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Abstract

This paper proposes an automatic procedure for condition monitoring. It represents a

valuable tool for maintenance of expensive and spread systems such as wind turbine

farms. Thanks to data-driven signal processing algorithms, the proposed solution is

fully automatic for the user. The paper briefly describes all the steps of the process-

ing, from pre-processing of acquired signal to interpretation of generated results. It starts

with an angular resampling method with speed measurement correction. Then comes a

data validation step, in both time/angular and frequency/order domains. After these pre-

processings, the spectral components of the analyzed signal are identified and classified in

several classes from sine wave to narrow band components. This spectral peak detection

and classification allows extracting the harmonic and side-band series which may be part

of the signal spectral content. Moreover, the detected spectral patterns are associated with

the characteristic frequencies of the investigated system. Based on the detected side-band

series, the full-band demodulation is performed. At each step, the diagnosis features are

computed and dynamically tracked signal by signal. Finally, system health indicators are

proposed to conclude about the condition of the investigated system. All mentioned steps

create a self-sufficient tool for robust diagnosis of mechanical faults. The paper presents

the performance of the proposed method on real-world signals from a wind turbine drive

train.

1 Introduction

Condition monitoring systems (CMS) are widely-used predictive maintenance tools which

aim to diagnose the health status of a system. It helps to reduce the operating costs by

detecting the abnormalities in the state of the investigated system.

CMS are especially adapted to the maintenance of complicated mechanical systems which

are difficult to maintain by human labor or are located in remote areas hardly accessible

by technicians. Wind turbine are typical examples of such systems, therefore CMS have

achieved tremendous success in the maintenance of wind turbines (1,2).

The diagnosis in CMS is based on the analysis of relevant signals acquired from the mon-



itored mechanical system. In general, the CMS can be categorized in two types. The

first is system-driven which depends on health indicators defined on the monitored kine-

matics components (3,4). Therefore, the configuration of the CMS is a delicate and labor-

demanding task which considerably affects the accuracy of the diagnosis. Moreover,

every time a part of the monitored system is changed, the CMS has to be reconfigured.

The second type, namely the data-driven CMS, avoid these drawbacks by automatically

deducing indicators from the signals without a priori knowledge about the monitored

system. Therefore, the complexity of the system configuration is reduced to the minimum.

AStrion is designed to be the core vibration analysis component of a data-driven CMS.

Another companion three-phase electrical signature analysis system (11) can run in parallel

to automatically detect electrical faults.

AStrion is a spectrum analyzer able to automatically detect and track relevant fault fea-

tures thanks to the richness of the information extracted from the spectrum of the vibration

signal. Instead of being configured by experts, the configuration of AStrion is achieved

either by the automatic data validation, or by decision-making algorithms of the method

itself. The spectrum investigation, the feature calculation, the kinematic association and

the time-tracking of the features are automatically accomplished tasks. It makes AStrion

perfectly suitable to be embedded in wind turbine CMS since it is fully functional without

any intervention of the user.

Another key interest of AStrion is its capability to extract a high quantity of informa-

tion from the spectrum. Not only focused on the amplitude variation on some particular

kinematic frequencies, the spectrum inspection is performed over the entire frequency

span. All the harmonic series and side-band series are investigated in an exhaustive way

independent of the system kinematics, therefore it is advantageous in the inspection of

complex mechanical systems and is highly adaptive to the change of the kinematic con-

figuration of the system. The features deduced from the harmonic series and the demod-

ulation of the side-band series are highly reliable and indicative to the faults, which helps

to detect the faults in the early stage.

The diagnosis of faults requires the continuous acquisition of the vibration signals and

the time tracking of the specific fault features of the signals at different time stamps. In

the AStrion methods, some prior works (5,6,8) mainly focused on the analysis of a single

signal, while some others focus on the time-tracking of the features (7). In this paper, we

are going to summarize the methodologies of the entire AStrion architecture, including

both types of methods. Through the demonstration of results and applications, we will

only focus on the time-tracking of the features and the continuous-time surveillance.

Hereinafter, the steps and the signal processing methodologies of AStrion are briefly pre-

sented in Section 2. In Section 3, results on real-world signals are presented to demon-

strate the validity of AStrion. Conclusions are drawn in Section 4.



2 AStrion methodologies

The AStrion methodologies consist of a set of modules of two types. The first type pro-

cesses an individual vibration signal and deduces scalar features as the description of the

signal. The second type is a time tracking module, which serves to automatically connect

the sets of scalar features calculated at each time instant.

2.1 Single-signal processing modules

Given the nth vibration signal sn in vector form

sn = [sn[1],sn[2], . . . ,sn[k], . . . ,sn[Ns]] (1)

where k is the sample index and Ns represents the number of samples of each signal, to

deal with the non-stationarity issue, the signal is firstly transposed into the order domain

by an angular resampling module called AStrion-A (A for Angular resampling) (9) ac-

cording to the availability of the phase marker measurement. In the resampled signal, the

non-stationarity caused by the variation of the rotational speed can be reduced since the

sampling is adjusted to the angular position of the rotating part.

In the following step, either on the original time-domain signal or on the resampled order-

domain signal, a data-validation module called AStrion-D (D for Data validation) per-

forms a pre-analysis of the signal to reveal the essential properties such as the acquisition

validity, the periodicity, the non-stationarity and the noise level.

The next step is AStrion-I (I for peak Identification) which finds the peaks in the spectral

domain (5). Due to the complexity of the real world signals, the spectral content related

to the underlying signal is distinguished from the noise spectrum using a statistical test

based on the properties of the spectrum estimator. The detected peaks are then classified

to interpret the underlying characteristics, such as noise, sine waves, narrow band signals,

etc. The entire procedure is called a “cycle”. Since the definition of a perfect spectral

estimator in terms of performance is impossible, a “multi-cycle” strategy is proposed

to apply a spectral analysis procedure with 2 or 5 different spectral estimators to take

advantage of their different strengths. The spectral estimators and their parameters are

chosen according to the prior data validation step.

After all the cycles, a fusion operation merges the results in the different cycles and creates

a unique “spectral identity card” for each detected spectral peak, containing properties

such as the amplitude ai, the frequency ν
n
i , and the associated uncertainty ε

n
i . i is the

index of the peak and i≤ Nn
p with Nn

p the total number of peaks detected in the signal sn.

The next module called AStrion-H searches the harmonic series and side-band series in

the list of detected peaks (6). Due to the uncertainty about the exact peak frequency, the

search for harmonics is made by interval intersection. Therefore, a peak j is considered

as the rth harmonic of another peak i if the following interval intersection is not empty:

[νn
j −

ε
n
j

2
;νn

j +
ε

n
j

2
]∩ [r(νn

i −
ε

n
i

2
);r(νn

i +
ε

n
i

2
)] 6= /0. Each detected harmonic series has an

identity card, denoted as

Hn
j = {ν

n
j ,ε

n
j ,E

n
j } j∈[1,Nn

H ]
(2)



where ν
n
j is the fundamental frequency, ε

n
j the uncertainty interval around ν

n
j , En

j the

energy of the series and Nn
H the total number of harmonic series detected in the signal sn.

The side-band series, whose carrier frequency belongs to at least one harmonic series can

be found using a similar interval intersection method. A specific identity card is also

defined for each side-band series identified

Mn
j = {ν

n
j ,∆

n
j ,ε

n
j } j∈[1,Nn

M ] (3)

where ν
n
j is the carrier frequency, ∆

n
j the modulation frequency, ε

n
j the uncertainty about

∆
n
j and Nn

M the total number of side-band series detected in signal sn.

In the next module AStrion-K (K for Kinematics) (8), the harmonic series and side-band

series are associated with the characteristic frequencies (or orders) of the monitored sys-

tem. The concerned system kinematics including the Gear Mesh Frequency (GMF), the

Ball Pass Frequency of the Inner ring (BPFI) and the Ball Pass Frequency of the Outer ring

(BPFO), the Fundamental Train Frequency (FTF) and the double Ball Spin Frequency

(BSF2), are configured using the kinematic geometry. The kinematic association is car-

ried out over the frequency of each harmonic order and side-band order in all the harmonic

and side-band series. The module is optional and is skipped if the kinematic information

is absent. The following analysis and tracking will concern both the associated and non-

associated series.

The detected side-bands are then demodulated to calculate the modulation functions in

a module called AStrion-M (M for side-band deModulation) (8). With the demodulation

band defined by the prior AStrion-H module, the signal is filtered around each side-band

range to keep a single modulated component. Then, an averaged signal is calculated from

the filtered signal using a time synchronous averaging. Based on this averaged signal,

the amplitude and the frequency modulation functions are calculated using the Hilbert

transform. 8 features are added to the identity card of each side-band series : the average

value, the peak-to-peak magnitude, the modulation index and the kurtosis of the amplitude

and frequency modulation functions respectively.

2.2 Time-tracking and surveillance module

Finally, the harmonic series and the side-band series obtained from all the signals {sn}
are tracked in time by a module, called AStrion-S (S for Surveillance) (7). The tracking

of the harmonic series takes into account the fundamental frequency: if the fundamental

frequencies of two harmonic series obtained at two consecutive time instants n and n+1

fall into a small frequency/order neighborhood, they are tracked in time and considered as

the evolution of one harmonic series. The peaks inside the series are automatically tracked

according to their rank in the series. By the way, if the harmonic series or the side-band

series tracked disappears between instants n1 and n2, the trajectory will be considered as

hibernating during the time interval [n1,n2].

The tracking of the side-band series is performed in a similar way, however two param-

eters should be taken into account: the carrier frequency and the modulation frequency.

Since the carrier frequencies can be a priori tracked during the tracking of the harmonic



series, the peaks of the modulation series which have the same carrier frequency can be

tracked automatically according to the modulation frequencies.

The architecture of the AStrion software is summarized in Figure 1.
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Figure 1: The modular architecture of AStrion.

In AStrion, the algorithms of each module are either configured by the module itself, such

that AStrion-A, AStrion-D and AStrion-S, or configured by the output of the prior mod-

ules, such that AStrion-I and AStrion-M. In case of abnormalities of the acquired signal,

for example the variable shaft speed, the software is able to make the signal stationary by

converting it in the angle domain. If the signal is inappropriate for the spectrum analysis,

AStrion-D will alert the following modules so that the signal can be discarded. Even if a

signal is abandoned, AStrion-S is still able to label it as a “sleep” state and proceed the

trajectory tracking in the correct way.

3 Application on real-world signals

In this section, we focus on the application of the entire AStrion software on real-world

signals to demonstrate its ability in fault diagnosis. Two sets of signals are considered.

The first came from a test rig, where a degradation test was designed to produce a me-

chanical fault of a desired type on a desired mechanical component. This example aims to

validate the proposed algorithms on a stationary operational condition. The second was

acquired from a wind turbine, where the presence of mechanical faults was unknown.

This application demonstrates the applicability of AStrion in real world situations, where

the operating condition is variable and unknown.

3.1 Application on the test rig signals

The test rig is an experimental platform designed on behalf of KAStrion project and in-

stalled in CETIM. It is dedicated to simulate the deterioration of a wind turbine drive train.

The system was designed at a smaller scale (10 kW) and is driven by a motor instead of

wind blades. A geared motor generates the main shaft rotation (around 20 RPM). A mul-

tiplier increases the rotational speed with a ratio of 100:1, so that the generator operates

around 2000 RPM. As shown in Figure 2, accelerometers and phase markers allow the

exhaustive monitoring of the rig components, such as the main bearing and the gearbox.

In this paper, we focus on the fault detection of the main bearing by the accelerometer of



Figure 2: A picture of the test rig. The main bearing is marked by an orange ellipsis

and the three accelerometer directions are symbolized by the green arrows.

the (+y) direction. 19 signals were extracted during 190 hours of operation (from 10.62

hours to 189.85 hours) when the main bearing was highly deteriorated in order to totally

stop the normal operation in the end. The bearing was finally disassembled and the flaking

was found distributed on the entire inner ring. Each vibration signal was measured during

150 seconds, sampled at 39062.5 Hz under a constant rotational speed and load.
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Figure 3: Results of the detection of peaks, harmonic series and side-band series

on the 19 signals of accelerometer (+y), mounted on the main bearing of

the test rig from 10.62 to 189.85 operating hours: (a) number of peaks

detected, and (b) number of harmonic and side-band series detected.

AStrion was applied on the 19 signals with all the modules except the angular resampling

since the rotational speed was known to be constant. Among these signals, the 14th signal,

at 163.11 hours of operation was corrupted due to the existence of a spike of 1010 times

the average amplitude (9). The first two signals, captured at 44.46 and 69.84 hours of

operation, were confirmed to be invalid since the sensor was disconnected. The other 16

signals are correctly acquired. Figure 3 shows the number of peaks, harmonic series and

side-band series detected on the 19 signals.



Without the need of any pre-configuration, AStrion detected only 899 peaks in the invalid

14th signal, while about 51,000 to 61,000 peaks were detected in the other 16 signals. The

significant drop of the number indicates the abnormality of the 14th signal. By the way,

prior to the peak detection, the abnormality can be clearly detected in the data validation

module using the non-stationarity rate (9). The number of peaks detected on the first two

invalid signals are almost the same as the valid signals, but there are almost no harmonic

series and side-bands, since there were only noise and a few high frequency resonances.

Therefore, they had no influence in the feature tracking. In real-world applications, the

sensor disconnection cannot be reported by technicians at real time, while AStrion wisely

treated them as null acquisitions without any spectral information. They could also be

detected during the data validation step by their very low signal-to-noise ratios.

Based on the valid signals, the harmonic series associated with the BPFI of the main

bearing is of special interest since the disassembly of the main bearing confirmed that the

fault was a wide-spread flaking on the inner ring (10). AStrion successfully detected the

harmonic series associated with the bearing BPFI. Figure 4 shows two features calculated

from the detected harmonic series.
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Figure 4: Evolution of (a) the number of peaks, and (b) the fundamental frequency

of the harmonic series representing the BPFI of the test rig main bearing.

In Figure 4, a harmonic series has been detected since the 129.2 hours. While the damage

was getting stronger, the number of harmonics increased and the fundamental frequency

slightly decreased. The empty area inside the curve corresponds to the faulty measure-

ment that the time-tracking algorithm automatically skipped and labeled as a sleep state.

In (7), the authors demonstrated that the same fault could be detected also by the energy of

the harmonic series. Moreover, since the fault produced a modulation at the shaft rotation

frequency, the existence of the side-band series with the carrier equals to the BPFI (3.45

Hz) and the modulation frequency equals to the shaft speed (0.333 Hz) is a direct indica-

tor of the fault. AStrion was not only able to detect such side-band series but also able to

demodulate it to compute the side-band features, as Figure 5 shows.

The time axis of Figure 5 is zoomed around the time instants where the fault can be found.

The fault-related side-band series was detected at the same time (129.2 operating hours)

as the appearance of the harmonic series of the BPFI of the rolling element bearing. The
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Figure 5: Evolution of the shaft speed (0.333 Hz) modulations around the BPFI

(3.45 Hz) carrier frequency.

detection by AStrion is 5 hours earlier than using the narrow-band Root Mean Square

(RMS), detected from 134 hours (10). By the way, these trends help to track the severity of

the distribution of the fault since the raise of the average amplitude indicates the increasing

energy of the fault-related side-band. Other side-band features calculated in AStrion (8)

can reveal the same fault.

The fault detection was achieved by exploring the entire frequency band. Instead of only

focusing on a preset characteristic fault frequency as many system-driven methods do,

AStrion looks for fault indicators by itself. It is capable of detecting other types of faults

of other mechanical parts in the same way.

3.2 Application on the VALOREM wind turbine signals

In this section, the application of AStrion on the vibration signals of a real-world wind

turbine in the context of KAStrion project is presented. The signals, came by courtesy of

VALOREM, France, were captured by the same type of accelerometers mounted on the

same wind turbine, as shown in Figure 6.

The signals are of 10 seconds, sampled at 25000 Hz, captured from December 20th, 2014

to January 7th, 2015 with shaft rotating at 1600 rpm to 1800 rpm, as shown in Figure 7.

35 signals were selected on accelerometer A5 while 77 signals were selected on ac-

celerometer A6. To deal with the varying rotational speed in the suveillance, the angular

resampling was carried out on all signals before calculating the spectra. As a result, the re-

sampled signals had significantly lower non-stationarity than the non-resampled ones (9),

and the number of peaks detected from the spectra of the resampled signals was always

higher than 1600, as shown in Figure 8. These peaks gave birth to 22 harmonic trajecto-

ries on the signals of A5 and 35 harmonic trajectories on the signals of A6, which were

automatically identified, tracked and associated with the kinematic information. Among

all the harmonic series, the one of order 1 was directly associated with the rotation of the

shaft, as Figure 9 shows.



(a) The wind turbine WT6

under study

(b) The accelerometers A5 and A6 under study

Figure 6: (a) The geographical location of the wind turbine WT6, and (b) The ac-

celerometers A5 and A6 installed respectively at the front and the rear

end of the generator.

(a) Accelerometer A5 (b) Accelerometer A6

Figure 7: Evolution of the mean rotational speed.

The harmonic series were tracked from respectively the 6th signal and the 10th signal to

the end on A5 and A6. Considering the variation of the rotational speed and environmental

conditions, the identification and the tracking of the harmonic series are very robust. The

robustness is an essential concern for long-term surveillance, because the CMS has to

assure the continuous detection and monitoring of the kinematic frequencies to avoid

missing the fault features which can appear at any time.

By the way, no side-bands related to any faults were found on each accelerometer there-

fore no alarms were raised. Meanwhile, wind turbine experts have confirmed that the

monitored mechanical component was working under normal operational condition with-

out defect. The absence of false alarms in this case shows the good reliability of AStrion.

3.3 Application on signals of an anonymous wind turbine

We hereby present another application of AStrion on 54 vibration signals acquired during

11 months on the gearbox of an anonymous wind turbine. The signals are all transformed

in angle domain by AStrion-A, each of them is of about 300 revolutions (300,0000 points)

with the rotational speed ≤ 1500 RPM. A fault in the gearbox was confirmed later and



(a) Accelerometer A5 (b) Accelerometer A6

Figure 8: Evolution of the number of detected peaks for both accelerometers.

(a) Accelerometer A5 (b) Accelerometer A6

Figure 9: Evolution of the number of peaks in the harmonic series associated with

the shaft speed.

the gearbox was replaced one month after the acquisition of the 54th signal. Figure 10

presents the fault diagnosis result of AStrion and the narrow-band RMS.

In AStrion, the gearbox fault was clearly indicated by a significant increase of the fre-

quency modulation index from the 39th signal, while the widely-used narrow-band RMS

is not indicative of the fault at all. Moreover, in AStrion, the same fault can be clearly

seen also from the non-stationary rate, the number of fault-related side-bands and their

energy. They are not illustrated due to the limited page number.

4 Conclusions

In this paper, we introduced AStrion, an automatic spectrum analyzer dedicated to a wind

turbine CMS. The algorithms and the function modules of AStrion are recalled. The

application on signals from a test rig validates the ability of AStrion to detect a bearing

fault thanks to its automatic spectral analysis algorithms. The results on real-world wind

turbine signals demonstrate the reliability and the robustness in long-term and continuous

surveillance tasks.

AStrion is data-driven and independent of any a priori assumption about the nature of



(a) AStrion results (b) Narrow-band RMS

Figure 10: Diagnosis of the anonymous wind turbine gearbox: (a) frequency mod-

ulation index obtained in AStrion by demodulating the side-band series

around the second harmonic of GMF modulated by shaft speed, and (b)

narrow-band RMS computed with a bandwidth of 3 side-bands on both

sides of the carrier frequency.

the signal. The exhaustive exploration of the spectral content ensures the capability of

detecting a large variety of faults without manual inspection. It is a valuable feature for

a long-term automatic surveillance. Secondly, thanks to the robust and reliable spectrum

analysis modules in AStrion, the fault indicators are calculated using the properties of the

methods themselves instead of manually chosen thresholds. Its first benefit is to liberate

the users from the delicate and time-consuming task of pre-configuration. The second

benefit is the adaptability. In the presented results, signals from totally different sensors

or even different mechanical systems were all processed by the same software without

any reconfiguration. In practice, AStrion can be applied on an arbitrary vibration sensor.

In future work, the alarm-raising mechanism of some common fault types will be pro-

posed, and the false alarm rates will be evaluated as an index of reliability or confidence.

Secondly, AStrion has to process a lot of peaks when the signals contain a large number

of samples, while it has to face the accuracy degradation of the spectral analysis of short

signals. In terms of computation efficiency, the algorithm will continue to be optimized

in order to fit the processing of both short signals and very long signals.
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