

2 and 3-carrier Passive Intermodulation Products in a waveguide nonlinearity: Theory and Experiments

Jacques Sombrin(1), Isabelle Albert(2), Nicolas Fil(2), Cédric Tottolo(2)

1: TéSA, 2: CNES

7 boulevard de la Gare – 31500 Toulouse – France contact@tesa.prd.fr – www.tesa.prd.fr

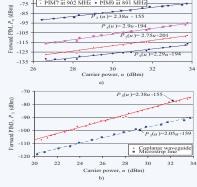
1

Outline

- 1. Introduction
- 2. PIM nonlinear model
- 3. Predictions of nonlinear model
- 4. Measurement of waveguide flange PIM
- 5. Conclusion

MULCOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025

1. Introduction


- The slope of passive intermodulation products levels versus signals level is about constant for all orders
- A simple nonlinear model based on this fact has been proposed for PIM behavior
- It predicts many other differences and "odd" behaviors of PIM
- All measurement results are explained by this simple model
- A measurement has been defined to explore the model in particular conditions and a waveguide flange has been measured with 2 and 3 carriers

MULCOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025

3

How to explain measured curves?

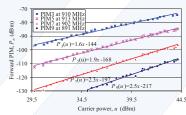


Fig. 4 Measured forward PIM3, PIM5, PIM7 and PIM9 products vs. carrie power on the microstrip line with central section of width Wc=7.44 mm with the tapered matching transformers.

- Reference Shitvov 2009
- 3rd, 5th, 7th and 9th order IM Slopes 1.6 to 2.9 dB/dB

MULCOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025

4

Л

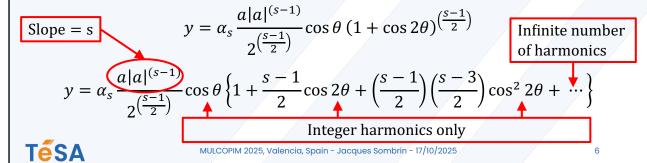
2. PIM nonlinear model

• The simplest nonlinear behavioral model proposed to explain the constant slope α of harmonics and PIM products of all orders is:

$$y = \text{sign}(x) |x|^s$$
 for odd harmonics and products $y = |x|^s$ for even harmonics and products

- Only two parameters that are easily measured:
 - For odd PIM: level of order 3 PIM and slope of order 3 PIM
- If x and y are real signals, harmonics and intermodulation products are generated with slopes α (in dB/dB) versus signal level
- Their frequencies are integer combinations of the input signal frequencies and identical to frequencies obtained with polynomials

MULCOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025


5

5

3. Predictions of nonlinear model (1)

- Only integer harmonics frequencies
 - Odd for the odd model, even for the even model
- For a real input signal $x = a \cos(2\pi\omega t + \varphi) = a \cos\theta$

$$y = \alpha_s \operatorname{sign}(x) |x|^s = \alpha_s x |x|^{(s-1)} = \alpha_s a |a|^{(s-1)} \cos \theta (\cos^2 \theta)^{\left(\frac{s-1}{2}\right)}$$

3. Predictions of nonlinear model (2)

- The model can be applied to the complex envelope of an analytic signal around a carrier in a simulation software
- The function sign (x) is extended to $e^{i\varphi}$ if $x = \rho e^{i\varphi}$
- The odd model will give odd intermodulation products near the odd harmonics
- The even model will give even products near the even harmonics
- For a 2-carrier input signal at frequencies f1 and f2, harmonics and intermodulation products of order |m|+|n| have a frequency mf1+nf2 with m and n in $\mathbb Z$ and are around the harmonic |m+n| with the phase $|m+n|\varphi$

MULÇOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025

7

3. Predictions of nonlinear model (3)

- Chebyshev transform can be used for analytical computations
- It is a special case of the Fourier transform. It uses only integrals
- No Taylor series development of the model is needed
- The model discontinuities are not a problem

$$f(x) = f(a \cdot) = \frac{1}{2} f_0(a) + \sum_{m=1}^{\infty} f_m(a) \cdot \cos(m\theta)$$

$$f_m(a) = \frac{1}{\pi} \int_{-\pi}^{+\pi} f[a.\cos(\theta)] \cos(m\theta) d\theta$$

MULCOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025

3. Predictions of nonlinear model (4)

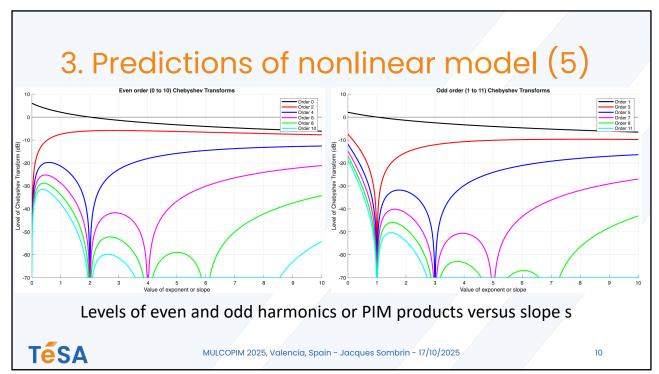
• The odd nonlinear model gives the m=2p+1 harmonic as:

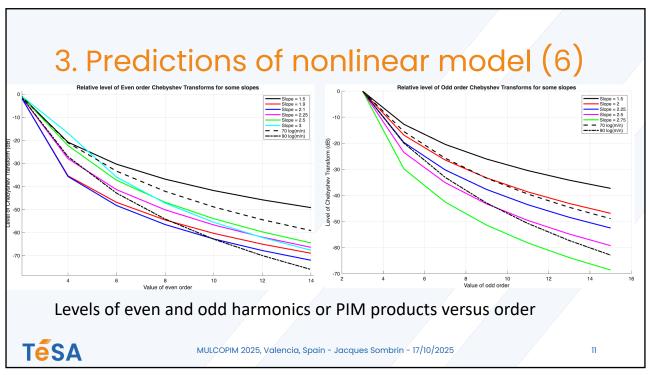
$$f_{2p+1}(a) = 2\alpha_s \operatorname{sign}(a) \left(\frac{|a|}{2}\right)^s \frac{\Gamma(s+1)}{\Gamma\left(\frac{s+3}{2} + p\right)\Gamma\left(\frac{s+1}{2} - p\right)} = \alpha_s a \left(\frac{|a|}{2}\right)^{s-1} \frac{\Gamma(s+1)}{\Gamma\left(\frac{s+3}{2} + p\right)\Gamma\left(\frac{s+1}{2} - p\right)}$$

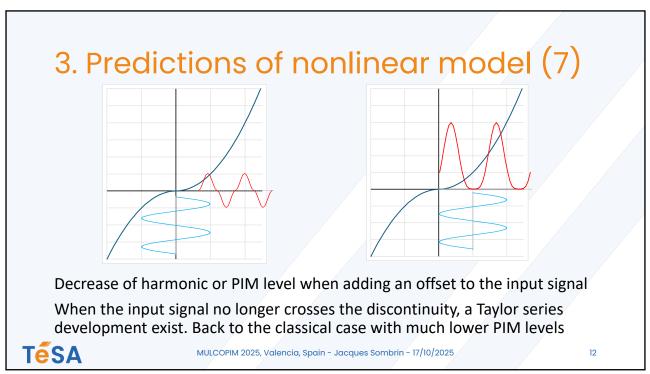
Infinite number of harmonics: for polynomials of degree s, if m > s this Γ term is infinite

Levels of all orders are linked

- The two nonlinear models are eigenvalues of the Chebyshev transform, which means that the intermodulation products of a 2-carrier signal behave exactly as the harmonics of a sinusoidal signal
- The nonlinear model applied to the complex envelope of the analytic signal is the first Chebyshev transform (m=1,p=0)

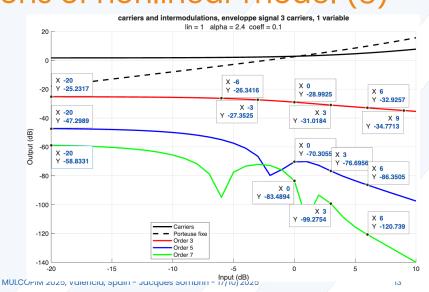

$$f_1(a) = 2\alpha_s \operatorname{sign}(a) \left(\frac{|a|}{2}\right)^s \frac{\Gamma(s+1)}{\Gamma\left(\frac{s+3}{2}\right) \Gamma\left(\frac{s+1}{2}\right)} = \beta_s \operatorname{sign}(a) |a|^s = \beta_s a |a|^{s-1}$$




MULCOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025

0

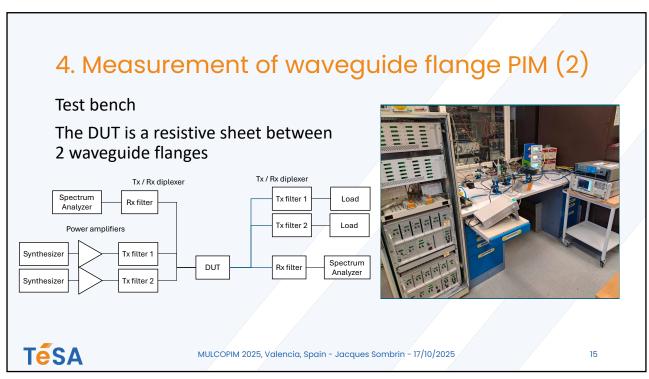
9

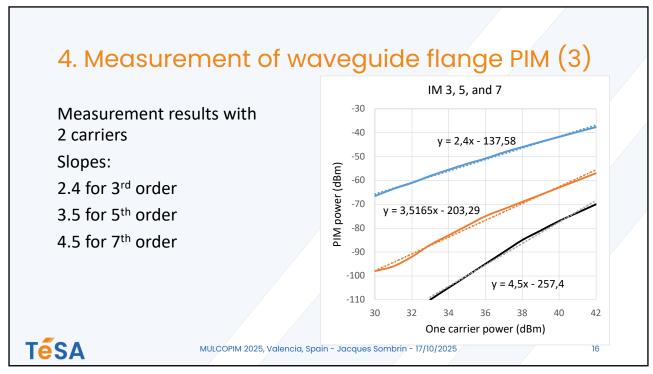


3. Predictions of nonlinear model (8)

 Prediction of 2-carrier PIM products level when a third carrier with variable power is added for a nonlinearity with slope 2.4

13


4. Measurement of waveguide flange PIM (1)


- Adding an offset and measuring the harmonics is not feasible in waveguide
- Adding a third carrier and measuring the PIM products generated by carriers 1 and 2 is easier
- A third carrier with 4 times the power of each of carriers 1 and 2 strongly decreases the levels of PIM products
- For a slope of 2 (parabolic shape) these products disappear
- For other slopes, a simple simulation is used to predict the PIM levels

MULCOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025

14

4. Measurement of waveguide flange PIM (4) Decrease of IM level when adding a third carrier Measurement results with 3 carriers —5W IM3 ■ Carriers 1 and 2 are the (ab) William Same (5 or 10 W) and their PIM are measured Third carrier power -5W IM5 -10WIM3 -10W IM5 -30

varies from 0 to 4 or 8 times the power of each carriers 1 and 2

-10W IM7 -35 -theory 3rd order -theory 5th order -50 Ratio of third carrier power to first and second carriers power

Theoretical slope 2.4 for order 3 and 3.5 for order 5

MULÇOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025

17

5. Conclusion

- Most measurement results are predicted or explained with a simple nonlinear model using only 2 parameters
- The model can be easily simulated with complex multi-carrier and modulated signals
- Left unexplained up to now: slope varies slightly with carrier level (saturation) and increases with order
- I will happily discuss measurement results that pose you problems
- Questions ?

MULCOPIM 2025, Valencia, Spain - Jacques Sombrin - 17/10/2025