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Abstract—This article proposes a stochastic model to obtain
the end-to-end delay law between two nodes of a Delay Tolerant
Network (DTN). We focus on the commonly used Binary Spray
and Wait (BSW) routing protocol and propose a model that can
be applied to homogeneous or heterogeneous networks (i.e. when
the inter-contact law parameter takes one or several values). To
the best of our knowledge, this is the first model allowing to
estimate the delay distribution of Binary Spray and Wait DTN
protocol in heterogeneous networks. We first detail the model and
propose a set of simulations to validate the theoretical results.

Index Terms—DTN routing, modelling, binary spray and wait

I. INTRODUCTION

Delay Tolerant Networks (DTN) is a concept initially cre-

ated for interplanetary networks [6]. However, it also receives a

great success for intermittently connected networks and partic-

ularly for opportunistic networks [5]. In these networks, a node

can send data to another if they are within the transmission

range of each other. Due to the dynamic character of these

networks, there is no guarantee that a direct connected path

from a given source to a given destination exists at any time.

As a result, routing protocols using relay nodes and replication

such as MaxProp [3], Spray and Wait [14], PRoPHET [13]

and RAPID [2] have been proposed to increase the message

delivery ratio over such intermittently connected networks.

The performance evaluation of such protocols in terms of

message delivery ratio, end-to-end delay or throughput is a

difficult task due to the complexity to drive mobile network

simulations. Several efforts have been done in order to assess

the performance of routing schemes with simulations. Today,

The ONE simulator became a reference tool in this area

[1]. Other approaches have proposed Markovian and ordinary

differential equations (ODEs) models to study the performance

of some basic routing protocols such as Epidemic, Epidemic

limited, 2-hop routing and 2-hop limited routing protocols

[16], [7], [11] while others focus on the ressource constraints

issues in these networks [17], [10]. However, none of these

models consider both Binary Spray and Wait (BSW) routing

protocol and different inter-contact law parameters (qualified

in this study as heterogeneous case). As real cases are usually

not homogeneous, it is important to handle this aspect.

In this paper, we introduce a Markovian model to obtain

the end-to-end delay law and the average delivery ratio of

an intermittently connected network. Compare to previous

existing works, we propose to fill a gap by introducing a model

of the commonly-used Binary Spray and Wait routing protocol

in both homogeneous and heterogeneous cases. Indeed, in

most DTN routing studies, this protocol is used as a reference

for comparison purpose as BSW has been proved to be optimal

in a fully random network [14]. To the best of our knowledge

this is the first model proposed to assess BSW performances.

Section II-A presents and justifies the assumptions chosen and

sums up the notations used inside this paper. In Section III, we

first propose a BSW model for the homogeneous case. This

model is then extended to handle heterogeneous networks in

Section IV. In each section we provide examples to assess

the consistency and efficiency of the developed model and

compare the results obtained with The ONE simulator. Section

VI concludes this work and details the future work.

II. ASSUMPTIONS AND NOTATIONS

Before presenting the assumptions used to build our model,

we first recall how the BSW routing protocol operates.

The source node of a message initially starts with a fixed

number of copies denoted L. This number is called the

replication factor. Then, the spray phase is directed by the

following rule: any node that has strictly more than one

message copy (source or relay) gives half of its copies to

the first node (without copies) encountered. If the number

of copies is odd the floor value is taken. When a node has

only one copy, it switches to the wait phase and can give its

remaining copy only to the destination.

A. Assumptions

Our model is based on two main assumptions:

1) the model does not consider buffer constraints (i.e.

losses resulting from congestion) and losses due to link

failure. That means that we model a case where each

contact is long enough to send and/or receive all required

messages. Note that the case of congestion is discussed

later in Section VI;

2) we consider all inter-contact laws as exponential. Fol-

lowing [9], the authors show that the time scale of

interest for opportunistic forwarding may be of the same

order as the characteristic time, and thus the exponential

tail is important. As a result, the exponential distribution

of inter-contact is meaningful and justifies a Markovian

model. In this paper, the authors also claim that the

choice of a power law (as proposed in [4]) in these cases
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leads to pessimistic results. The use of exponential laws

is justified, however it would be interesting to qualify

and quantify the error done with such an assumption in

a case of network characterized by different inter-contact

laws. This aspect will be detailed in a future work but

a first evaluation is presented in section V

B. Notations

We consider a network with N nodes, denoted ni, i ∈
{1, .., N}. ∀(i, j) ∈ {1, .., N}2, i 6= j, the inter-contact law

between ni and nj is an exponential law of parameter λi,j =
λj,i. In our study, we also consider homogeneous networks

that means ∀(i, j) ∈ {1, .., N}2, i 6= j, λi,j = λ. Thus, there

is only one parameter: λ. Notations are summed up in Table

I.

TABLE I
NOTATIONS USED FOR HOMOGENEOUS AND HETEROGENEOUS MODELS.

Notation Definition

N amount of nodes in the network

i index of nodes

ni ith node of the network

λi,j
parameter of the exponential inter-contact

law between ni and nj

λ parameter of inter-contact laws for homogeneous networks

L = 2k replication factor of BSW routing protocol

III. MODEL OF BINARY SPRAY AND WAIT ROUTING

PROTOCOL FOR HOMOGENEOUS NETWORK

The model is done in two parts. First, we build a Markov

chain representing the dissemination of copies in the network

with an absorbing state corresponding to the delivery of the

message. Then, we apply the first hitting time theorem [12]

between the initial state representing the creation of the mes-

sage by the source and the absorbing state. This theorem gives

the distribution of time needed to reach the absorbing state

starting from the first state. In other words, this corresponds to

the end-to-end delay between a given source and destination.

The main issue is to create a Markov chain that represents the

BSW routing protocol.

In the following, we consider that each node can be in

contact with all other nodes with an identical inter-contact

law parameter. We qualify this network as homogeneous.

A. Markov Chain for homogeneous cases

We define a state of the Markov chain as a possible

repartition of messages in the network. For example, a possible

repartition for a replication factor of 8 can be: one node with

4 copies, one node with 2 copies and two nodes with 1 copy.

In order to ease the writing, we consider that the number of

replicates is a power of two, 2k. However, the methodology

described in the rest of the paper is easily adaptable to any

replication factor L.

Theorem III.1 Number of states in the Markov Chain

In a N -node homogeneous DTN, using Binary Spray and

Wait routing protocol with a replication factor L = 2k, the
number of states is:

Nstates = β(k) + 1

with β(k) the number of partitions of 2k into powers of 2.

Proof: A state corresponds to a particular repartition of

copies into the network. A forwarding node, according to BSW

protocol, gives half of its copies until it finally gets only one.

Thus, each node can have a number of copy in {1, 2, .., 2k}.
Moreover, we do not need to discriminate the nodes between

them since we consider an homogeneous network. Thus, the

number of different possible repartition is the number of

partitions of 2k into powers of 2 denoted β(k). As we focus

on the delay of the first copy reaching the destination, we add

an absorbing state which represents the final delivery of the

copy of a message. Thus, the number of states is β(k)+ 1.

We provide in Table II the number of states for different

values of L. We remark that these results are true for L < N .

TABLE II
VALUE OF β SEQUENCE AS A FUNCTION OF L

L β(k) L β(k)
2 2 16 36

4 4 32 202

8 10 64 1828

We have computed the number of states in the Markov

chain. We now have to detail how to compute the transition

parameters.

1) Minimum of n exponential laws (Common probabilistic

result):

Let {Xi}i∈{1,..,n} be n random variables following exponen-

tial laws of respective parameter λXi
.

Let Z = Mini∈{1,..,n}Xi. Then, Z is a random variable

following an exponential law of parameter:

λZ =

n
∑

i=1

λXi

2) Transitions in Markov chain:

There is two type of transitions:

• transition from one state to the absorbing state;

• transition from one state to another one.

The expression of the transition parameter between one state

and the absorbing state depends on the number of nodes that

have a copy of the message. We denote this number: np. Each

of these np nodes can join the destination. The destination is

reached as soon as one of these np nodes is in contact with

it. Thus, the law of the transition is given by the minimum

of np exponential laws of parameter λ which is npλ. We can

differentiate two cases: either the source can be in contact with

the destination (WDC: with direct contact) or can not (NDC:

no direct contact). Nevertheless, as the source always keeps

at least one copy of the message, the transition parameter can

be written as follows: npλ, WDC or (np − 1)λ, NDC.
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To compute a normal transition, we first have to focus on

the partition. Indeed, copies repartition corresponds to:

L = 2k =

k
∑

j=0

aj2
j

where aj represents the number of nodes that have 2j copies

of the message. This partition can also be written as a vector:

(aj)j∈{0,..,k}

We consider (aj)j∈{0,..,k} and (bj)j∈{0,..,k} two repartitions

of copies, respectively of states A and B. We suppose that the

transition from A to B is done when a node with 2m copies

is in contact with a node with no copies. The relationship

between A and B can be written as follows:

bm = am − 1 and bm−1 = am + 2,m ∈ {1, .., n}

with m > 1 since a node with one copy can forward this last

remaining copy only to the destination. Keeping the previous

notations, we can express np (the number of node that have a

copy of the message) as follows:

np =

k
∑

j=0

aj

The transition between states A and B is done because a node

with 2m copies gives to another node 2m−1 copies. This node

can give these copies to N − np − 1 different nodes since we

do not consider the destination (represented by a particular

state in the chain). In practice, it gives these copies to the

first one met. Thus, the law of the transition corresponds to

the minimum of N − np − 1 exponential laws of parameter

λ. Moreover, to make the transition from A to B, only one

node among am nodes must give half of its copies. Thus, the

law of the transition corresponds to the minimum of am(N −
np − 1) exponential laws of parameter λ. As a consequence

the transition parameter is am(N − np − 1)λ.
All transitions parameters have to be positive. If L > N ,

some states are unreachable, become senseless and should be

removed.

The Markov chain is now built and complete since we have

the number of states in the chain and the literal expression

of all transitions. The second phase consists in applying the

first hitting time theorem [12] between the initial state (where

the source has all the message copies) and the absorbing state

(corresponding to the delivery of the message) in order to

obtain the delay distribution law.

B. Practical examples and simulations

In this section, we give a representation of some Markov

chains. We present complete Markov chains for L = 4 (Figure

1(a)), L = 8 (Figure 1(b)) and L = 16 (Figure 2). These

three chains correspond to NDC cases. This means there is no

transition between the first state and the absorbing state.

We use previous Markov chains definition to validate our

model for different values of L and N . Table III summarizes

the different cases evaluated and gives the main network

parameters.

(a) BSW with L=4, homogeneous case

(b) BSW with L=8, homogeneous case

Fig. 1. Example of Markov Chains for homogeneous network with L = 4
and L = 8 (the corresponding repartition is indicated inside the states)

TABLE III
THE DIFFERENT CASES SIMULATED AND COMPARED TO THE ANALYTICAL

RESULTS OBTAINED WITH THE MODEL.

Case L N λ

#1 4 6 50

#2 4 20 200

#3 8 20 200

#4 16 20 200

We use The ONE simulator [1] to perform our simulations.

To evaluate D, the random variable corresponding to the

end-to-end delay of messages, we first create a contact trace

file of several millions of seconds following the given inter-

contact law parameters. Using this file, the simulation consists

in sending Ne messages by the source. Once a message is

created, the diffusion process starts. The messages generation

is sufficiently spaced to ensure that each message transmitted

from a source to a destination is an independent event. In

practice, to ensure the observation of Ne independent events

of the random variable D, we set a sending delay between

two messages greater than 1
λ
. In all our cases, this permits to

accurately evaluate the distribution of D. However, it is easy

to increment the accuracy of this evaluation by increasing the

number of observed events. In our experiments, Ne is ranging

from 2000 to 10000.
Theoretical results have been obtained using Matlab. Figure

3 presents both simulation and theoretical results for the four

cases described in Table III. This figure gives the results for

a 20-node network with a replication factor ranging from 4 to

16. We observe that the results obtained by our model correctly

fits the corresponding simulation.

Following these results, we now propose to extend this

model to the heterogeneous case.

IV. EXTENSION OF BSW MODEL TO HETEROGENEOUS

NETWORKS

As explained in Section III, in a homogeneous network,

there is no discrimination between nodes with a given number

of copies. If two nodes have x copies of a message, it does

not matter to distinguish them as this is not taken into account
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Fig. 2. Example of Markov Chain for homogeneous network with L = 16 (the corresponding repartition is indicated inside the states)
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Simulation, 20 nodes − BSW16
Model, 20 nodes − BSW16

Fig. 3. Comparison of the results obtained by simulation and our model in
different cases for homogeneous network.

for the computation of the transition in the Markov chain.

On the contrary, in a heterogeneous network, we need to

distinguish nodes to compute the transitions as each pair of

nodes can have a different inter-contact law parameter. Indeed,

the problem is to integrate the node discrimination in the

representation of copies repartition. Obviously, this integration

leads to an increase in the number of states in the Markov

chain and is dependant on N . However, this model allows to

assess the delay distribution of BSW routing protocol in any

intermittently connected networks where nodes have contacts

only with a subset of other nodes.

A. Markov Chain for heterogeneous cases

This new Markov chain can be seen as a generalization

of the previous one proposed for homogeneous case. Instead

of a vector used to represent the copies repartition, we now

use a matrix. Basically, each line of this matrix represents a

node of the network and each column represents a number

of copies in the same way as the vector in the previous

part. We denote R = (ri,j)16i6N−1;16j6k+1 the copies

repartition. R has only N − 1 lines as the destination is

not considered in the repartition. If we consider a vector V

defined as follows: V = (vi)16i6k+1 with vi = ΣN−1
m=1rm,i,

it can be seen as the corresponding repartition of copies in

the homogeneous case. As a result, the heterogeneous Markov

chain corresponds to an extension of the homogeneous one

which consists in splitting homogeneous states in several part

to allow nodes discrimination. Transitions from one given state

to the absorbing state are computed in the same way as in the

homogeneous case while no computation is needed for the

other transitions.

The number of links denoted nl, that starts from a given

state in the heterogeneous case is equal to:

k
∑

j=1

(N − 1− np)nr(j)

with np the number of relays that have a copy and nr(j) the
number of relays that have 2j copies. The exact number of

states, which is not trivial to obtain, is computed with Matlab.

To illustrate how the problem is finally solved, we give an

example of the Markov chain obtained for the case N = 5
and L = 22 in Figure 4 with direct contact. As a potential

Fig. 4. A practical example of chain building in an heterogeneous case. The
circled state corresponds to a repartition in which nodes #1 (source) and #2
have 2 copies, and nodes #3, #4 and #5 (destination) have no copy

application example of the previous formula, we consider the
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second state of the chain (circled in Figure 4). There is only

one kind of transition which is a transition from a node with

two copies (nr(2) = 0). Here, np = 2, nr(1) = 2 so nl = 4.
This means that this particular state generates four different

other states (as shown in Figure 4).

In the case of L = 4, we can give a literal expression of

the number of states in the chain based on Figure 4. Each

level in the chain corresponds to the number of nodes that

have a message. A state of the second level is a state where

the source has two copies and one node among the N − 2
remaining nodes. There is

(

N−2

1

)

different possible states. A

state of the third level is a state where a node has two copies

and two nodes have one copy. Thus, there is (N − 1).
(

N−2

2

)

different possible states. A state of the last level is a state

where four nodes have one copy, but in all states the source

will have one copy. There is
(

N−2

3

)

different states for this

last level. Finally, for L = 4, the number of states is given by:

2 +
N − 2

6
(6 + (N − 3)(4N − 7)) (1)

Note that if some nodes are never in contact, some transitions

are not possible and some states are unreachable.

For N = 5 or N = 10 the chain has respectively 18 or

318 states. We observe that this number fastly increases as a

function ofN . This trend will be even more significant when L

also increases. However, in a heterogeneous case which fairly

represent a real case, many transitions will be null since some

nodes will never meet some other ones. As a result, the matrix

that represents the Markov chain has a large dimension but

remains very sparse and can be computed.

We have developed an algorithm to compute the states and

the transitions between them.

B. Practical example of heterogeneous cases

In this section, we present three experiments with hetero-

geneous networks.

1) Case #1: In this first example, we take a simple network

composed by five nodes with L = 4. We also set λ1,2 =
λ1, λ1,3 = λ2, λ1,4 = λ3. All other parameters are equal

to λ and we suppose there is no direct contact. The Markov

chain is the same that the one presented in Figure 4 with these

corresponding values of λi,j

We compare both simulation and theoretical results obtained

with this model. For the experiment, we choose λ1 = 100,
λ2 = 200, = λ3 = 500 and λ = 200. Simulation are driven

as explained in Section III-B except that we choose a delay

between two messages at least as long as the largest parameter

of the inter-contact laws. Results are presented in Figure 5.

2) Case #2: In this second heterogeneous case, we ap-

proach a more realistic scenario. Indeed, we choose a set of

12 nodes. Each node has an immediate number of neighbours

(called diversity in the following) ranging from 2 to 8. The

parameter of each inter-contact law is randomly set between

200 and 1200 seconds. The chosen network is the sub-network

made of the 12 first nodes of the 20-node network presented

in Figure 6. We compare the theoretical and simulated end-

to-end delay distributions for L = 4 and L = 8. Results are

presented in Figure 7.
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Fig. 5. Results obtained with case #1.

Fig. 6. 20-node network representation.

3) Case #3: This last heterogeneous case considers the

whole 20-node network presented in Figure 6. Each node

still has a diversity ranging from 2 to 8 and inter-contact law

parameter is also represented in Figure 6. We compare theo-

retical and simulation results of end-to-end delay distribution

for L = 4 and L = 8 in this case.

Figure 7 presents the results for both cases (i.e. cases #2

and #3). Solid lines correspond to simulation results while

dotted lines to the theoretical ones. We observe that the results

obtained by our model fairly fit those obtained by simulation.

Moreover, the third case illustrates that the model also captures

the fact that the delivery ratio does not always reach 100%.

Indeed, the average delivery ratio in the third case is 18% for

L = 4 and 57% for L = 8 which is accurately captured by

the model.
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Fig. 7. Results obtained for cases #2 and #3.
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V. APPLICATION IN A REALISTIC CONTEXT

In this part, we validate our model and evaluate its accuracy

in a realistic context using real life connection traces. We

chose Rollernet trace [15], and used a subset of 11 nodes

that corresponds to a group of friends as explained by the

authors. The trace is not long enough to have perfect statistical

results. Indeed, for some pairs it only contains 5 inter-contact

values which is not enough to accurately infer a law. However,

it remains a good context for a first evaluation. This trace

presents two kinds of inter-contact laws. For some pairs,

inter-contact laws are in two parts; a first part evolving in

an exponential way and a second part evolving more slowly

corresponding to some very long inter-contacts. For other

pairs, inter-contact laws are roughly exponential. In the model,

we adjust exponential law parameters (λi,j) to fit as closely

as possible the inter-contact values of the trace. To avoid

optimistic results, we use weighted regressions that give a

more important weight to high inter-contact values. Thus, we

have pessimistic results in terms of short inter-contacts and

as a consequence in terms of short end-to-end delays. This is

visible on Figure 8 where we notice that theoretical results are

below simulation results for short end-to-end delays.

Simulations have been driven with The ONE for a repli-

cation factor of 2 and 4. We simulate the sending of 100
messages from a source to a destination. We can not send

more messages if we want to keep the independent aspect of

message sending times because of the trace length. Although

we do not present all our results here, there is no particular

differences according to the choice of source and destination

as there is no specific node in the set of chosen nodes.

A second aspect raised by Figure 8 is the global closeness

between the model and the simulations. In spite of law

characteristics approximation and short sample size, our model

gives a good approximation of the simulated results.
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Fig. 8. Comparison between simulation and model on rollernet traces

VI. DISCUSSION AND CONCLUSION

In this article, we have proposed a model to assess the

end-to-end delay in an intermittently connected network using

Binary Spray and Wait routing protocol. Under the assumption

of an exponential inter-contact time distribution, we give a

Markov chain that represents the diffusion of message copies

in the network. This representation allows to obtain the end-

to-end delay D, as the solution function to the first hitting

time theorem. The extended version of this model allows to

deal with the case of heterogeneous networks. As explained

in Section IV, we give the rules to build a Markov chain

using a contact matrix of the network. The end-to-end delay D

remains the solution of the first hitting time theorem. We drive

a set of simulations that confirm the accuracy of the model. We

also verified the accuracy of our model on more realistic cases,

both a 12-node and 20-node heterogeneous networks and on

the Rollernet case detailed in section V. In a future work,

we expect to drive several experiments to assess the exact

cost in terms of computation. Moreover, we currently work on

the scale problem explained in Section IV that appears with

large values of L in heterogeneous cases. We expect to find a

mathematical simplification to ease the computation to enable

application of our model on bigger networks. Finally, we are

now investigating the use of VACCINE [8] inside the model

in order to determine an average amount of buffer occupancy

and an achievable throughput. We also investigate models for

different routing algorithms.
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