      | 48       | 5     | 36           | 29 (25)                   |  |

Good results for all orders with 2 carriers More differences for order 5 with 3 carriers Problem with diffraction of the radiated PIM beams, many peaks



MULCOPIM 2025, Valencia, Spain – Jacques Sombrin – 17/10/2025

-19

15

#### 5. Conclusion and perspectives

- Ray optics give the correct main direction for the beams of radiated PIM products
- Diffraction about the same as for nominal beams
- PIM can be radiated in the direction of sources and send more power than predicted into receivers
- Higher dynamic possible in new test benches, around 10 dB obtained

#### Further work:

- Measurement on a complete parabolic reflector with multisource
- Test bench available for measurements



MULCOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025

16