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Abstract

This work derives compact closed-form expressions of the misspecified Cramér-Rao bound and pseudo-true

parameters of time-delay and Doppler for a high dynamics signal model. Those expressions are validated by

analyzing the mean square error (MSE) of the misspecified maximum likelihood estimator. A noteworthy

outcome of these MSE results is that, for some magnitudes of acceleration and signal-to-noise ratios, ne-

glecting the acceleration is beneficial in the MSE sense. The variance performance improvement is obtained

at the cost of a systematic error in the true parameter estimation. This can be seen as a specific case of

the trade-off between bias and variance. Neglecting the acceleration can improve the Doppler estimation

when the error induced on the misspecified model is less than the variance increase due to including an extra

parameter to estimate. Then, for some non-zero acceleration magnitudes and short integration times, the

Doppler estimation using a misspecified model outperforms a correctly specified model in the MSE sense.

Keywords: Misspecified maximum likelihood estimator, time-delay, Doppler, acceleration, misspecified

Cramér-Rao bound

1. Introduction

The estimation of deterministic signal parameters is a key component for several applications such as

Global Navigation Satellite Systems (GNSS) [1], radar or sonar [2]. In these types of applications, a main

objective is to identify several parameters of interest from a noisy signal observation. This problem has

received considerable attention during the last fifty years, both for time-series analysis [3] and array process-5

ing [4], and merged into the framework of modern array processing [5, 4]. The noisy signal observation can

usually be modeled through a parameterised distribution model, e.g., a Complex-Gaussian distribution with

some mean and variance. In certain circumstances, the parameterised distribution model can be deliber-

ately misspecified to simplify the estimation of the parameters of interest [6, 7]. A possible misspecification

involves choosing fewer parameters to estimate than the ones that truly influence the signal dynamics. For10
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example, a common assumption in the above mentioned applications is that the effects due to the acceler-

ation of the receiver and/or target are negligible. In other words, instead of using a receiver structure that

attempts to perform the joint estimation of the time-delay, Doppler and acceleration, only a joint estimation

of the time-delay and Doppler is performed. Note that there are certain articles in the state-of-the-art where

Cramér-Rao bounds (CRBs) were developed for sparse parameters estimation, where some of the estimated15

parameters are set to zero to account for missing observations [8, 9]. In this contribution, we neglect the

acceleration as a method of reducing the estimation demand in the case we still have full observations. Our

work differs from the sparse estimation bounds because we have the ability to estimate acceleration and

choose not to, as opposed to sparse estimation being a case where certain parameters cannot be estimated.

In general, a reduced number of estimated parameters for the same amount of observations will decrease20

the demand of the estimator and allow an improvement in variance. The exclusion of acceleration in the

statistical model means that the joint estimation of time-delay and Doppler is misspecified. As a consequence,

the estimates will have a systematic error introduced due to not accounting for the acceleration effects on

the other parameters. We can define a high dynamics scenario as the case where the acceleration magnitude

is sufficient enough that this systematic error is noticeable. The systematic error is represented by the25

difference between the expected value of the misspecified estimates and their respective true values.

Compact closed-form expressions of the CRB for parameterised receiver architectures have been pre-

sented for the GNSS and radar systems in [10] for time-delay and Doppler, and in [11] for time-delay,

Doppler and acceleration, when considering a band-limited signal. In these articles, the performance limits

in a mean square error (MSE) sense were validated thanks to the maximum likelihood estimator (MLE),30

which is known to be asymptotically efficient [12]. However, the specific MSE performance limits when

considering a misspecified receiver architecture [13], i.e., neglecting a non-zero acceleration, have not yet

been presented. The misspecified MLE (MMLE) performance limit depends on the error induced when

considering a misspecified model, as well as the variance of the associated parameter estimation, which is

bounded by the misspecified CRB (MCRB) [7, 14, 13, 15, 16]. This article contributes a new compact closed-35

form expression for the MCRB of the time-delay and Doppler parameters under high dynamics scenarios.

Since the closed-form equations depend only on the signal samples, reader’s can easily compute the specific

delay-Doppler MCRB for any signal model with acceleration present.

The derivation of the MCRB follows from a generalized Slepian-form of two information matrices A

and B, which depend on the so-called pseudo-true parameters [14]. The pseudo-true parameters are the40

values of the misspecified parameters that minimise the Kullback Leibler Distance (KLD) between the true

and misspecified distribution models. The error on the delay and Doppler estimates due to neglecting

the acceleration is determined as the deviation of the pseudo-true parameter from the corresponding true

value. We analyse the MSE performance of the MMLE with respect to (w.r.t.) both pseudo-true and true

parameters. We can verify the derivation of the MCRB by checking that the MSE w.r.t. the pseudo-true45
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parameters converges asymptotically to the MCRB [17, 18]. Finally, we compare the MSE of the MMLE

solution with respect to the MSE of the fully specified MLE. A noteworthy outcome of these results is that, for

some magnitudes of acceleration and signal-to-noise ratios (SNRs), neglecting the acceleration is beneficial in

the MSE sense, that is, the Doppler estimation using a misspecified model outperforms a correctly specified

model in the MSE sense, which is a new result of practical importance in several applications.50

The article is organized as follows: Section 2 presents the received signal model under high dynamics.

Section 3 details the misspecified signal model and the pseudo-true parameters. In Section 4, closed-form

expressions of the pseudo-true parameters are derived. In Section 5, a new compact closed-form expression

of the MCRB for joint time-delay and Doppler is presented. The theoretical expressions of the bounds are

validated and discussed together with MMLE and MLE simulations in Section 6.55

Notation

Scalar values are defined in italic (𝑎), vector in bold lower-case (a), and matrices bold upper-case (A).

| |x| | =
√︃∑𝑁

𝑛=1𝑥
2
𝑖

is the 𝐿2 norm of vector x with 𝑁 elements and |𝑥 | gives the absolute value of the scalar

𝑥. The transpose operation is indicated by the superscript 𝑇 , the conjugate transpose by the superscript 𝐻 ,

and the conjugate operation by the superscript ∗. I𝑁 represents the identity matrix of dimension 𝑁, Re{·}60

and Im{·} refer to the real part and the imaginary part.

2. Signal Model

The signal model must be defined to appropriately present the true and the misspecified parameteri-

zations used at the receiver. For this work, we consider the line-of-sight (LOS) transmission of a single

band-limited signal 𝑠(𝑡) with sampling frequency 𝑓𝑠 over a carrier with frequency 𝑓𝑐 (wavelength 𝜆𝑐 = 𝑐/ 𝑓𝑐).

The signal travels from a transmitter at position p𝑇 (𝑡) to a receiver at position p𝑅 (𝑡), the signal is expressed

in both time and frequency as,

𝑠 (𝑡) =
𝑁 ′

2∑︁
𝑘=−𝑁 ′

1

𝑠

(
𝑘

𝑓𝑠

)
sinc

(
𝜋 𝑓𝑠

(
𝑡 − 𝑘

𝑓𝑠

))
⇌ 𝑆 ( 𝑓 ) = 1

𝑓𝑠

𝑁 ′
2∑︁

𝑘=−𝑁 ′
1

𝑠

(
𝑘

𝑓𝑠

)
𝑒
− 𝑗2𝜋𝑘

𝑓

𝑓𝑠 ,
− 𝑓𝑠

2
≤ 𝑓 ≤ 𝑓𝑠

2
, (1a)

where⇌ refers to the Fourier transform to the frequency 𝑓 domain, and 𝑁 ′
1, 𝑁

′
2 ∈ Z. As these values approach

infinity the equations give an exact representation of the analog signal in a discretized formulation.

The radial displacement between transmitter and receiver is proportional to the signal time-delay, which

is in-turn affected by the relative motion between both transmitter and receiver (i.e., Doppler effect and

the relative acceleration if we assume high dynamics scenarios). Thus, the radial displacement between

transmitter and receiver 𝑝𝑇𝑅 (𝑡) = ∥p𝑇 (𝑡) − p𝑅 (𝑡)∥ changes over time depending on the relative velocity v =

v𝑇−v𝑅 and relative acceleration a = a𝑇−a𝑅 (where p𝑇 (𝑡) = p𝑇 (0)+v𝑇 𝑡+ 1
2a𝑇 𝑡

2 and p𝑅 (𝑡) = p𝑅 (0)+v𝑅𝑡+ 1
2a𝑅𝑡

2).

This distance is used in the ranging equation for tracking of the target 𝑝𝑇𝑅 (𝑡; 𝜼) = 𝑐𝜏𝑡𝑟𝑢𝑒 (𝑡; 𝜼), where 𝑐 is the

3



speed of light and 𝜏𝑡𝑟𝑢𝑒 (𝑡; 𝜼) represents the delay as a function of time and the parameters that impact the

perceived signal. Including the acceleration effect expands upon the typically simplified model by allowing

estimation of the rate of change of velocity, i.e., Doppler rate. The equation which describes the LOS

distance travelled by the transmitted signal is

𝑝𝑇𝑅 (𝑡; 𝜼) = ∥p𝑇 (𝑡 − 𝜏𝑡𝑟𝑢𝑒 (𝑡; 𝜼)) − p𝑅 (𝑡)∥ = 𝑐𝜏𝑡𝑟𝑢𝑒 (𝑡; 𝜼) ≃




p𝑇 (0) − p𝑅 (0) − v𝑟𝑎𝑑𝑡 −

1

2
a𝑟𝑎𝑑𝑡

2





, (2)

since the radial components v𝑟𝑎𝑑 and a𝑟𝑎𝑑 of the relative velocity and acceleration are the only contributors

to change in LOS distance. Therefore, 𝜏𝑡𝑟𝑢𝑒 (𝑡; 𝜼) ≃ 𝜏 + 𝑏𝑡 + 𝑑𝑡2, 𝜏 =
∥p𝑇 (0)−p𝑅 (0) ∥

𝑐
, 𝑏 =

∥−v𝑟𝑎𝑑 ∥
𝑐

, 𝑑 =
∥−a𝑟𝑎𝑑 ∥

2𝑐 .

The complex analytic signal at the antenna output is then a function of the actual delay and modulated by

the carrier wave, which is also shifted through multiplication with the Doppler and acceleration parameters,

𝑥𝐴(𝑡) = 𝛼𝐴𝑒
𝑗2𝜋 𝑓𝑐 (𝑡−𝜏𝑡𝑟𝑢𝑒 (𝑡;𝜼) ) 𝑠 (𝑡 − 𝜏𝑡𝑟𝑢𝑒 (𝑡; 𝜼)) + 𝑛𝐴(𝑡), (3)

with 𝑛𝐴(𝑡) a zero-mean white complex circular Gaussian noise, 𝛼𝐴 an amplitude factor that depends on signal65

power, polarisation vectors and antenna gains [19, 20], and 𝜼 = [𝜏, 𝑏, 𝑑]𝑇 the fully specified parameters, which

are considered to appropriately represent the true parameterization of the estimation problem.

The complex analytical signal model is considered to be narrowband ( 𝑓𝑐 >> 𝑓𝑠 ≥ 𝐵, where 𝐵 is the

baseband signal bandwidth and 𝑓𝑠 is the Hilbert filter bandwidth), resulting in negligible influence of the

Doppler parameter on the signal samples, 𝑠(𝑡 − 𝜏𝑡𝑟𝑢𝑒 (𝑡; 𝜼)) ≃ 𝑠(𝑡 − 𝜏). Hence, for short observation times, a

good approximation of the baseband output of the fully specified receiver’s Hilbert filter [10], is [21],

𝑥 (𝑡; 𝝐) = 𝑥𝐴 (𝑡) 𝑒− 𝑗2𝜋 𝑓𝑐𝑡 = 𝛼𝝁(𝑡; 𝜼) + 𝑛 (𝑡) , (4)

𝜇(𝑡; 𝜼) = 𝑠 (𝑡 − 𝜏) 𝑒− 𝑗2𝜋 𝑓𝑐 (𝑏 (𝑡−𝜏 )+𝑑 (𝑡−𝜏 )2 ) , (5)

with 𝑛(𝑡) a complex white Gaussian noise within 𝑓𝑠 with unknown variance 𝜎2
𝑛 and 𝛼 = 𝛼𝐴𝑒

− 𝑗2𝜋 𝑓𝑐 𝜏 (1+𝑏+𝑑𝜏 )

where 𝛼𝐴 = 𝜌𝐴𝑒
𝑗Φ𝐴, containing the complex amplitude and phase. The discrete vector signal model is built

from 𝑁 = 𝑁1 + 𝑁2 + 1 (𝑁1/ 𝑓𝑠 ≫ 𝑁 ′
1/𝐵, 𝑁2/ 𝑓𝑠 ≫ 𝑁 ′

2𝐵) samples at 𝑇𝑠 = 1/ 𝑓𝑠,

x = 𝛼𝝁(𝜼) + n = 𝜌𝑒 𝑗Φ𝝁(𝜼) + n, (6)

x = (. . . , 𝑥 (𝑘𝑇𝑠) , . . .)⊤,

n = (. . . , 𝑛 (𝑘𝑇𝑠), . . .)⊤ ,

𝝁(𝜼) = (. . . , 𝑠(𝑘𝑇𝑠 − 𝜏)𝑒− 𝑗2𝜋 𝑓𝑐 (𝑏 (𝑘𝑇𝑠−𝜏 )+𝑑 (𝑘𝑇𝑠−𝜏 )2 ) , . . .)⊤,

with −𝑁1 ≤ 𝑘 ≤ 𝑁2 signal samples. The unknown deterministic parameters can be gathered in vector

𝝐 =
[
𝜎2
𝑛 , 𝜌,Φ, 𝜏, 𝑏, 𝑑

]⊤
=

[
𝜎2
𝑛 , 𝜌,Φ, 𝜼⊤

]⊤, with 𝛼 = 𝜌𝑒 𝑗Φ, 𝜌 ∈ R+, 0 ≤ Φ ≤ 2𝜋. We underline that the CRBs

associated to the parameters of interest 𝜼 were derived for this particular signal model in [11]. In the sequel70

we focus on developing the theoretical framework which allows to describe what happens in the case of using

a less complex receiver structure, which considers a misspecified signal model. In other words, the receiver

structure assumes only that the time-delay and Doppler effects impact the signal propagation delay.
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3. Theoretical Framework of a Misspecified Signal Model

The signal model parameterised by delay, Doppler, and acceleration is now referred to as the true model

and is the parameterization that would be used by a receiver architecture that considers a fully specified

MLE, that is, a matched filter, i.e., a receiver which aims to estimate the parameter of interest 𝜼 = [𝜏, 𝑏, 𝑑]𝑇 .

The true signal model is represented by a probability density function (pdf) which follows a complex circular

Gaussian distribution x ∼ CN(𝛼𝝁(𝜼), 𝜎2
𝑛 𝑰𝑁 ), with the covariance matrix being a diagonal matrix. On the

other hand, the misspecified signal model represents the receiver architecture which does not consider the

acceleration parameter, i.e., a MMLE [13] (mismatched filter) is implemented at the receiver. This particular

case leads to the definition of the misspecified vector of parameter of interest 𝝎′ = [𝜏′, 𝑏′]⊤, which is contained

in the parameter vector 𝝐 ′ =
[
𝜎2
𝑛 , 𝜽

′] with 𝜽 ′ = [𝜌′,Φ′,𝝎′], yielding the following signal model at the output

of the Hilbert filter,

𝑥(𝑡; 𝝐 ′) = 𝛼′𝑠(𝑡 − 𝜏′)𝑒− 𝑗2𝜋 𝑓𝑐𝑏
′ (𝑡−𝜏′ ) + 𝑛(𝑡), (7)

with 𝛼′ = 𝜌′𝑒 𝑗Φ′ . Again, we can build the discrete vector signal model from 𝑁 = 𝑁1 +𝑁2 + 1 (𝑁1/ 𝑓𝑠 ≫ 𝑁 ′
1/𝐵,

𝑁2/ 𝑓𝑠 ≫ 𝑁 ′
2𝐵) samples at 𝑇𝑠 = 1/ 𝑓𝑠,

x′ = 𝛼′m(𝝎′) + n, (8)

m(𝝎′) = (. . . , 𝑠(𝑘𝑇𝑠 − 𝜏′)𝑒− 𝑗2𝜋 𝑓𝑐 (𝑏′ (𝑘𝑇𝑠−𝜏′ ) ) , . . .)⊤.

The misspecified signal model is represented by x′ ∼ CN(𝛼′m(𝝎′), 𝜎2
𝑛 𝑰𝑁 ). Note that under this particular

scenario, the diagonal covariance matrix of the well specified signal model is the same as the covariance

matrix of the misspecified signal model. Moreover, we assume that the covariance matrix does not depend

on the parameters of interest, yielding to the following well specified and mispecified pdfs,

𝑝(x; 𝝐) = 1

𝜋𝑁𝜎2𝑁
𝑛

𝑒
−(x−𝛼𝝁 (𝜼) )𝐻 (x−𝛼𝝁 (𝜼) )

𝜎2
𝑛 , (9)

𝑓 (x; 𝝐 ′) = 1

𝜋𝑁𝜎2𝑁
𝑛

𝑒
−(x−𝛼′m(𝝎′ ) )𝐻 (x−𝛼′m(𝝎′ ) )

𝜎2
𝑛 . (10)

The estimated parameters of a MMLE are commonly referred to as pseudo-true parameters. We label them75

with 𝜽 𝑝𝑡 =
[
𝜌𝑝𝑡 ,Φ𝑝𝑡 , 𝜏𝑝𝑡 , 𝑏𝑝𝑡

]
. In the following sections, we will focus on the estimation of these parameters

to theoretically calculate the impact on the MSE of the MMLE implementation.

4. Pseudo-True Parameters Computation

The pseudo-true parameters are simply those that give the minimum KLD 𝐷 (𝑝𝝐 | | 𝑓𝝐 ′) between the true

and assumed models [22, 13],

𝐷 (𝑝𝝐 | | 𝑓𝝐 ′) = 𝐸𝑝

[
𝑙𝑛𝑝𝝐 (x; 𝝐) − 𝑙𝑛 𝑓𝝐 ′ (x; 𝝐 ′)

]
, (11)
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𝜽 𝑝𝑡 = argmin
𝜽′

{𝐷 (𝑝𝝐 | | 𝑓𝝐 ′)} = argmin
𝜽′

{
𝐸𝑝

[
−𝑙𝑛 𝑓𝝐 ′ (x; 𝝐 ′)

]}
, (12)

where 𝐸𝑝 [·] is the expectation with respect to the true model’s pdf. The formula for the KLD is expanded

in Appendix A and results in the following function to be minimised.

𝜽 𝑝𝑡 = argmin
𝜽′

{
∥𝛼𝝁(𝜼) − 𝛼′m(𝝎′)∥2

}
= argmin

𝜽′

{



m(𝝎′)
(
𝛼

m(𝝎′)𝐻𝝁(𝜼)
m(𝝎′)𝐻m(𝝎′) − 𝛼′

)



2 + 

𝛼𝝁(𝜼) − Πm(𝝎′)𝛼𝝁(𝜼)


2}

(13)

The component of the equation that is minimised by 𝛼′ with 𝛼𝑝𝑡 = 𝜌𝑝𝑡𝑒
𝑗Φ𝑝𝑡 :

⇒ 𝛼𝑝𝑡 = 𝛼
m(𝝎𝑝𝑡 )𝐻𝝁(𝜼)

m(𝝎𝑝𝑡 )𝐻m(𝝎𝑝𝑡 )
, (14)

and the component that is minimised by 𝝎′, is equivalent to maximising the negative term:

⇒ 𝝎𝑝𝑡 = argmax
𝝎′

{

Πm(𝝎′ )𝛼𝝁(𝜼)


2} . (15)

These results are effectively the noiseless versions of the MMLE given by [23]
𝛼̂ =

m(𝝎)𝐻x

m(𝝎)𝐻m(𝝎)

𝝎̂ = argmax
𝝎′

{

Πm(𝝎′ )x


2}

x = 𝛼𝝁(𝜼)

. (16)

Then, through direct numerical computation of the MMLE without noise, one will obtain the pseudo-true

parameters 𝝎𝑝𝑡 and 𝛼𝑝𝑡 . Also for relatively short coherent integration time and realistic acceleration, the

following closed-form expressions have been derived (refer to Appendix A for the derivation details):

𝛼𝑝𝑡 ≈ 𝛼, 𝜏𝑝𝑡 = 𝜏, 𝑏𝑝𝑡 = 𝑏 + 𝑑𝑇𝑒, Δ𝑏 = 𝑏𝑝𝑡 − 𝑏 = 𝑑𝑇𝑒, (17)

where 𝑇𝑒 is the integration time, that is, the duration (support) of the baseband signal since we consider

the narrowband assumption (see Appendix A). The above equations are valid for realistic scenarios but80

they are no longer applicable with high values of acceleration (>100 g, with g= 9.81 m/s2) or extensive

signal estimation intervals (≫ 20 ms). On the other hand, it is well known that for the conditional signal

model in this work, the MMLE converges asymptotically (at high SNR) to the pseudo-true values [24] with a

covariance matrix equal to the MCRB. Thus, in the following section we derive a compact MCRB expression

for joint time-delay and Doppler estimation.85

5. A Compact MCRB for Joint Time-delay and Doppler Estimation

A general equation to compute the MCRB, represented with the Huber covariance [15, 24, 16], has been

derived for specific types of parameterised distribution models. We can define the MCRB as:

MCRB𝜽𝑝𝑡
= A(𝜽 𝑝𝑡 )−1B(𝜽 𝑝𝑡 )A(𝜽 𝑝𝑡 )−1, (18)
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where the matrices A(𝜽 𝑝𝑡 ) and B(𝜽 𝑝𝑡 ) depend on the pseudo-true parameters and the partial derivatives of

the misspecified signal model. A simplification of the MCRB equation, that suits the models considered in

this work, is given in the Slepian-Bangs form with a constant covariance w.r.t. estimated parameters [14],

B(𝜽 𝑝𝑡 ) =
2

𝜎2
𝑛

Re

{(
𝜕𝛼𝑝𝑡m(𝝎𝑝𝑡 )

𝜕𝜽 𝑝𝑡

)𝐻 (
𝜕𝛼𝑝𝑡m(𝝎𝒑𝒕)

𝜕𝜽 𝑝𝑡

)}
, (19)

A(𝜽 𝑝𝑡 ) = − 2

𝜎2
𝑛

Re

{(
𝜕𝛼𝑝𝑡m(𝝎𝑝𝑡 )

𝜕𝜽 𝑝𝑡

)𝐻 (
𝜕𝛼𝑝𝑡m(𝝎𝑝𝑡 )

𝜕𝜽 𝑝𝑡

)}
+ 2

𝜎2
𝑛

Re

{
(𝛿m)𝐻

(
𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜽 𝑝𝑡𝜕𝜽

⊤
𝑝𝑡

)}
=

2

𝜎2
𝑛

Re

{
(𝛿m)𝐻

(
𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜽 𝑝𝑡𝜕𝜽

⊤
𝑝𝑡

)}
− B(𝜽 𝑝𝑡 ), (20)

where 𝛿m = 𝛼𝝁(𝜼) − 𝛼𝑝𝑡m(𝝎𝑝𝑡 ) is the difference between the means of the misspecified model and the true

model. The computations of partial derivatives for the matrix B(𝜽𝒑𝒕 ) have been detailed in Appendix B,

following the methodology of [10]. Actually, B(𝜽 𝑝𝑡 ) is equivalent to the Fisher information matrix for a fully

specified model with parameters 𝜽 𝑝𝑡 . By factorising the partial derivatives, we then express B(𝜽 𝑝𝑡 ) in a

matrix form

B(𝜽 𝑝𝑡 ) =
2 𝑓𝑠

𝜎2
𝑛

Re
{
QWQ𝐻

}
, (21)

where

Q =



− 𝑗 𝜌𝑝𝑡 0 0

−1 0 0

− 𝑗𝑤𝑐𝜌𝑝𝑡𝑏𝑝𝑡 0 𝜌𝑝𝑡

0 𝑗𝑤𝑐𝜌𝑝𝑡 0


, W =


𝑤1 𝑤2 𝑤∗

3

𝑤2 𝑊2,2 𝑊∗
3,2

𝑤3 𝑊3,2 𝑊3,3


, (22)

with W derived in [10] and also detailed in Appendix B to give the expressions w.r.t. the baseband signal

samples. The product Re
{
QWQ𝐻

}
is presented in (23), which gives the terms required required to compute

(21)),

𝑤1𝜌
2 0 𝜌2𝑤𝑐𝑏𝑤1 − 𝜌2Im{𝑤3} −𝜌2𝑤𝑐𝑤2

0 𝑤1 −𝜌Re{𝑤3} 0

𝜌2𝑤𝑐𝑏𝑤1 − 𝜌2Im{𝑤3} −𝜌Re{𝑤3} 𝑤2
𝑐𝜌

2𝑏2𝑤1 + 𝜌2𝑊3,3 − 2𝑤𝑐𝜌
2𝑏Im{𝑤3} −𝑤2

𝑐𝜌
2𝑏𝑤2 + 𝜌2𝑤𝑐Im{𝑊3,2}

−𝜌2𝑤𝑐𝑤2 0 −𝑤2
𝑐𝜌

2𝑏𝑤2 + 𝜌2𝑤𝑐Im{𝑊3,2} 𝑤2
𝑐𝜌

2𝑊2,2


.

(23)

Now, we aim to derive the terms of the MCRB that come from the misspecified model. First, we compute

the matrix A(𝜽 𝑝𝑡 ). Based on the pseudo-true values in (17) obtained from the KLD minimisation, we can

substitute the following equivalences: 𝜏𝑝𝑡 = 𝜏, 𝛼𝑝𝑡 = 𝛼, and 𝑏𝑝𝑡 = 𝑏 + 𝑑𝑇𝑒 into the misspecified signal model

and find that

𝛿m = 𝜌𝑝𝑡

(
𝑒Ψ(𝑡 ) − 1

)
𝑒− 𝑗Φ𝑝𝑡 𝑠𝐻 (𝑡 − 𝜏𝑝𝑡 )𝑒 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏 ) , (24)
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where Ψ(𝑡) = − 𝑗𝜔𝑐 (𝑑𝑇𝑒 (𝑡 − 𝜏) − 𝑑 (𝑡 − 𝜏)2) (see Appendix C).

Secondly, the tedious computation of 𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜽𝑝𝑡𝜕𝜽

⊤
𝑝𝑡

is also detailed in Appendix C. Then, we compute the

product,

(𝛿m)𝐻
(
𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜽 𝑝𝑡𝜕𝜽

⊤
𝑝𝑡

)
= 𝜌𝑝𝑡

(
𝑒Ψ(𝑡 ) − 1

)
𝑒− 𝑗Φ𝑝𝑡 𝑠𝐻 (𝑡 − 𝜏)𝑒 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏 )

(
𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜽 𝑝𝑡𝜕𝜽

⊤
𝑝𝑡

)
. (25)

The result above can be expanded into a matrix made up of common terms with QWQ𝐻 , and simplified as

shown in Appendix C, leading to,

A(𝜽 𝑝𝑡 ) =
2 𝑓𝑠𝜌

𝜎2
𝑛

Re
{
(𝛿m)𝐻

(
𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )

𝜕𝜽𝑝𝑡𝜕𝜽
⊤
𝑝𝑡

)
−QWQ

}
=

2 𝑓𝑠𝜌

𝜎2
𝑛

Re {𝝌} , (26)



−𝑤𝑒1𝜌 𝑗𝑤𝑒1 −𝜌𝑤𝑐𝑏𝑤𝑒1 − 𝑗 𝜌𝑤𝑒3 𝜌𝑤𝑐𝑤𝑒2

𝑗𝑤𝑒1 −𝑤1

𝜌
𝑗𝑤𝑐𝑏𝑤𝑒1 − 𝑤𝑒3 − 𝑗𝑤𝑐𝑤𝑒2

−𝜌𝑤𝑐𝑏𝑤𝑒1 − 𝑗 𝜌𝑤𝑒3 𝑗𝑤𝑐𝑏𝑤𝑒1 − 𝑤𝑒3 𝑤2
𝑐𝜌𝑏

2𝑤𝑒1 + 𝜌𝑤𝑒𝑀 − 2 𝑗𝑤𝑐𝜌𝑏 · 𝑤𝑒3 𝑤2
𝑐𝜌𝑏𝑤𝑒2 + 𝑗 𝜌𝑤𝑐𝑤𝑒3,2 + 𝑗 𝜌𝑤𝑐𝑤𝑒1

𝜌𝑤𝑐𝑤𝑒2 − 𝑗𝑤𝑐𝑤𝑒2 𝑤2
𝑐𝜌𝑏𝑤𝑒2 + 𝑗 𝜌𝑤𝑐𝑤𝑒3,2 + 𝑗 𝜌𝑤𝑐𝑤𝑒1 −𝜌𝑤2

𝑐𝑤𝑒2,2


(27)

Within matrix 𝝌, the new terms 𝑤𝑒 have not been previously computed. Following the same procedure as in

[25, 10, 11] (detailed in Appendix D), these new terms can be resolved using properties of Fourier transforms.

Matrix 𝝌 can be decomposed into a similar combination of matrices as in (21), with some modifications to

ensure the new matrix W𝑒 includes the newly derived integrals as well as 𝑤1. 𝝌 = −Q𝑒W𝑒Q
𝐻
𝑒 with,

Q𝑒 =



− 𝑗 𝜌 0 0 0 0

−1 1 0 0 −1

− 𝑗 𝜌𝜔𝑐𝑏 0 0 𝜌 0

0 0 𝑗𝜔𝑐𝜌 0 0


, W𝑒 =



𝑤𝑒1 0 𝑤𝑒2 𝑤𝑒3 0

0 𝑤1 0 0 0

𝑤𝑒2 0 𝑊𝑒2,2 𝑊𝑒2,3 0

𝑤𝑒3 0 𝑊𝑒3,2 𝑤𝑒𝑀 0

0 0 0 0 𝑤𝑒1


(28)

These relatively simple matrices are more convenient to implement than (27). Then with this closed-form,90

the MCRB for a specific signal can be simply computed using only the signal samples.

6. Validation and Discussion

The matrices derived above are computed using synthetically generated GPS L1 C/A signal samples

without noise. The validation of our closed form equations is possible by observing the convergence of the

appropriate estimator’s MSE to the associated bounds under different levels of noise. To that extent, we95

have setup Monte Carlo simulations that will provide the estimation performance of an MLE assuming

the misspecified model defined above. The simulations include the generated signals, which have the true
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propagation effects of delay, Doppler, and acceleration applied. The misspecified estimator (MMLE) is

created by searching for the MLE solutions for only delay and Doppler. The MSE of the delay and Doppler

parameters are the only values analysed as they are of primary interest for navigation applications. We choose100

different integration times and magnitudes of acceleration to apply on the true signal as these parameters

are seen to directly effect the Doppler bias. Only high dynamics scenarios with ( |a| ≥ 50𝑔 [1, Chapter 32])

are considered in the analysis. The results are still relevant for low acceleration targets that result in lower

Δ𝑏. The tested integration times do not exceed 20 ms to fit within standard GNSS values and satisfy the

constraint derived in (A.23). We expect the true MSE of an MMLE to converge to Δ𝑏2+MCRB at the high105

SNR regime [24], i.e., the bound for the misspecified estimator is a combination of the parameter bias and

minimum variance provided by the MCRB. The true MSE refers to the error of the misspecified estimate

w.r.t. its corresponding true value (
√

MSE𝑏 MMLE w.r.t. 𝑏𝑡𝑟𝑢𝑒, light-blue dashed cross). Note also that

the MSE of the misspecified estimate w.r.t. the associated pseudo-true value (
√

MSE𝑏 MMLE w.r.t. 𝑏𝑝𝑡 ,

orange dashed plus) is expected to converge to the MCRB [13, 24, 15]. The signal parameters we analyze are110

delay and Doppler because they are more important for navigation purposes. The impact of misspecification

bias would be greater for delay and Doppler than if the amplitude or phase are biased by the acceleration.

The misspecified delay estimation is seen in Fig. 1 to converge to the same bound as the fully specified

case. Fig. 1 also shows that the magnitude of acceleration has no effect on the asymptotic MSE. Additional

simulations can be made to observe an equivalent independence from integration time.115

Fig. 2 shows that the MMLE has its true MSE (light-blue dashed cross) converge to the Δ𝑏2+MCRB

curve (green circles) and remains below the fully specified CRB (red diamonds) for a significant window of

SNR values. The MSE convergence of the misspecified estimator validates the closed forms of the MCRB

and Δ𝑏. It is also seen that the MSE of the fully specified estimator (magenta stars) converges to the

fully specified bound, so we can analyse the differences in magnitudes between each specification model.120

Fig. 2 shows that for short observation intervals of the signal, even a high dynamics scenario does not

benefit from a fully specified model until SNR values greater than 33 dB are achieved. Typical, every-day

tracking scenarios (usually with SNR ≥25 dB [26]) do not reach an acceleration as high as 50g, so lower Δ𝑏

is expected and the best receiver architecture to choose in general would be the misspecified delay-Doppler

estimation model. This result is an example of the trade-off between the systematic error introduced by125

misspecification and the variance increase due to including an extra parameter to be estimated. It is not

immediately apparent that improving the specification of a signal model for high dynamics can cause a loss

in performance. In general, we can already say the inclusion of acceleration estimation is not necessary for

applications which experience low magnitude accelerations.

We would now like to see a case where inclusion of acceleration estimation is advantageous. For certain130

SNR values where Δ𝑏2+MCRB (green circles) has higher magnitude than the fully specified bound (red

diamonds), it can be considered worth including the acceleration estimation. This goes into the niche
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Figure 1: MCRB and MSE for the misspecified MLE of the time-delay parameter with respect to true time-delay value

(accelerations = 50 and 100g, duration = 10 ms).

classification of high dynamics scenarios with limited SNR. A real-world application to consider can be

tracking of objects entering the Earth’s atmosphere such as large spacecraft or intercontinental ballistic

missiles. These targets experience a very high magnitude negative acceleration due to drag forces and can135

be susceptible to interferences, either natural ionisation or synthetic jamming. There can be an upper limit

of approximately 100 g of instantaneous acceleration considered for ballistic atmospheric reentry, a scenario

that represents some of the highest dynamics observable [27]. In limited SNR scenarios, it makes sense that

the integration time of the signal is increased. As well as acceleration, a longer signal duration contributes to

increasing the magnitude Δ𝑏 as it is shown in (17). Hence, the next scenario considers double the acceleration140

and double the integration time. Fig. 3 shows the convergence of the MSE to the appropriate bounds. For

an acceleration of 100g, Doppler frequency set to 10 kHz and signal duration of 10 ms, the region where a

misspecified estimation is preferred has been reduced.

The magnitude of the bounds are decreased for all SNR by increasing the integration time; however, Δ𝑏

also increases because it is proportional to the integration time. This effect is seen in Fig. 3, where the145
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Figure 2: MCRB and MSE for misspecified ML Doppler estimator with respect to true and pseudo-true Doppler and the

convergence to appropriate bounds (acceleration = 50g, duration = 5 ms).

acceleration and integration time are both doubled, resulting in a 6 dB increase of the Δ𝑏 while the CRB

and the MCRB have both decreased by 3 dB. Hence, increasing the integration time will both increase the

true MSE of the MMLE and improve the fully specified bound enough that it becomes worth including

estimation of acceleration. In the case of Fig. 3, the fully specified CRB is preferred for SNR values higher

than 15 dB, which involves the entire GPS C/A operational system [28]. Another example of misspecified150

Doppler estimation is shown in Fig. 4, where the integration time has been taken to the limits of GNSS

operations and the acceleration magnitude has been reduced to a relatively low value. This case indicates

that even the less extreme cases of acceleration have a noticeable effect on the Doppler estimation when the

integration time is high enough. The SNR threshold where it is preferable to use the fully specified estimator

is at approximately 29 dB, again within a realistic operating range. This presents a similar scenario to Fig.155

2, where the misspecified estimator achieves better MSE performance for low SNR values due to the bias

being less extreme than the demand of an additional estimated parameter.

Finally, we present results of the MSE of the Doppler MMLE as a function of acceleration and fixing

11
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Figure 3: MCRB and MSE for misspecified ML Doppler estimator with respect to true and pseudo-true Doppler and the

convergence to appropriate bounds (acceleration = 100g, duration = 10 ms).

the 𝑆𝑁𝑅𝑂𝑈𝑇 = 25dB in Figure 5. This allows visualisation of the acceleration threshold at which the fully

specified estimator is preferred in realistic noise environment. Figure 5 suggests that the threshold is at 32160

g for a signal integration time of 10 ms. We can expect this threshold to be lower for higher integration

times based on the relation presented in Equation (15) for Δ𝑏.

Hence, specific scenarios exist where the use of the fully specified MLE is convenient and others where the

MMLE is more optimal. It is easy to recompute these bounds and compare for different signals, acceleration

values, and integration times since this work has provided compact formulations of the MCRB and Δ𝑏. All165

that is needed are synthetic signal samples and the true values of delay, Doppler, and acceleration. An

easy method to decide which of the parameterizations should be used for a specific application of Doppler

estimation is to:

• Determine the limiting (or expected) values for acceleration and integration time.

• Calculate the closed-form expressions of the MCRB and Δ𝑏.170
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Figure 4: MCRB and MSE for misspecified MLE of the Doppler parameter with respect to true and pseudo-true values

(acceleration = 5g, duration = 20 ms).

• Find the fully specified CRB using [11].

• If the intersection point between the CRB and the Δ𝑏2+MCRB is within your field of operational SNR

values, use the matched filter

• Otherwise, use the mismatched filter that neglects acceleration.

7. Conclusion175

This work derived compact closed-form expressions of the misspecified CRB and pseudo-true parameters

of time-delay and Doppler for a high dynamics signal model. The results of this work provide an insight

into the decisions for defining the parameterisation of a signal model. For most of the realistic scenarios

with non-zero acceleration and short integration times, the misspecified MLE Doppler estimation can be

reduced in the MSE sense at the cost of a systematic error induced in the true parameter estimation. On the180

other hand, certain limits cases were found, such as an acceleration magnitude of 100g and integration time
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Figure 5: MCRB and MSE of the misspecified MLE of the Doppler parameter at 𝑆𝑁𝑅𝑂𝑈𝑇 = 25 dB as a function of the

acceleration (duration = 10 ms).

of 10 ms, where the MLE estimator including the acceleration estimation achieves a lower MSE for SNR

higher than ≥15 dB. At this point the well specified MLE converges to the CRB including acceleration and

avoids the larger systematic error Δ𝑏 due to the high dynamics. The fact that two different architectures

with asymptotic performance limits that change from scenario to scenario validates the need to calculate185

the theoretical limits presented in this article, in order to decide which is the optimal estimator, in the MSE

sense, for each particular scenario.
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Appendix A. Pseudo-True Parameter Derivation190

This appendix includes the expansion of the KLD equation and consequently the minimization process

to derive the pseudo-true parameters. It is seen that the pseudo-true parameters for delay and Doppler
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(𝝎𝑝𝑡) require a further maximization process, which is also detailed in this Appendix.

𝐸𝑝

[
−𝑙𝑛 𝑓𝝐 ′

]
= −𝑁𝑙𝑛(𝜋) − 2𝑁𝑙𝑛(𝜎𝑛) +

1

𝜎2
𝑛

𝐸𝑝


(x − 𝛼𝝁(𝜼) + 𝛼𝝁(𝜼) − 𝛼′m(𝝎′))𝐻

· (x − 𝛼𝝁(𝜼) + 𝛼𝝁(𝜼) − 𝛼′m(𝝎′))

 . (A.1)

To minimise (A.1) w.r.t. the argument 𝜽 ′, the equation can be simplified as,

argmin
𝜽′

{
𝐸𝑝

[
−𝑙𝑛 𝑓𝝐 ′ (x; 𝝐 ′)

]}

= argmin
𝜽′


𝐸𝑝



(x − 𝛼𝝁(𝜼))𝐻 (x − 𝛼𝝁(𝜼))

+(x − 𝛼𝝁(𝜼))𝐻 (𝛼𝝁(𝜼) − 𝛼′m(𝝎′))

+(𝛼𝝁(𝜼) − 𝛼′m(𝝎′))𝐻 (x − 𝛼𝝁(𝜼))

+(𝛼𝝁(𝜼) − 𝛼′m(𝝎′))𝐻 (𝛼𝝁(𝜼) − 𝛼′m(𝝎′))




= argmin

𝜽′

{
(𝛼𝝁(𝜼) − 𝛼′m(𝝎′))𝐻 (𝛼𝝁(𝜼) − 𝛼′m(𝝎′))

}
= argmin

𝜽′

{
∥𝛼𝝁(𝜼) − 𝛼′m(𝝎′)∥2

}
. (A.2)

We define the orthogonal projector Π⊥
A = I − ΠA with ΠA = A

(
A𝐻A

)−1
A𝐻 , which leads to

∥𝛼𝝁(𝜼) − 𝛼′m(𝝎′)∥2 =




(Πm(𝝎′ ) + Π⊥
m(𝝎′ )

)
(𝛼𝝁(𝜼) − 𝛼′m(𝝎′))




2
=



Πm(𝝎′ ) (𝛼𝝁(𝜼) − 𝛼′m(𝝎′))


2 + 


Π⊥

m(𝝎′ ) (𝛼𝝁(𝜼) − 𝛼′m(𝝎′))



2

=


Πm(𝝎′ )𝛼𝝁(𝜼) − 𝛼′m(𝝎′)



2 + 


Π⊥
m(𝝎′ )𝛼𝝁(𝜼)




2
=





m(𝝎′)
(
m(𝝎′)𝐻𝛼𝝁(𝜼)
m(𝝎′)𝐻m(𝝎′) − 𝛼′

)



2 + 

𝛼𝝁(𝜼) − Πm(𝝎′)𝛼𝝁(𝜼)


2 , (A.3)

We continue the derivation from (15) to develop the equation for 𝝎𝑝𝑡 . The goal is to derive the equations

for the pseudo-true delay and Doppler in a form that depends on the true parameters.

𝝎𝑝𝑡 = argmax
𝝎′

{

Πm(𝝎′ )𝛼𝝁(𝜼)


2} (A.4)

Πm(𝝎)𝛼𝝁(𝜼)



2 = (𝛼𝝁(𝜼))𝐻 Πm(𝝎) (𝛼𝝁(𝜼)) , (A.5)

Πm(𝝎)𝛼𝝁(𝜼)


2 =

(𝛼𝝁(𝜼))𝐻m(𝝎)m(𝝎)𝐻 (𝛼𝝁(𝜼))
m(𝝎)𝐻m(𝝎) . (A.6)

(A.6) can now be presented as a squared value. The sampling period 𝑇𝑠 is also included for later conversion

to an integral, �����m(𝝎)𝐻 (𝛼𝝁(𝜼))√︁
m(𝝎)𝐻m(𝝎)

�����2 =

������
1
𝑇𝑠
m(𝝎)𝐻 (𝛼𝝁(𝜼)) 𝑇𝑠

1√
𝑇𝑠

√︁
m(𝝎)𝐻m(𝝎)𝑇𝑠

������
2

. (A.7)

For conciseness in equations, we denote the received signal after some delay 𝜏 as 𝑠𝜏 = 𝑠(𝑡 − 𝜏). Moreover,

note that it is simple to verify from the MMLE in a noiseless environment considering short signal length
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(in the order of the 10-20 ms) and accelerations in the order of the 50 g that m(𝝎𝑝𝑡 )𝐻𝝁 (𝜼)
m(𝝎𝑝𝑡 )𝐻m(𝝎𝑝𝑡 ) ≈ 1. Then for

those particular scenarios we can set 𝛼𝑝𝑡 ≈ 𝛼. We expand (A.7) to obtain the following195



Πm(𝝎)𝛼𝝁(𝜼)


2 =

|𝛼 |2
𝑇𝑠

������
∫ +∞
−∞ 𝑠∗𝜏𝑝𝑡 𝑠𝜏𝑒

𝑗𝜔𝑐 (𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 )−𝑏 (𝑡−𝜏)−𝑑 (𝑡−𝜏)2 ) 𝑑𝑡√︂∫ +∞
−∞

���𝑠𝜏𝑝𝑡 ���2𝑑𝑡
������
2

. (A.8)

We say that
∫ +∞
−∞ |𝑠(𝑡) |2 𝑑𝑡 = 𝐸 , the energy of the signal and we shift the integration variable from 𝑡 to

(𝑡 − 𝜏) with 𝜏 constant. The difference between the true and pseudo-true parameters, giving the respective

misspecification errors are Δ𝜏 = 𝜏𝑝𝑡 − 𝜏, and Δ𝑏 = 𝑏𝑝𝑡 − 𝑏. We substitute these values to continue the

simplification of (A.8), obtaining,

Πm(𝝎)𝛼𝝁(𝜼)


2 =

|𝛼 |2

𝑇𝑠
√
𝐸

���∫ +∞
−∞ 𝑠∗

Δ𝜏
𝑠0𝑒

𝑗𝜔𝑐 (Δ𝑏𝑡−𝑑𝑡2 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡Δ𝜏𝑑𝑡

���2 . (A.9)

The assumption Δ𝜏 = 0 is made based on results from numerical computation of 𝜏𝑝𝑡 . The numerical

computation was conducted by simultaneously finding the 𝜏 and 𝑏 values that maximise (A.7), 𝜏𝑝𝑡 was

found to be approximately equal to the true delay 𝜏,

Πm(𝝎)𝛼𝝁(𝜼)


2 =

|𝛼 |2

𝑇𝑠
√
𝐸

����∫ +∞

−∞
𝑠∗Δ𝜏𝑠0𝑒

𝑗𝜔𝑐 (Δ𝑏𝑡−𝑑𝑡2 )𝑑𝑡

����2 . (A.10)

The time interval over which to integrate is shifted to the total time of the signal observation 𝑇𝑒.200 

Πm(𝝎)𝛼𝝁(𝜼)


2 =

|𝛼 |2

𝑇𝑠
√
𝐸

����∫ 𝑇𝑒

0

𝑠∗Δ𝜏𝑠0𝑒
𝑗 𝜙 (𝑡;𝑏′ ,𝑏,𝑑)𝑑𝑡

����2 , (A.11)

𝜙
(
𝑡; 𝑏𝑝𝑡 , 𝑏, 𝑑

)
= 𝜔𝑐

(
Δ𝑏𝑡 − 𝑑𝑡2 − 𝐶𝐼

)
. (A.12)

Where 𝐶𝐼 is a definite integral in 𝜙(𝑡; 𝑏𝑝𝑡 , 𝑏, 𝑑), which gives an arbitrary integration constant and is removed

whenever taking the square of the norm by multiplying conjugates of complex exponentials. We compute the

definite integral in a closed-form to obtain 𝐶𝐼 =
1
𝑇𝑒

∫ 𝑇𝑒

0

(
Δ𝑏𝑡 − 𝑑𝑡2

)
𝑑𝑡 = 1

𝑇𝑒

[
Δ𝑏 𝑡2

2 − 𝑑 𝑡3

3

]𝑇𝑒
0

⇒ 𝐶𝐼 = Δ𝑏
𝑇𝑒
2 −𝑑 𝑇2

𝑒

3 .

Since the objective is to maximise (A.5) w.r.t. the pseudo-true parameters, we note the upper bound of the

integral in (A.11) is the point that it equals the signal energy:����∫ 𝑇𝑒

0

𝑠∗Δ𝜏𝑠0𝑒
𝑗 𝜙(𝑡;𝑏𝑝𝑡 ,𝑏,𝑑)𝑑𝑡

����2 ≤ 𝐸, (A.13)

∫ 𝑇𝑒

0

��𝑠∗Δ𝜏 ��2 𝑑𝑡 ∫ 𝑇𝑒

0

���𝑠0𝑒 𝑗 𝜙(𝑡;𝑏𝑝𝑡 ,𝑏,𝑑)
���2 𝑑𝑡 ≤ (∫ 𝑇𝑒

0

|𝑠0 |2 𝑑𝑡
)2

. (A.14)

Equality only holds for (A.14) when the complex exponential has the exponent go to zero. This means we

can define another function, which we aim to minimise instead of maximise.

𝜎2
𝜙

(
𝑏𝑝𝑡 , 𝑏, 𝑑

)
=

1

𝑇𝑒

∫ 𝑇𝑒

0

𝜙
(
𝑡; 𝑏𝑝𝑡 , 𝑏, 𝑑

)2
𝑑𝑡, (A.15)

𝜎2
𝜙 = 𝜔2

𝑐

(
1

𝑇𝑒

∫ 𝑇𝑒

0

( (
Δ𝑏𝑡 − 𝑑𝑡2

)2)
𝑑𝑡 − (𝐶𝐼 )2

)
. (A.16)
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Solving the remaining integral in 𝜎2
𝜙

and simplifying,

1

𝑇𝑒

∫ 𝑇𝑒

0

( (
Δ𝑏𝑡 − 𝑑𝑡2

)2)
𝑑𝑡 = Δ𝑏2

𝑇2
𝑒

3
+ 𝑑2

𝑇4
𝑒

5
− 2𝑑Δ𝑏

𝑇3
𝑒

4
. (A.17)

Now, substituting 𝐶𝐼 and (A.17) into (A.16) and simplifying,

𝜎2
𝜙

(
𝑏𝑝𝑡 , 𝑏, 𝑑

)
𝜔2
𝑐

=
𝑇2
𝑒

12

(
(Δ𝑏 − 𝑑𝑇𝑒)2 + 𝑑2𝑇2

𝑒

3

45

)
. (A.18)

Finally, we see the value of the Doppler parameter that minimises (A.16) and hence maximises (15),

𝜎2
𝜙

(
𝑏𝑝𝑡 , 𝑏, 𝑑

)
= 𝜔2

𝑐

𝑇2
𝑒

12

( (
𝑏𝑝𝑡 − (𝑏 + 𝑑𝑇𝑒)

)2 + 𝑑2𝑇2
𝑒

3

45

)
⇓

argmin
𝑏𝑝𝑡

{
𝜎2
𝜙

(
𝑏𝑝𝑡 , 𝑏, 𝑑

)}
= 𝑏 + 𝑑𝑇𝑒 . (A.19)

By substituting the solution for 𝑏𝑝𝑡 back into (A.16), we can see the dependence on 𝑑 and 𝑇𝑒,

𝜎2
𝜙 (𝑏 + 𝑑𝑇𝑒, 𝑏, 𝑑) =

(
𝜔𝑐𝑑𝑇

2
𝑒

)2 1

220
=

(
𝑎

𝜆𝑐
𝑇2
𝑒

)2
𝜋2

220
. (A.20)

For this solution to be appropriate, we need the exponential in (A.14) to approach 1. We see from (A.15)

that for 𝜎2
𝜙
(𝑏 + 𝑑𝑇𝑒, 𝑏, 𝑑) ≪ 1 ⇒ |𝜙 (𝑡; 𝑏 + 𝑑𝑇𝑒, 𝑏, 𝑑) | ≪ 1. This means that with the computed value of

pseudo-true Doppler, the upper bound of (A.14) is met with,����∫ 𝑇𝑒

0

𝑠∗Δ𝜏𝑠0𝑒
𝑗 𝜙(𝑡;𝑏𝑝𝑡 ,𝑏,𝑑)𝑑𝑡

����2 ≃
����∫ 𝑇𝑒

0

𝑠∗Δ𝜏𝑠0𝑑𝑡

����2 . (A.21)

Equating (A.21) to the signal energy obtains the value of Δ𝜏 = 0 that consequently maximises (15),

argmax
𝜏𝑝𝑡

{

Πm(𝝎)𝛼𝝁(𝜼)


2} = 𝜏. (A.22)

The maximisation of this term is dependant on the assumption that 𝜎2
𝜙
≪ 1. Therefore, the expressions for

pseudo-true delay and Doppler can be stated under a certain condition on the acceleration and integration

time. We can substitute realistic but high magnitudes into (A.20) to see if the condition is satisfied in true

applications. We take 𝑎 = 100 g and 𝑇𝑒 = 20 ms to consider a high dynamic scenario with the maximum

coherent integration time for GNSS signal processing. The condition is true for realistic magnitudes of

acceleration or 𝑇𝑒. (
|𝑎 |
𝜆𝑐

𝑇2
𝑒

)
𝜋

√
220

≪ 1 ⇒


𝜏′𝑝𝑡 = 𝜏

𝑏′𝑝𝑡 = 𝑏 + 𝑑𝑇𝑒

. (A.23)
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Appendix B. Computation of B(𝜽𝒑𝒕)

The first degree partial derivatives have been previously defined [10]. They are presented again in this

appendix for completeness of the results for the closed-form MCRB, which also requires these computations.

𝜕𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜽 𝑝𝑡

=

[
𝜕𝛼𝑝𝑡m(𝝎𝑝𝑡 )

𝜕𝜌𝑝𝑡

𝜕𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕Φ𝑝𝑡

𝜕𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜏𝑝𝑡

𝜕𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝑏𝑝𝑡

]
, (B.1)

𝜕𝛼𝑝𝑡m(𝝎𝑝𝑡 ))
𝜕𝜌𝑝𝑡

= 𝑒 𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) ,

𝜕𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕Φ𝑝𝑡

= 𝑗 𝜌𝑝𝑡𝑒
𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) ,

𝜕𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜏𝑝𝑡

= −𝜌𝑝𝑡𝑒
𝑗Φ𝑝𝑡 𝑠 (1) (𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) + 𝑗𝜔𝑐𝑏𝑝𝑡

𝜌𝑝𝑡𝑒
𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) ,

𝜕𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝑏𝑝𝑡

= − 𝑗𝜔𝑐 (𝑡 − 𝜏𝑝𝑡 )𝜌𝑝𝑡𝑒
𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) .

The matrix W contains more previously computed terms that should be defined due to their appearance in

B(𝜽 𝑝𝑡 ) and hence the MCRB. These integrals are shown to be closed form and dependant only on the signal

samples.

𝑤1 =

∫ ∞

−∞
|𝑠(𝑡; 𝜼) |2 𝑑𝑡 = 1

𝑓𝑠
s𝐻s, 𝑤2 =

∫ ∞

−∞
(𝑡 − 𝜏) |𝑠(𝑡; 𝜼) |2 𝑑𝑡 = 1

𝑓 2𝑠
s𝐻Ds, (B.2)

𝑤3 =

∫ ∞

−∞
𝑠 (1) (𝑡; 𝜼)𝑠(𝑡; 𝜼)𝑑𝑡 = s𝐻𝚲s, 𝑊3,3 =

∫ ∞

−∞

���𝑠 (1) (𝑡; 𝜼)���2 𝑑𝑡 = 𝑓𝑠s𝐻Vs, (B.3)

𝑊2,2 =

∫ ∞

−∞
(𝑡 − 𝜏)2 |𝑠(𝑡; 𝜼) |2 𝑑𝑡 = 1

𝑓 3𝑠
s𝐻D2s, 𝑊3,2 =

∫ ∞

−∞
(𝑡 − 𝜏)𝑠 (1) (𝑡; 𝜼)𝑠∗ (𝑡; 𝜼)𝑑𝑡 = 1

𝑓𝑠
s𝐻D𝚲s, (B.4)

with

D = 𝑑𝑖𝑎𝑔( [𝑁1, 𝑁1 + 1, ..., 𝑁2 − 1, 𝑁2]), (B.5)

(V)𝑛,𝑛′ =

���������
𝑛
′
≠ 𝑛 : (−1)

���𝑛−𝑛′ ��� 2
(𝑛−𝑛′ )2

𝑛
′
= 𝑛 : 𝜋2

3

, (𝚲)𝑛,𝑛′ =

���������
𝑛
′
≠ 𝑛 : (−1)

���𝑛−𝑛′ ���
(𝑛−𝑛′ )

𝑛
′
= 𝑛 : 0

, (B.6)

and 𝑠 (1) (𝑡) the first derivative of the signal 𝑠(𝑡). The methodology of this appendix is repeated with more

complicated derivatives and integrals to compute the new closed-form MCRB.

Appendix C. Computation of A(𝜽𝒑𝒕)

The matrix A(𝜽 𝑝𝑡 ) is component of the MCRB that takes into account the misspecification. The first

term to derive is 𝛿m, which depends on the difference between the means of the misspecified signal model
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and the model including acceleration.

𝛿m = 𝛼𝑠(𝑡 − 𝜏)𝑒− 𝑗𝜔𝑐 (𝑏 (𝑡−𝜏 )+𝑑 (𝑡−𝜏 )2 ) − 𝛼𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 )

= 𝛼𝑠(𝑡 − 𝜏)
(
𝑒− 𝑗𝜔𝑐 (𝑏 (𝑡−𝜏 )+𝑑 (𝑡−𝜏 )2 ) − 𝑒− 𝑗𝜔𝑐 (𝑏+𝑑𝑇𝑒 ) ) (𝑡−𝜏 )

)
= 𝛼𝑠(𝑡 − 𝜏)𝑒− 𝑗𝜔𝑐 (𝑏+𝑑𝑇𝑒 ) (𝑡−𝜏 )

(
𝑒 𝑗𝜔𝑐 (𝑑𝑇𝑒 (𝑡−𝜏 )−𝑑 (𝑡−𝜏 )2 ) − 1

)
= 𝜌𝑝𝑡𝑒

𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏)𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏 )
(
𝑒 𝑗𝜔𝑐 (𝑑𝑇𝑒 (𝑡−𝜏 )−𝑑 (𝑡−𝜏 )2 ) − 1

)
. (C.1)

The first derivatives w.r.t each parameter have been computed in (B.1). The process of going from each

of these first derivatives to the following second derivatives is simple but results in too many equations

to keep in the main body of this article. Therefore, this Appendix is a list of the second derivatives that

have been substituted into (C.2). As the equations for A(𝜽 𝑝𝑡 ) and B(𝜽 𝑝𝑡 ) involve multiplication of complex

conjugates, it is useful to note that every non-zero derivative includes a common complex exponential. The

same complex exponential has been factored in (C.1) to simplify through conjugate multiplication. This

common factor is therefore removed from the final form of the MCRB.

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜽 𝑝𝑡𝜕𝜽

⊤
𝑝𝑡

=



𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕Φ2

𝑝𝑡

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕Φ𝑝𝑡𝜕𝜌𝑝𝑡

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕Φ𝑝𝑡𝜕𝜏𝑝𝑡

𝜕2m(𝜽𝑝𝑡 )
𝜕Φ𝑝𝑡𝜕𝑏𝑝𝑡

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜌𝑝𝑡𝜕Φ𝑝𝑡

𝜕2m(𝜽𝑝𝑡 )
𝜕𝜌2

𝑝𝑡

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜌𝑝𝑡𝜕𝜏𝑝𝑡

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜌𝑝𝑡𝜕𝑏𝑝𝑡

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜏𝑝𝑡𝜕Φ𝑝𝑡

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜏𝑝𝑡𝜕𝜌𝑝𝑡

𝜕2m(𝜽𝑝𝑡 )
𝜕𝜏2

𝑝𝑡

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜏𝑝𝑡𝜕𝑏𝑝𝑡

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝑏𝑝𝑡𝜕Φ𝑝𝑡

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝑏𝑝𝑡𝜕𝜌𝑝𝑡

𝜕2m(𝜽𝑝𝑡 )
𝜕𝑏𝑝𝑡𝜕𝜏𝑝𝑡

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝑏2

𝑝𝑡


, (C.2)

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕Φ2

𝑝𝑡

= −𝜌𝑝𝑡𝑒
𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) , (C.3)

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕Φ𝑝𝑡𝜕𝜌𝑝𝑡

= 𝑗 𝑒 𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) , (C.4)

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕Φ𝑝𝑡𝜕𝜏𝑝𝑡

= − 𝑗 𝜌𝑝𝑡𝑒
𝑗Φ𝑝𝑡 𝑠 (1) (𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) − 𝜔𝑐𝑏𝑝𝑡 𝜌𝑝𝑡𝑒

𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) , (C.5)

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕Φ𝑝𝑡𝜕𝑏𝑝𝑡

= 𝜔𝑐𝜌𝑝𝑡𝑒
𝑗Φ𝑝𝑡 (𝑡 − 𝜏𝑝𝑡 )𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) , (C.6)

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜌𝑝𝑡𝜕Φ𝑝𝑡

= 𝑗 𝑒 𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) , (C.7)

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜌2𝑝𝑡

= 0, (C.8)

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜌𝑝𝑡𝜕𝜏𝑝𝑡

= −𝑒 𝑗Φ𝑝𝑡 𝑠 (1) (𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) + 𝑗𝜔𝑐𝑏𝑝𝑡𝑒
𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) , (C.9)

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜌𝑝𝑡𝜕𝑏𝑝𝑡

= − 𝑗𝜔𝑐 (𝑡 − 𝜏𝑝𝑡 )𝑒 𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) , (C.10)

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜏𝑝𝑡𝜕Φ𝑝𝑡

= − 𝑗 𝜌𝑝𝑡𝑒
𝑗Φ𝑝𝑡 𝑠 (1) (𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) − 𝜔𝑐𝑏𝑝𝑡 𝜌𝑝𝑡𝑒

𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) , (C.11)

𝜕𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜏𝑝𝑡𝜕𝜌𝑝𝑡

= 𝑒 𝑗Φ𝑝𝑡 𝑠 (1) (𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) + 𝑗𝜔𝑐𝑏𝑝𝑡
𝑒 𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) , (C.12)
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𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜏2𝑝𝑡

= 𝜌𝑝𝑡𝑒
𝑗Φ𝑝𝑡 𝑠 (2) (𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) − 2 𝑗𝜔𝑐𝑏𝑝𝑡 𝜌𝑝𝑡𝑒

𝑗Φ𝑝𝑡 𝑠 (1) (𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 )

− 𝜌𝑝𝑡𝜔
2
𝑐𝑏

2
𝑝𝑡𝑒

𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) , (C.13)

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜏𝑝𝑡𝜕𝑏𝑝𝑡

= 𝑗𝜔𝑐𝜌𝑝𝑡𝑒
𝑗Φ𝑝𝑡 (𝑡 − 𝜏𝑝𝑡 )𝑠 (1) (𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) + 𝑗𝜔𝑐𝜌𝑝𝑡𝑒

𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 )

+ 𝜌𝑝𝑡𝜔
2
𝑐𝑏𝑝𝑡𝑒

𝑗Φ𝑝𝑡 (𝑡 − 𝜏𝑝𝑡 )𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) , (C.14)

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝑏𝑝𝑡𝜕Φ𝑝𝑡

= 𝜔𝑐𝜌𝑝𝑡𝑒
𝑗Φ𝑝𝑡 (𝑡 − 𝜏𝑝𝑡 )𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) , (C.15)

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝑏𝑝𝑡𝜕𝜌𝑝𝑡

= − 𝑗𝜔𝑐𝑏𝑝𝑡𝑒
𝑗Φ𝑝𝑡 (𝑡 − 𝜏𝑝𝑡 )𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) , (C.16)

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝑏𝑝𝑡𝜕𝜏𝑝𝑡

= 𝑗𝜔𝑐𝜌𝑝𝑡𝑒
𝑗Φ𝑝𝑡 (𝑡 − 𝜏𝑝𝑡 )𝑠 (1) (𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) + 𝑗𝜔𝑐𝜌𝑝𝑡𝑒

𝑗Φ𝑝𝑡 𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 )

+ 𝜌𝑝𝑡𝜔
2
𝑐𝑏𝑝𝑡𝑒

𝑗Φ𝑝𝑡 (𝑡 − 𝜏𝑝𝑡 )𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) , (C.17)

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝑏2𝑝𝑡

= −𝜌𝑝𝑡𝜔
2
𝑐𝑒

𝑗Φ𝑝𝑡 (𝑡 − 𝜏𝑝𝑡 )2𝑠(𝑡 − 𝜏𝑝𝑡 )𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 ) . (C.18)

Note that we can express (C.2) as a product of the exponential terms and a matrix product,

𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜽 𝑝𝑡𝜕𝜽 𝑝𝑡

⊤ = 𝑒 𝑗Φ𝑝𝑡 𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 )Q𝑇 (𝝑 ⊗ I4) , (C.19)

with ⊗ the Kronecker product, and Q𝑇 =

[
Q1 Q2 Q3 Q4 Q5 Q6

]
. Each matrix Q𝑖 is multiplied by

the 𝑖𝑡ℎ element of the signal sample vector,

𝝑 =



𝑠(𝑡 − 𝜏𝑝𝑡 )

(𝑡 − 𝜏𝑝𝑡 )𝑠(𝑡 − 𝜏𝑝𝑡 )

𝑠 (1) (𝑡 − 𝜏𝑝𝑡 )

(𝑡 − 𝜏𝑝𝑡 )𝑠 (1) (𝑡 − 𝜏𝑝𝑡 )

𝑠 (2) (𝑡 − 𝜏𝑝𝑡 )

(𝑡 − 𝜏𝑝𝑡 )2𝑠(𝑡 − 𝜏𝑝𝑡 )


, (C.20)

Q1 =



−𝜌𝑝𝑡 𝑗 −𝜔𝑐𝑏𝑝𝑡 𝜌𝑝𝑡 0

𝑗 0 𝑗𝜔𝑐𝑏𝑝𝑡 0

−𝜔𝑐𝑏𝑝𝑡 𝜌𝑝𝑡 𝑗𝜔𝑐𝑏𝑝𝑡 −𝜌𝑝𝑡𝜔
2
𝑐𝑏

2
𝑝𝑡 𝑗𝜔𝑐𝜌𝑝𝑡

0 0 𝑗𝜔𝑐𝜌𝑝𝑡 0


, Q2 =



0 0 0 𝜔𝑐𝜌𝑝𝑡

0 0 0 − 𝑗𝜔𝑐

0 0 0 𝜌𝑝𝑡𝜔
2
𝑐𝑏𝑝𝑡

𝜔𝑐𝜌𝑝𝑡 − 𝑗𝜔𝑐𝑏𝑝𝑡 𝜌𝑝𝑡𝜔
2𝑏𝑝𝑡 0


,

Q3 =



0 0 − 𝑗 𝜌𝑝𝑡 0

0 0 −1 0

− 𝑗 𝜌𝑝𝑡 −1 −2 𝑗𝜔𝑐𝑏𝑝𝑡 𝜌𝑝𝑡 0

0 0 0 0


, Q4 =



0 0 0 0

0 0 0 0

0 0 0 𝑗𝜔𝑐𝜌𝑝𝑡

0 0 𝑗𝜔𝑐𝜌𝑝𝑡 0


,
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Q5 =



0 0 0 0

0 0 0 0

0 0 𝜌𝑝𝑡 0

0 0 0 0


, Q6 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −𝜌𝑝𝑡𝜔
2
𝑐


.

Finally, we write the product in a shorter form for concise equations,

M = Q𝑇 (𝝑 ⊗ I4) . (C.21)

The steps to get a presentable form of the MCRB matrix are not trivial but consist of large and tedious matrix

equations. The goal of this Appendix is to provide a closed-form for (20) by substituting and simplifying the

result of (C.1). For the sake of shorthand notations and highlighting the key terms to simplify, we note the

second derivative as 𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜽𝑝𝑡𝜕𝜽𝑝𝑡

⊤ = 𝑒 𝑗Φ𝑝𝑡 𝑒− 𝑗𝜔𝑐𝑏𝑝𝑡 (𝑡−𝜏𝑝𝑡 )M, where M is the matrix from (C.21). The product

between this simplified form and (24) can be easily simplified,

(𝛿m)𝐻
(
𝜕2𝛼𝑝𝑡m(𝝎𝑝𝑡 )
𝜕𝜽 𝑝𝑡𝜕𝜽 𝑝𝑡

⊤

)
= 𝜌𝑝𝑡 𝑠

𝐻 (𝑡 − 𝜏𝑝𝑡 )
(
𝑒Ψ(𝑡 )M −M

)
. (C.22)

With this simpler form, we can compute A(𝜽 𝑝𝑡 ) as,205

A(𝜽 𝑝𝑡 ) =
2 𝑓𝑠𝜌𝑝𝑡

𝜎2
𝑛

Re
{
𝑒Ψ(𝑡 ) 𝑠𝐻 (𝑡 − 𝜏𝑝𝑡 )M − 𝑠𝐻 (𝑡 − 𝜏𝑝𝑡 )M

}
− 2 𝑓𝑠𝜌𝑝𝑡

𝜎2
𝑛

Re
{
𝑸𝑾𝑸𝐻

}
=

2 𝑓𝑠𝜌𝑝𝑡

𝜎2
𝑛

Re
{
𝑒Ψ(𝑡 ) 𝑠𝐻 (𝑡 − 𝜏𝑝𝑡 )M

}
− 2 𝑓𝑠𝜌𝑝𝑡

𝜎2
𝑛

Re
{
𝑠𝐻 (𝑡 − 𝜏𝑝𝑡 )M + 𝑸𝑾𝑸𝐻

}

=
2 𝑓𝑠𝜌𝑝𝑡

𝜎2
𝑛

Re
{
𝑒Ψ(𝑡 ) 𝑠𝐻 (𝑡 − 𝜏𝑝𝑡 )M

}
− 2 𝑓𝑠𝜌𝑝𝑡

𝜎2
𝑛



0 0 0 0

0 𝑤1

𝜌𝑝𝑡
0 0

0 0 0 0

0 0 0 0


=

2 𝑓𝑠𝜌𝑝𝑡

𝜎2
𝑛

Re {𝝌} (C.23)

where Re
{
𝑠𝐻 (𝑡 − 𝜏𝑝𝑡 )M

}
is given in (C.24) with 𝑤𝑀 defined in the following Appendix D. To obtain a

closed-form expression of A(𝜽 𝑝𝑡 ), the final step is to derive a closed-form of the new integrals that arise from

the definition in (27).

−𝑤1𝜌 0 −𝜌𝑤𝑐𝑏𝑤1 + 𝜌Im{𝑤3} 𝜌𝑤𝑐𝑤2

0 0 −Re{𝑤3} 0

−𝜌𝑤𝑐𝑏𝑤1 + 𝜌Im{𝑤3} −Re{𝑤3} −𝑤2
𝑐𝜌𝑏

2𝑤1 + 𝜌𝑤𝑀 + 2𝑤𝑐𝜌𝑏 · Im{𝑤3} 𝑤2
𝑐𝜌𝑏𝑤2 − 𝜌𝑤𝑐Im{𝑊3,2}

𝜌𝑤𝑐𝑤2 0 𝑤2
𝑐𝜌𝑏𝑤2 − 𝜌𝑤𝑐Im{𝑊3,2} −𝜌𝑤2

𝑐𝑊2,2


.

(C.24)

Appendix D. Derivation of the 𝝌 Coefficients

The first new term to be derived is 𝑤𝑀 . It requires the definition of the second derivative of the signal

𝑠(𝑡), which is expressed as 𝑠 (2) (𝑡). We use a property of Fourier transforms to convert the integral to the
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frequency domain: 𝑠(𝑡) ⇌ 𝑆( 𝑓 ) and 𝑠 (2) (𝑡) ⇌ −4𝜋2 𝑓 2𝑆( 𝑓 ). Moreover, 𝑆( 𝑓 ) = 1
𝑓𝑠

∑𝑁2

𝑘=𝑁1
𝑠(𝑘𝑇𝑠)𝑒− 𝑗2𝜋

𝑓

𝑓𝑠
𝑘 and

𝑆 (1) ( 𝑓 ) = − 𝑗2𝜋

𝑓 2𝑠

∑𝑁2

𝑘=𝑁1
𝑘𝑠(𝑘𝑇𝑠)𝑒− 𝑗2𝜋

𝑓

𝑓𝑠
𝑘 . Then,

𝑤𝑀 =

∫ ∞

−∞
𝑠∗ (𝑡 − 𝜏)𝑠 (2) (𝑡 − 𝜏)𝑑𝑡 ⇌

∫ 𝑓𝑠
2

− 𝑓𝑠
2

−4𝜋2 𝑓 2 (𝑆( 𝑓 ))∗𝑆( 𝑓 )𝑑𝑓

= − 𝑓𝑠

∫ 1
2

− 1
2

4𝜋2 𝑓 2 |𝑆( 𝑓 ) |2𝑑𝑓 − 𝑓𝑠

∫ 1
2

− 1
2

4𝜋2 𝑓 2 |𝒗𝐻 ( 𝑓 )𝒔 |2= − 𝑓𝑠s𝐻Vs = −𝑊3,3, (D.1)

with 𝒗( 𝑓 ) =
(
𝑒 𝑗2𝜋 𝑓 𝑁1 , · · · , 𝑒 𝑗2𝜋 𝑓 0, · · · ,𝑒 𝑗2𝜋 𝑓 𝑁2

)𝑇
and V = 4𝜋2

∫ 1
2

− 1
2

𝑓 𝒗( 𝑓 )𝒗( 𝑓 )𝐻 with closed-form defined in (B.6).

To compute a closed-form of Re {𝝌}, the integral terms in (28) can be computed in terms of the existing

integrals defined in [10],

𝑤𝑒1 =

∫ ∞

−∞
𝑠∗ (𝑡 − 𝜏)𝑠(𝑡 − 𝜏)𝑒− 𝑗𝜔𝑐𝑑 (𝑇𝑒 (𝑡−𝜏 )−(𝑡−𝜏 )2 )𝑑𝑡

=

∫ ∞

−∞
𝑠∗ (𝑡 − 𝜏)𝑠(𝑡 − 𝜏) [1 − 𝑗𝜔𝑐𝑑𝑇𝑒 (𝑡 − 𝜏)]𝑑𝑡 = 𝑤1 − 𝑗𝜔𝑐𝑑𝑇𝑒𝑤2,

where the exponential term has been approximated as 𝑒− 𝑗𝜔𝑐𝑑(𝑇𝑒 (𝑡−𝜏 )−(𝑡−𝜏 )2) ≈ 1 − 𝑗𝜔𝑐𝑑𝑇𝑒 (𝑡 − 𝜏). We210

emphasize that this approximation is valid since the product 𝑑 · 𝑇𝑒 and the value 𝑡 − 𝜏 are small. Making

the same approximation to derive the remaining terms,

𝑤𝑒2 =

∫ ∞

−∞
(𝑡 − 𝜏)𝑠∗ (𝑡 − 𝜏)𝑠(𝑡 − 𝜏)𝑒− 𝑗𝜔𝑐𝑑 (𝑇𝑒 (𝑡−𝜏 )−(𝑡−𝜏 )2 )𝑑𝑡

=

∫ ∞

−∞
(𝑡 − 𝜏)𝑠∗ (𝑡 − 𝜏)𝑠(𝑡 − 𝜏) [1 − 𝑗𝜔𝑐𝑑𝑇𝑒 (𝑡 − 𝜏)]𝑑𝑡 = 𝑤2 − 𝑗𝜔𝑐𝑑𝑇𝑒𝑊2,2,

𝑤𝑒3 =

∫ ∞

−∞
𝑠∗ (𝑡 − 𝜏)𝑠 (1) (𝑡 − 𝜏)𝑒− 𝑗𝜔𝑐𝑑 (𝑇𝑒 (𝑡−𝜏 )−(𝑡−𝜏 )2 )𝑑𝑡 =

∫ ∞

−∞
𝑠∗ (𝑡 − 𝜏)𝑠 (1) (𝑡 − 𝜏) [1 − 𝑗𝜔𝑐𝑑𝑇𝑒 (𝑡 − 𝜏)]𝑑𝑡

= 𝑤3 − 𝑗𝜔𝑐𝑑𝑇𝑒𝑊3,2,

𝑊𝑒3,2 =

∫ ∞

−∞
(𝑡 − 𝜏)𝑠∗ (𝑡 − 𝜏)𝑠 (1) (𝑡 − 𝜏)𝑒− 𝑗𝜔𝑐𝑑 (𝑇𝑒 (𝑡−𝜏 )−(𝑡−𝜏 )2 )𝑑𝑡

=

∫ ∞

−∞
(𝑡 − 𝜏)𝑠∗ (𝑡 − 𝜏)𝑠 (1) (𝑡 − 𝜏) [1 − 𝑗𝜔𝑐𝑑𝑇𝑒 (𝑡 − 𝜏)]𝑑𝑡 = 𝑊3,2 − 𝑗𝜔𝑐𝑑𝑇𝑒𝑊4,3,

with 𝑊4,3 = 1
𝑓 2𝑠

(
s𝐻D𝚲Ds − s𝐻Ds

)
, following the notation used in [11], and derived for first time in [25].215

𝑊𝑒2,2 =

∫ ∞

−∞
(𝑡 − 𝜏)2𝑠∗ (𝑡 − 𝜏)𝑠(𝑡 − 𝜏)𝑒− 𝑗𝜔𝑐𝑑 (𝑇𝑒 (𝑡−𝜏 )−(𝑡−𝜏 )2 )𝑑𝑡

=

∫ ∞

−∞
(𝑡 − 𝜏)2𝑠∗ (𝑡 − 𝜏)𝑠(𝑡 − 𝜏) [1 − 𝑗𝜔𝑐𝑑𝑇𝑒 (𝑡 − 𝜏)]𝑑𝑡 = 𝑊2,2 − 𝑗𝜔𝑐𝑑𝑇𝑒𝑊4,2,

with 𝑊4,2 = 1
𝑓 4𝑠

(
s𝐻D3s

)
derived in [11].

𝑤𝑒𝑀 =

∫ ∞

−∞
𝑠∗ (𝑡 − 𝜏)𝑠 (2) (𝑡 − 𝜏)𝑒− 𝑗𝜔𝑐𝑑 (𝑇𝑒 (𝑡−𝜏 )−(𝑡−𝜏 )2 )𝑑𝑡

=

∫ ∞

−∞
𝑠∗ (𝑡 − 𝜏)𝑠 (2) (𝑡 − 𝜏) [1 − 𝑗𝜔𝑐𝑑𝑇𝑒 (𝑡 − 𝜏)+]𝑑𝑡 = −𝑊3,3 − 𝑗𝜔𝑐𝑑𝑇𝑒𝑤𝑀,2,
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with 𝑤𝑀,2 computed using the same property of the Fourier transform from (D.1),

𝑤𝑀,2 =

∫ ∞

−∞
(𝑡 − 𝜏)𝑠∗ (𝑡 − 𝜏)𝑠 (2) (𝑡 − 𝜏)𝑑𝑡 ⇌

∫ 𝑓𝑠
2

− 𝑓𝑠
2

(
𝑗

2𝜋
𝑆 (1) ( 𝑓 )

)∗ (
−4𝜋2 𝑓 2𝑆( 𝑓 )

)
𝑑𝑓

= −
∫ 1

2

− 1
2

(Ds)𝐻 𝒗( 𝑓 )
(
4𝜋2 𝑓 2s𝒗𝐻 ( 𝑓 )

)
𝑑𝑓 = −s𝐻DVs. (D.2)

This marks the last integral term needed to compute the closed-form MCRB for joint delay and Doppler

estimation. For the acceleration parameter 𝑑 = 0, the integral equations simplify to the existing CRB

equations for joint delay and Doppler estimation.220

References

[1] P. J. G. Teunissen, O. Montenbruck (Eds.), Handbook of Global Navigation Satellite Systems, Springer, Switzerland,

2017.

[2] H. L. Van Trees, Detection, estimation, and modulation theory, Part III: Radar – Sonar Signal Processing and Gaussian

Signals in Noise, John Wiley & Sons, 2001.225

[3] L. L. Scharf, Statistical signal processing: detection, estimation, and time series analysis, Addison-Wesley, 2002.

[4] H. L. Van Trees, Optimum Array Processing, Wiley-Interscience, New-York, 2002.

[5] P. J. Schreier, L. L. Scharf, Statistical Signal Processing of Complex-Valued Data, Cambridge University Press, 2010.

[6] C. D. Richmond, L. L. Horowitz, Parameter bounds on estimation accuracy under model misspecification, IEEE Trans-

actions on Signal Processing 63 (9) (2015) 2263–2278. doi:10.1109/TSP.2015.2411222.230

[7] M. L. Diong, E. Chaumette, F. Vincent, On the efficiency of maximum-likelihood estimators of misspecified models, in:

25th European Signal Processing Conference (EUSIPCO), 2017, pp. 1455–1459.

[8] Z. Ben-Haim, Y. C. Eldar, The Cramér-Rao bound for estimating a sparse parameter vector, IEEE Transactions on Signal

Processing 58 (6) (2010) 3384–3389. doi:10.1109/TSP.2010.2045423.

[9] R. Prasad, C. R. Murthy, Cramér-Rao-type bounds for sparse bayesian learning, IEEE Transactions on Signal Processing235

61 (3) (2013) 622–632. doi:10.1109/tsp.2012.2226165.

URL https://doi.org/10.1109%2Ftsp.2012.2226165

[10] D. Medina, L. Ortega, J. Vilà-Valls, P. Closas, F. Vincent, E. Chaumette, A New Compact CRB for Delay, Doppler and

Phase Estimation-Application to GNSS SPP & RTK Performance Characterization, IET Radar Sonar & Navigation 14

(2020) 1537–1549.240

[11] H. McPhee, L. Ortega, J. Vilà-Valls, E. Chaumette, On the accuracy limit of joint time-delay/doppler/acceleration es-

timation with a band-limited signal, in: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2021, pp. 5130–5134. doi:10.1109/ICASSP39728.2021.9414270.

[12] A. Renaux, P. Forster, E. Chaumette, P. Larzabal, On the high-SNR conditional maximum-likelihood estimator full

statistical characterization, IEEE Trans. on SP 54 (12) (2006) 4840 – 4843.245

[13] S. Fortunati, F. Gini, M. S. Greco, C. D. Richmond, Performance bounds for parameter estimation under misspecified

models: Fundamental findings and applications, IEEE Signal Processing Magazine 34 (6) (2017) 142–157.

[14] A. Mennad, S. Fortunati, M. N. El Korso, A. Younsi, A. M. Zoubir, A. Renaux, Slepian-Bangs-type formulas and the

related Misspecified Cramér-Rao Bounds for Complex Elliptically Symmetric distributions, Signal Processing 142 (2018)

320–329. doi:10.1016/j.sigpro.2017.07.029.250

URL https://hal.parisnanterre.fr//hal-01654607

23

http://dx.doi.org/10.1109/TSP.2015.2411222
http://dx.doi.org/10.1109/TSP.2010.2045423
https://doi.org/10.1109%2Ftsp.2012.2226165
http://dx.doi.org/10.1109/tsp.2012.2226165
https://doi.org/10.1109%2Ftsp.2012.2226165
http://dx.doi.org/10.1109/ICASSP39728.2021.9414270
https://hal.parisnanterre.fr//hal-01654607
https://hal.parisnanterre.fr//hal-01654607
https://hal.parisnanterre.fr//hal-01654607
http://dx.doi.org/10.1016/j.sigpro.2017.07.029
https://hal.parisnanterre.fr//hal-01654607


[15] Q. H. Vuong, Cramér-Rao bounds for misspecified models, working paper 652, Div. of the Humanities and Social Sci.,

Caltech, Pasadena, USA, 1986.

[16] S. Fortunati, F. Gini, M. S. Greco, The misspecified Cramér-Rao bound and its application to scatter matrix estimation

in complex elliptically symmetric distributions, IEEE Transactions on Signal Processing 64 (9) (2016) 2387–2399.255

[17] P. J. Huber, The behavior of maximum likelihood estimates under nonstandard conditions,, in: in Proceedings of the Fifth

Berkeley Symposium in Mathematical Statistics and Probability, 1967, pp. 1–6.

[18] H. White, Maximum likelihood estimation of misspecified models, Econometrica: Journal of the econometric society (1982)

1–25.

[19] S. J. Orfanidis, Electromagnetic Waves and Antennas, Rutgers University, 2016.260

URL www.ece.rutgers.edu/~orfanidi/ewa

[20] M. I. Skolnik, Radar Handbook, 3rd Edition, McGraw-Hill, New York, USA, 1990.

[21] E. J. Kelly, The Radar Measurement of Range, Velocity and Acceleration, IRE Transactions on Military Electronics (1961)

51–57.

[22] H. Akaike, Information Theory and an Extension of the Maximum Likelihood Principle,, in: in Proceeding of IEEE ISIT„265

1973.

[23] B. Ottersten, M. Viberg, P. Stoica, A. Nehorai, Exact and large sample maximum likelihood techniques for parameter

estimation and detection in array processing, in: S. Haykin, J. Litva, T. J. Shepherd (Eds.), Radar Array Processing,

Springer-Verlag, Heidelberg, 1993, Ch. 4, pp. 99–151.

[24] Q. Ding, S. Kay, Maximum likelihood estimator under a misspecified model with high signal-to-noise ratio, IEEE Trans-270

actions on Signal Processing 59 (8) (2011) 4012–4016. doi:10.1109/TSP.2011.2150220.

[25] P. Das, J. Vilà-Valls, F. Vincent, L. Davain, E. Chaumette, A new compact delay, doppler stretch and phase estimation

crb with a band-limited signal for generic remote sensing applications., Remote Sensing 12 (2) (2020) 2913.

[26] B. Badke, What is c/n0 and how is it calculated in a gnss receiver ?, Inside GNSS (2009) 20–23.

[27] S. Walker, Atmospheric descent (https://www.mathworks.com/275

matlabcentral/fileexchange/26121-atmospheric-descent), matlab central file exchange, retrieved December 6, 2021.

[28] L. Ortega, J. Vilà-Valls, E. Chaumette, F. Vincent, On the Time-Delay Estimation Performance Limit of New GNSS

Acquisition Codes, in: ICL-GNSS 2020, IEEE, 2020, pp. 1–6.

24

View publication stats

www.ece.rutgers.edu/~orfanidi/ewa
http://dx.doi.org/10.1109/TSP.2011.2150220
https://www.researchgate.net/publication/365835267

	Introduction
	Signal Model
	Theoretical Framework of a Misspecified Signal Model
	Pseudo-True Parameters Computation
	A Compact MCRB for Joint Time-delay and Doppler Estimation
	Validation and Discussion
	Conclusion
	Pseudo-True Parameter Derivation
	Computation of B(bold0mu mumu pt)
	Computation of A(bold0mu mumu pt)
	Derivation of the bold0mu mumu  Coefficients

