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Abstract

Spacecraft health monitoring and failure prevention are major issues in space

operations. In recent years, machine learning techniques have received an in-

creasing interest in many fields and have been applied to housekeeping telemetry

data via semi-supervised learning. The idea is to use past telemetry describing

normal spacecraft behaviour in order to learn a reference model to which can be

compared most recent data in order to detect potential anomalies. This paper

introduces a new machine learning method for anomaly detection in teleme-

try time series based on a sparse representation and dictionary learning. The

main advantage of the proposed method is the possibility to handle multivariate

telemetry time series described by mixed continuous and discrete parameters,

taking into account the potential correlations between these parameters. The

proposed method is evaluated on a representative anomaly dataset obtained

from real satellite telemetry with an available ground-truth and compared to

state-of-the-art algorithms.
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1. Introduction

Spacecraft health monitoring and failure prevention are major issues in space

operations. By monitoring housekeeping telemetry data, an anomaly affecting

an equipment, a system or a sub-system can be detected from the abnormal

behaviour of one or several telemetry parameters. A simple method for detecting

anomalies in telemetry is the well-known out-of-limits (OOL) checking, which

consists of defining an upper and a lower bound for each parameter and checking

whether the values of this parameter exceed these bounds. This method is very

simple and useful but has also some limits. Indeed, the determination of bounds

for each parameter can be difficult and costly given the number of spacecraft

sensors. Moreover, all anomalies are not detected by the OOL checking, e.g,

when the parameter affected by an anomaly does not exceed the predefined

bounds. An example of anomaly not detected by OOL checking is displayed in

Fig. 1 (box #2).

Anomaly detection (AD) is a huge area of research given its diverse ap-

plications. Recent years have witnessed a growing interest for data-driven or

machine learning (ML) techniques that have been used as effective tool for AD

[1, 2, 3, 4, 5]. Motivated by this success, some ML methods have been applied to

housekeeping telemetry after an appropriate preprocessing step [6, 7, 8, 9, 10].

These methods usually consider a semi-supervised learning that can be outlined

in two steps: 1) learning from past telemetry describing only nominal spacecraft

events and 2) detecting abnormal behaviour in the different parameters by an

appropriate comparison to the model learned in step 1).

ML-based algorithms for AD in telemetry can be divided in two categories

depending on their application to univariate or multivariate data. Univariate

AD strategies process the different telemetry parameters independently, which

is the most widely used approach. Popular ML methods that have been in-

vestigated in this framework include the one-class support vector machine [7],

nearest neighbour techniques [8]-[10] or neural networks [11], [12]. These so-

lutions showed competitive results and improved significantly spacecraft heath
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monitoring. However, in order to improve AD in telemetry, it is important to

formulate the problem in a multivariate framework and take into account possi-

ble correlations between the different parameters, allowing contextual anomalies

to be detected. An example of contextual anomaly is shown in Fig. 1 (box #7).

The detection of this kind of abnormal behaviour requires a multivariate de-

tection rule. Some recent multivariate AD are based on feature extraction and

dimensionality reduction [13] or on a probabilistic model for mixed discrete and

continuous telemetry parameters [14].

This paper studies a new AD method based on a sparse data representation

for spacecraft housekeeping telemetry. This method is inspired by the works

conducted in [15]. However, it has the advantage of handling mixed continuous

and discrete data and taking into account possible correlations between the

different telemetry parameters thanks to an appropriate multivariate framework.

The proposed algorithm requires to build a dictionary of normal patterns. New

telemetry signals can then be decomposed into this dictionary using a sparse

representation allowing potential anomalies to be detected by analyzing the

residuals resulting from this sparse decomposition.

The paper is organized as follow. Section II introduces the context of AD in

mixed telemetry data considered in this work. Section III briefly summarizes the

theory of sparse representations and dictionary learning. Section IV introduces

the proposed AD method adapted to mixed continuous and discrete telemetry

parameters. Section V evaluates the performance of the proposed method using

a heterogeneous anomaly dataset with a controlled ground-truth. A comparison

to other state-of-art techniques shows the potential of using a sparse represen-

tation on a dictionary of normal patterns for detecting abnormal behaviour in

telemetry. Conclusions and future work are reported in Section VI.
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Figure 1: Examples of univariate and multivariate anomalies (highlighted in red boxes) that

are considered in this work.

2. ANOMALY DETECTION FOR TELEMETRY

2.1. Characteristics of Spacecraft Telemetry

Spacecraft telemetry consists of hundred to thousand housekeeping param-

eters. All these parameters are quantized and take their values in a discrete

set. However, it makes sense to make a distinction between parameters taking

few distinct values (such as equipment operating modes or status), which can

be considered as observations of discrete random variables, and parameters that

can be considered as observations of continuous random variables (such as tem-

peratures, voltage, pressure etc.). Detecting anomalies in telemetry requires to

consider these discrete and continuous random variables jointly leading to what

we will call mixed vectors, in the sense that they contain discrete and continuous

random variables.

In order to take into account relationships between the different parame-

ters, it is necessary to learn their behaviour jointly, which requires to consider

vectors belonging to a possibly high dimensional subspace. Considering high-
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dimensional data leads to major issues such as the well known curse of dimen-

sionality [16, 17]. Note also that this high-dimensionality has been considered

in many recent works such as those devoted to big data [18, 19].

Another important characteristics of telemetry data is that they are generally

subjected to several preprocessings. As an example, it is quite classical to remove

trivial outliers caused by errors in the data conversion and transmission using

simple outlier detection methods [14]. Some telemetry parameters can have

been resampled to account for the fact the data have been acquired at different

sampling frequencies. In addition, some reconstruction methods may have been

applied to compensate for missing data [14, 20]. Finally, it is interesting to

note that additional preprocessing is necessary for the learning phase to select

telemetry which describes only usual normal behavior of the spacecraft. Indeed,

behaviors representing rare operations, e.g., destocking or equipment calibration

operations (abnormal in an other context) are not selected for learning.

2.2. Anomalies in Telemetry

Anomalies that occur in housekeeping telemetry data can be divided in two

categories that can be referred to as univariate and multivariate anomalies.

Univariate anomalies correspond to an unusual individual behaviour (never seen

before) affecting one specific parameter. Univariate anomalies can be classified

in three main categories [1] summarized below

• Collective anomalies: a collection of consecutive data instances or time

series considered as anomalous with respect to the entire signal. Two

examples of collective anomalies are displayed in Fig. 1 (boxes #1 and

#4).

• Point anomalies: an individual data instance considered as anomalous

with respect to the rest of the data. A point anomaly is the easiest to de-

tect because it corresponds to an excessive value of individual samples. It

is not necessary to observe a collection of time samples to detect this kind
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of anomaly. Point anomalies can be generally detected by simple thresh-

olding, e.g., using the OOL AD method. Two examples of consecutive

point anomalies are displayed in Fig. 1 (boxes #3 and #5).

• Univariate contextual anomalies: an individual data instance or a time

series considered as anomalous in a specific context, but not otherwise.

Fig. 1 displays examples of contextual anomalies for consecutive data in-

stances (box #2) or time series (box #6).

Note that collective anomalies and some individual contextual anomalies may

not be detected if data instances are processed independently. The detection of

these anomalies requires to consider collections of data instances or time series.

A multivariate or contextual anomaly results from a parameter whose be-

haviour has never been observed jointly with the behaviour of one or several

other parameters recorded at the same time. Fig. 1 (boxes #4 and #7) shows

examples of contextual anomalies. Note that the anomaly of Fig. 1 in box #7

is a multivariate contextual anomaly that affects a set of two related discrete

and continuous parameters. Note also that the top signal is supposed to evolve

differently depending on the status of an equipment (that can be ON or OFF)

associated with the binary bottom parameter. In this example, the expected

behaviour of the continuous parameter is not observed in the red box, which

corresponds to a multivariate contextual anomaly. The detection of this kind

of anomaly requires to work in a multivariate framework in order to learn the

simultaneous behaviour of multiple parameters. The objective of this work is to

propose a flexible AD method able to detect univariate as well as multivariate

anomalies affecting telemetry.

3. Sparse representations and dictionary learning

Sparse representations have received an increasing attention in many signal

and image processing applications. These applications include denoising [21,

22, 23], classification [24, 25, 26] or pattern recognition [27, 28, 29]. The use of
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sparse representations for AD is more original and has been considered in less

applications such as hyperspectral imaging [30], detection of abnormal motions

in videos [31], irregular heartbeat detection in electrocardiograms (ECG) or

specular reflectance and shadow removal in natural images [15]. The next part

of this section recalls some basic elements about sparse representations and

dictionary learning.

3.1. Sparse Representations

Building a sparse representation (also referred to as sparse coding) consists

in approximating a signal y ∈ RN as y ≈ Φx, where Φ ∈ RN×L is an overcom-

plete dictionary composed of L columns called atoms, and x ∈ RL is a sparse

coefficient vector. In others words, the signal y is expressed as a sparse linear

combination of few atoms of the dictionary Φ. Once the dictionary Φ has been

determined, the sparse representation problem reduces to estimate the sparse

coefficient vector x by solving the following problem

x̂ = arg min
x
‖y −Φx‖22 s.t. ‖x‖0 ≤ T (1)

where ‖.‖0 is the `0 pseudo-norm which counts the number of non-zero entries

of x, ‖.‖2 is the `2 norm, T is the allowed number of non-zeros entries of x and

“s.t.” means “subject to”.

Problem (1) is NP-hard and can be solved by greedy algorithms such as

matching pursuit (MP) [32], orthogonal matching pursuit (OMP)[33], or by

convex relaxation. Convex relaxation replaces the `0 pseudo-norm by the `1

norm defined by ‖x‖1 =
∑L
l=1 |xl|, leading to a convex problem whose solution

can be computed using algorithms such as the least absolute shrinkage and

selection operator (LASSO) [34].

3.2. Dictionary Learning

The quality of the approximation y ≈ Φx strongly relies on the choice of the

dictionary Φ. Dictionaries can be divided in two main classes corresponding to

parametric and data-driven dictionaries. Parametric dictionaries are composed
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of fixed atoms such as wavelets, curvelets, contourlets or short-time Fourier

transforms. Data-driven dictionaries learn the dictionary from the data, which

has shown to be interesting in many practical applications [35]. This paper

focuses on a semi-supervised framework in which the dictionary is learned from

clean data which do not contain any anomaly. A classic way to learn a dictionary

from the data is to use data analysis methods such as the well known principal

component analysis (PCA). However, the construction of more efficient data-

driven methods for dictionary learning (DL), often referred to as DL methods,

have attracted many attention in recent years. These methods learn dictionaries

tailored for sparse representations by solving the following problem

x̂, Φ̂ = arg min
x,Φ
‖y −Φx‖2F s.t. ‖x‖0 ≤ T. (2)

Classical DL algorithms alternate between the estimation of x (in a first

step of sparse coding) and the estimation of Φ (in a second step of dictionary

update). Many efficient DL algorithms have been proposed in the literature in-

cluding K-SVD [36] or online DL (ODL) [37]. In K-SVD, the sparse coding step

is done using a greedy algorithm. In the second step, the dictionary and the

sparse vector are estimated using a singular value decomposition (SVD), allow-

ing the columns of Φ as well as the associated coefficients of x to be updated.

The ODL algorithm has been designed to learn dictionaries from large and dy-

namic datasets, using a sparse coding step performed by the LARS-LASSO

algorithm [38, 39] and a dictionary update using block-coordinate descent with

warm restarts.

Unfortunately K-SVD and ODL algorithms have not been designed for mixed

discrete and continuous data and thus cannot be used for telemetry data. Learn-

ing a dictionary with discrete and continuous atoms is an interesting and chal-

lenging problem. However, the dictionary can also be built from representative

training signals that are not affected by anomalies. In this work, the dictio-

nary has been built from “normal” vectors (that are not affected by anomalies)

belonging to a training database. Extending standard DL methods (such as

K-SVD and ODL) to mixed data will be considered in future work.
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4. Proposed anomaly detection method for mixed telemetry data

This section describes the proposed Anomaly Detection using DICTionary

(ADDICT) algorithm which is an AD method for mixed data. We focus here on

the detection step and assume that the dictionary has been learned in a previous

step using telemetry signals associated with a normal spacecraft behaviour.

4.1. Preprocessing

Telemetry times series acquired at the same time instant and considered

as part of the same context are first segmented into overlapping windows of

fixed size w with a shift δ (with an overlapping area equal to w − δ) as illus-

trated in Fig. 2. The resulting matrices are then concatenated into vectors

yielding mixed vectors whose components are discrete or continuous depending

on the considered parameter. One concatenated vector thus represents a spe-

cific context containing information from both continuous and discrete signals

on a duration w. Given this preprocessing, input data for AD are mixed sig-

nals composed of telemetry time series formed by the different parameters, i.e.,

y = [yT1 , ...,y
T
K ]T with yk ∈ Rw, k = 1, ...,K, where K is the number of teleme-

try parameters and w is the size of the time window. To simplify notations,

the ND first components of the mixed signal y ∈ RN are composed of the time

series associated with discrete parameters whereas the last NC components are

associated with the continuous times series (with N = ND + NC). In other

words, the mixed signal is partitioned into discrete and continuous counterparts

denoted as yD = [y(1), ...,y(ND)]T and yC = [y(ND + 1), ...,y(ND + NC)]T

such that y = (yTD,y
T
C)T .

4.2. Anomaly Detection using a Sparse Representation

A mixed dictionary Φ ∈ RN×2L composed of discrete and continuous atoms

is defined as

Φ =

ΦD 0

0 ΦC


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Figure 2: Segmentation of telemetry into overlapping windows.

where ΦD and ΦC contain the discrete and continuous dictionary atoms, re-

spectively. The two dictionaries ΦD ∈ RND×L and ΦC ∈ RNC×L have been

extracted from a dictionary composed of L mixed atoms taking into account

possible correlation between the different parameters, especially between dis-

crete and continuous ones. In other words, the lth discrete atom of the discrete

dictionary ΦD and the lth continuous atom of the continuous dictionary ΦC are

composed of discrete and continuous behaviours observed in the same mixed

atom, which are potentially correlated The proposed AD strategy decomposes

the mixed signal as follows

y = Φx+ e+ b (3)
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where Φx is the nominal part of y, e = [eTD, e
T
C]T is a possible anomaly signal

(e = 0 in absence of anomaly), x = [xTD,x
T
C]T is a sparse vector and b ∈ RN

is an additive noise. The proposed algorithm applies two distinct strategies to

estimate the nominal part of y processing xD and xC differently.The anomaly

signal e is estimated by analyzing residuals resulting from this sparse decompo-

sition. The proposed detector assumes that the anomalies affecting telemetry

data are additive, which is generally the case. Note that the proposed model (3)

provides a specific structure of the residue e, which allows its non zero values

to be identified. These non-zero values correspond to the parameters affected

by the anomalies.

The nominal component of y is approximated by linear combinations of

atoms describing only nominal behaviours of the different parameters, which

can be written as

Φx =

ΦDxD

ΦCxC

 .
The discrete and continuous counterparts of the test signals will be approxi-

mated by two distinct strategies. However, it is important to preserve existing

relationships between the signal parameters to allow for the detection of contex-

tual anomalies. To this end, we propose to estimate the discrete approximation

ΦDxD and the anomaly signal eD in a first step (leading to estimators denoted

as êD and x̂D) and the continuous approximation ΦCxC and the anomaly signal

eC in a second step based on êD and x̂D. Given the proposed preprocessing,

the signals eD and eC are divided into KD and KC discrete and continuous

parameters, i.e., eD = [eTD,1, ..., e
T
D,KD

]T and eC = [eTC,1, ..., e
T
C,KC

]T .

4.2.1. Sparse coding for discrete atoms

In order to solve the sparse coding for discrete atoms, we propose to solve

the following problem

arg min
xD∈B,eD∈RND

‖ yD −ΦDxD − eD ‖22 +bD

KD∑
k=1

‖eD,k‖2 (4)
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where ‖eD,k‖2, k = 1, ...,KD is the Euclidean norm, eD,k corresponds to the kth

time-series of eD associated with the kth parameter and bD is a regularization

parameter that controls the level of sparsity of eD. The sparsity constraint

for the anomaly signal reflects the fact that anomalies are rare and affect few

parameters at the same time. Note that the discrete vector xD is constrained

to belong to B, where B is the canonical or natural basis of RL, i.e., B = {εl, l =

1, · · · , L}, where εl is a vector whose lth component equals 1 and whose other

components equal 0. In other words, only one atom of the discrete dictionary

ΦD is chosen to represent the discrete signal, this amounts to looking for the

nearest neighbour of yD in the dictionary. This strategy has proved to be an

effective method to reconstruct discrete signals (compared to a representation

using a linear combination of atoms), which explains this choice. Since xD

belongs to a finite set, its estimation is combinatorial and can be solved for each

atom φD,l (where φD,l is the lth column of ΦD) as follows

êD,l = arg min
eD,l

‖yD − φD,l − eD,l‖22 + bD

KD∑
k=1

‖eD,k‖2. (5)

The solution of the optimization problem (5) is classically obtained using a

shrinkage operator êD,l = TbD(h), with h = yD − φD,l

[TbD(h)]k =


‖hk‖2−bD
‖hk‖2 hk if ‖hk‖2 > bD

0 otherwise

(6)

where hk is the kth part of h associated with the kth parameter for k = 1, ...,KD.

All the atoms φD,l yielding an anomaly signal equal to zero are selected and the

corresponding values of l are stored in a subset M defined as

M = {l ∈ {1, · · · , L}| ‖êD,l‖2 = 0}. (7)

Note that M contains the values of l associated with the discrete atoms of ΦD

that are the closest to yD. The regularization parameter bD plays an important

role in the atom selection step because it fixes the level of authorized deviation

from a discrete parameter and an atom of the dictionary. The lower the value
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of bD, the lower the number of selected atoms that will be used to estimate the

continuous nominal signal yC. Conversely, the higher the value of bD, the better

the nominal estimation of yC, with a higher risk to break the links between

discrete and continuous parameters by selecting non-representative atoms and

miss multivariate contextual anomalies.

4.2.2. Sparse coding for continuous atoms

The nominal continuous signal is approximated using a sparse linear com-

bination of atoms contained in a dictionary denoted as ΦM, composed of the

continuous atoms φC,l, l = 1, · · · , L whose discrete parts φD,l have been selected

in the discrete atom selection (i.e., l ∈ M). More precisely, when M = ∅, a

discrete anomaly is detected and no sparse coding is performed for continuous

atoms. When M 6= ∅, the continuous atoms corresponding to the elements of

M 6= ∅ are selected and a continuous sparse decomposition is performed using

the resulting representative continuous atoms (in view of the discrete test sig-

nal yD). These continuous atoms are used to detect anomalies in multivariate

correlated mixed data by preserving the relationships between discrete and con-

tinuous parameters. As a consequence, the sparse representation model used

for the continuous parameters is defined as

min
xC,eC

1

2
‖yC −ΦMxC − eC‖22 + aC‖xC‖1 + bC

KC∑
k=1

‖eC,k‖2 (8)

where ‖x‖1 =
∑
n |xn| is the `1 norm of x, eC,k corresponds to the kth time

series of eC associated with the kth parameter with k = 1, ...,KC, aC and bC

are regularization parameters that control the level of sparsity of the coefficient

vector xC and the anomaly signal eC, respectively. Note that (8) considers

two distinct sparsity constraints for the coefficient vector xC and the anomaly

signal eC. This formulation reflects the fact that a nominal continuous signal

can be well approximated by a linear combination of few atoms of the dictionary

(sparsity of xC) and that anomalies are rare and affect few parameters at the

same time (sparsity of eC).
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Problem (8) can be solved with the alternating direction method of multi-

pliers (ADMM) [40] by adding an auxiliary variable z

min
xC,eC,z

1

2
‖yC −ΦMxC − eC‖22 + aC‖z‖1 + bC

KC∑
k=1

‖eC,k‖2 (9)

and the constraint z = xC. Note that, contrary to Problem (8), the first and

second terms of (9) are decoupled, which allows an easier estimation of the

vector xC. The ADMM algorithm associated with (9) minimizes the following

augmented Lagrangian

LA(xC, z, eC,m, µ) =
1

2
‖yC −ΦMxC − eC‖22 + aC‖z‖1

+bC

KC∑
k=1

‖eC,k‖2 + mT
C(z− xC) +

µC

2
‖z− xC‖2F (10)

where mC is a Lagrange multiplier vector and µC is a regularization parameter

controlling the level of deviation between z and xC. The ADMM algorithm

is iterative and alternatively estimates xC, z, eC and mC. More details about

the update equations of the different variables at the kth iteration are provided

below.

Updating xC

xC is classically updated as follows

x̂k+1
C = arg min

xC

1

2
‖yC −ΦMxC − ekC‖22 + mk

C(zk − xC) +
µkC
2
‖zk − xC‖22.

(11)

Simple algebra leads to

x̂k+1
C = (ΦMΦT

M + µkCI)−1(ΦT
MrkC + mk

C + µkCzk) (12)

where rkC = yC − ekC.

Updating z

The update of z is defined as

ẑk+1 = arg min
z
aC‖z‖1 + (mk

C)T (z− xk+1
C ) +

µkC
2
‖z− xk+1

C ‖22. (13)
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The solution of (13) is given by the element-wise soft thresholding operator

ẑk+1 = Sγk

[
xk+1
C − 1

µkC
mk

C

]
with γk = aC

µk
C

, where the thresholding operator Sγ(u) is defined by

Sγ(u) =


u(n)− γ if u(n) > γ

0 if |u(n)| ≤ γ

u(n) + γ if u(n) < −γ

(14)

where u(n) is the nth component of u.

Updating eC

The error vector e is also updated using the shrinkage operator already defined

in (6) for the sparse coding of discrete atoms, i.e., as êC = TbC [yC −ΦMxC]

The ADMM resolution of (9) is detailed in [15] and summarized in Algo. 1

(theoretical convergence properties are detailed in [41]).

Algorithm 1 x, e, z,m = ADMM(y,Φ, µ, ρ, a, b)

Initialisation: k=1, z0, e0,m0, µ0, ρ, ε, a, b

repeat

xk+1 = (ΦTΦ + µkI)−1[ΦT (y − ek) + mk + µkzk]

zk+1 = Sγ(xk+1 − 1
µk mk), γ = a

µ
k

ek+1 = Tb(y −Φx)

mk+1 = mk + µk(zk+1 − xk+1)

µk+1 = ρµk

k = k+1

until stop criteria

4.2.3. Proposed anomaly detection strategy

The estimated anomaly signal ê associated with the test signal y is built

by the concatenation of its discrete and continuous counterparts ê = (êTD, ê
T
C)T .
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The proposed anomaly detection rule is described below

Anomaly detected if


‖êD‖2 > 0 (i.e., M = ∅) (Discrete AD)

or

‖êD‖2 = 0 and ‖êC‖2 > SPFA (Continuous/Contextual AD)

(15)

where SPFA is a threshold depending on the probability of false alarm of the

anomaly detector. This threshold can be adjusted by the user or determined us-

ing receiver operating characteristic (ROC) curves if a ground-truth is available

(which will be the case in this paper). Note that the set M is used to detect

anomalies in discrete data when it reduces to the empty set, i.e., when M = ∅,

and to extract the continuous atoms corresponding to the elements ofM when

M 6= ∅. These continuous atoms are used to detect anomalies in multivariate

correlated mixed data using the decision rule (8), which preserves the relation-

ships between the discrete and continuous parameters. More precisely, the first

step of the algorithm (detailed in Section 4.2.1) considers the discrete part of

y, namely yD, and detects potential anomalies affecting the discrete parame-

ters. In the second part of the algorithm (detailed in Section 4.2.2), (8) is used

to detect univariate continuous anomalies and contextual discrete/continuous

anomalies using the continuous part of the atoms selected in the first step (de-

noted as ΦM). The two steps of the algorithms are summarized below and in

Algorithm 2.

• First step: the discrete anomaly detection looks for the anomaly vectors

êD,l, l = 1, ..., L resulting from the discrete sparse decomposition that are

equal to 0 and builds a subset M defined as

M = {l ∈ {1, · · · , L}| ‖êD,l‖2 = 0}. (16)

When the set M is empty, a discrete anomaly is detected.

• Second step: The setM is used to build a dictionary of continuous atoms

(denoted as ΦM = {φC,l, l = 1, · · · , L}) associated with the discrete atoms
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selected in the first step, i.e., {φD,l, l = 1, · · · , L}. This atom selection

allows the continuous sparse decomposition to be performed using only

representative continuous atoms (in view of the discrete test signal yD).

As a consequence, contextual anomalies between discrete and continuous

parameters can be detected.

Algorithm 2 Anomaly detection rule in mixed telemetry using a sparse repre-

sentation (y,ΦC
M, τmax)

Discrete Model and Atom Selection

for l = 1 to L do

êD,l = TbD
[
yD − φD,l

]
end for

M = {l ∈ {1, ..., L}|‖êD,l‖2 = 0}

Discrete Anomaly: if M = ∅, a discrete anomaly is declared

If M 6= ∅, the algorithm considers a continous model

Continuous Model

ΦM = {ΦC,l | l ∈M}

Anomaly Detection

ê = (êTD, ê
T
C)T

Joint Anomaly: if M 6= ∅ and ‖êC‖2 > SPFA, a joint discrete/continuous

anomaly is detected

4.3. Shift-Invariant Option

The proposed method has a shift-invariance (SI) optional step that can be

activated for the discrete model and for continuous atom selection. This SI

option allows a possible shift between the data of interest and the atoms of the

discrete dictionary to be mitigated. Note that this option could also be applied

to continuous data. However, since it increases the computational complexity

significantly, it has only been considered for discrete data in this work. The

SI option consists of building an overcomplete discrete dictionary by applying

shifts to all the discrete atoms of the dictionary. In other words, each discrete
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atom φD,l is shifted of τ lags to create a new discrete atom φD,l−τ , with τ ∈

{−τmax,−(τmax − 1), ...,−1, 0, 1, ..., τmax − 1, τmax}. Note that the maximum

shift τmax has to be fixed by the user. By activating the SI option, the size of

the discrete dictionary increases from L to (2Lτmax + L) atoms. This option is

potentially interesting since it allows more representative atoms to be considered

for the estimation of the nominal signal and for atom selection.

5. Experimental Results

5.1. Overview

The first experiment considers a simple dataset composed of KD = 3 dis-

crete and KC = 7 continuous parameters with an available ground-truth. The

dictionary was constructed using two months of nominal telemetry (without

anomalies), which represents approximately 30000 mixed training signals ob-

tained after applying the preprocessing described in Section IV with the pa-

rameters δ = 5 and w = 50 (i.e., the signal length is N = 500). As explained

before, the existing dictionary learning methods such as K-SVD or ODL have

not been designed for mixed discrete and continuous data. In this work, we

built the dictionary of mixed discrete and continuous parameters as follows: 1)

the dictionary is initialized with L = 2000 training signals selected randomly

in the training database (the choice of L will be discussed later), 2) the pro-

posed sparse coding algorithm is applied to the training data to determine the

sparse representation Φx and select the L training signals having the highest

residuals ‖y −Φx‖. This process is repeated 100 times and the L signals most

often selected among the iterations are selected as the columns of the mixed

dictionary.

The performance of the different AD methods is evaluated using a test

database associated with 18 days of telemetry, i.e., composed of 1000 signals

including 90 affected by anomalies. Note that the 90 anomaly signals of the

dataset are divided in 7 anomaly periods with various durations displayed in

Fig. 1. Note also that a specific attention was devoted to the construction of
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a heterogeneous test database containing all kinds of anomalies, i.e., univariate

discrete and continuous anomalies and two multivariate contextual anomalies.

Finally, it is important to note that the majority of these anomalies are ac-

tual anomalies observed in operated satellites. This work investigates four AD

methods whose principles are summarized below

• The one-class support vector machine (OC-SVM) method [42]: the OC-

SVM algorithm was investigated in a multivariate framework by using

input vectors composed of the mixed continuous and discrete parameters.

The input vectors were obtained using the preprocessing step described

in Section IV. A. Denote as y ∈ RN one of these input vectors obtained

by concatenating time series of the different telemetry parameters. The

strategy adopted by OC-SVM is to map the training data in a higher-

dimensional subspace H using a transformation ϕ, and to find a linear

separator in this subspace, separating the training data (considered as

mostly nominal) from the origin with the maximum margin. The separator

is found by solving the following problem

min
w,ρ,Ei

1

2
‖ w ‖2 +

1

νN

N∑
i=1

Ei − ρ s.t. 〈w, ϕ(y)〉H ≥ ρ− Ei, Ei ≥ 0 (17)

where w is the normal vector to the linear separator, ρ is the so-called

bias, Ei, i = 1, ..., N are slack variables (which are equal to 0 when y

satisfies the constraint and are strictly positive when the constraint is

not satisfied) and ν is a relaxation factor that can be interpreted as the

fraction of training data allowed to be outside of the nominal class. Note

that the parameter ν has to be fixed by the user. The kernel used in this

work is the Gaussian kernel defined as

k(y,y′) = exp
(
−γ ‖ y − y′ ‖2

)
(18)

where γ is a parameter (also adjusted by the user) controlling the regu-

larity of the separator. Once the separator has been found, determining

whether a new data vector is nominal or abnormal is an easy task as it only
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consists of testing whether this vector falls inside or outside the separating

curve. In other terms, the decision rule can be formulated as follows

f(y) = sign[k(w,y)− ρ] (19)

where sign is the function defined by

sign(y) =


−1 if y < 0

0 if y = 0

1 if y > 0

(20)

Note that an anomaly score can be defined as the distance between the

test vector y and the separator with a positive score if f(y) < 0 and a

score equal to zero if f(y) > 0. This anomaly score in the first case is

defined by

a(y) =
ρ− k(w,y)

‖w‖
. (21)

Finally, we would like to mention that the parameters ν and γ have been

tuned by cross validation in this study.

• Mixture of probabilistic principal component analyzers and categorical

distributions (MPPCAD) [14]: this is a multivariate AD method based

on probabilistic clustering and dimensionality reduction. The input data

vector y is divided into two parts associated with continuous and discrete

vectors denoted as yC ∈ RKC (containing one data instance of each con-

tinuous parameter) and yD ∈ RKD (containing one data instance of each

discrete parameter) acquired at the same time instant. Each discrete pa-

rameter yD(j)(j = 1, ...,KD) takes its values in the set {1, ...,Mj} contain-

ing Mj different values. MPPCAD assumes that the vector of continuous

variables is distributed according to a mixture of Gaussian distributions

and that the vector of discrete variables is distributed according to a mix-

ture of categorical distributions. This assumption leads to the following
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probability density distribution for the continuous data yC

p(yC|ΘC) =

G∑
g=1

πgN (yC|µg,Cg) (22)

where the gth Gaussian distribution has mean vector µg and covariance

matrix Cg = WgW
T
g +σ2

gIKC
with Wg the factor loading matrix, σ2

g the

noise variance, IKC
is the identity matrix of size KC×KC and πg the prior

probability of the gth cluster. The distribution of the discrete data based

on a mixture of categorical distributions is defined as

p(yD|ΘD) =

G∑
g=1

πg

KD∏
j=1

Cat(yD(j)|θg,j) (23)

where Cat(.) is the categorical distribution, yD(j) is the jth component

of yD and θg,j = [θg,j,1, ..., θg,j,Mj ] denotes the parameter vectors of the

categorical distributions, i.e., P (yD(j) = l|g) = θg,j,l. Finally the joint

distribution of the mixed data is obtained assuming independence between

yC and yD

p(yC,yD|Θ) = p(yC|ΘC)p(yD|ΘD) (24)

where Θ = {ΘT
C,Θ

T
D}T , ΘC = {πg, µg,Wg, σ

2
g , g = 1, ..., G} and ΘD =

{θg,j , g = 1, ..., G, j = 1, ...,Mj}. The unknown parameter vector Θ can

be classically estimated using the Expectation-Minimization (EM) algo-

rithm [43] yielding an estimator denoted as Θ̂. The EM algorithm was

initialized using k-means clustering following Ding’s method [44]. The

authors of [14] proposed to estimate the number of cluster K and the di-

mensionality of the continuous latent space L using heuristic rules. More

precisely, the value of L was tuned using the so-called “elbow-law” af-

ter applying a principal component analysis to the continuous data. The

number of clusters K was manually estimated based on the scatter plot of

the principal component scores. Finally, it is interesting to note that an

anomaly score a(yC ,yD|Θ̂) can be defined as the minus log likelihood of

the mixed data

a(yC,yD|Θ̂) = −ln p(yC,yD|Θ̂). (25)
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• New Operational SofTwaRe for Automatic Detection of Anomalies based

on Machine-learning and Unsupervised feature Selection (NOSTRADAMUS):

this is a univariate method developed by the french space agency CNES

based on the OC-SVM method applied to each telemetry parameter in-

dividually [7]. The input data are vectors of features (mean, median,

minimum, maximum, standard deviation...) computed on time windows

resulting from a segmentation for these parameters on a fixed period of

time. Different features are computed depending on the discrete or con-

tinuous nature of the parameter. The OC-SVM method requires to define

an appropriate kernel, which was chosen as the Gaussian kernel in [7].

An anomaly score was also defined in order to quantify the “degree of

abnormality” of any test vector. This degree of abnormality corresponds

to the distance between this vector and the separator normalized to [0, 1]

in order to provide a probability of anomaly. Given the univariate frame-

work of NOSTRADAMUS, a score is assigned to each parameter and is

denoted as a(yk) for the kth parameter. In order to compare with multi-

variate AD methods studied in this work, we define a multivariate score

for NOSTRADAMUS corresponding to the sum of the univariate scores

a(y) =

K∑
k=1

a(yk) (26)

where K is the number of parameters.

• ADDICT: the proposed strategy is a multivariate AD method based on a

sparse decomposition of any test vector y on a DICTonary (ADDICT) of

normal patterns. The dictionary is learned from mixed training signals as-

sociated with a period of time where no anomaly was detected. The input

data of this method are mixed vectors composed of telemetry parameters

acquired during the same period of time. The preprocessing applied to the

vector y and the AD algorithm were detailed in Section I.V. An anomaly
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score can also be defined for this method

a(y) =

−1 if ‖êD‖2 > 0 (i.e. M = ∅)

‖ êC ‖2 otherwise

(27)

All the regularization parameters (a,bC,bD) were determined by cross val-

idation in this study. At this point, it is worth mentioning that it might

be interesting to consider other approaches such as Bayesian inference [45]

to estimate these regularization parameters.

5.2. Performance Evaluation

This section compares detection results obtained with the AD methods sum-

marized in the previous section when they are applied on an anomaly dataset

with available ground-truth. Fig. 3 shows the different anomaly scores with

ground-truth marked by red backgrounds for OCSVM (a), MPPCAD (b), NOS-

TRADAMUS (c) and the proposed method ADDICT (d). The higher the score,

the higher the probability of anomaly. For each method, the detection rule

compares the anomaly score to a threshold and detects an anomaly if this score

exceeds an appropriate threshold. In an operational context, the threshold can

be set in order to obtain an acceptable probability of detection by constraining

the probability of false alarm to be upper-bounded, since detecting too many

false alarms is a problem for operational missions. In this paper, we determined

the threshold associated with the value of the pair (probability of false alarm

PFA, probability of detection PD) located the closest from the ideal point (0, 1).

Fig. 3 shows the point anomalies located in boxes #3 and #5 of Fig. 1) are

well detected by all the methods. Indeed, the scores returned by all the meth-

ods during this anomaly period are significantly higher than the average score.

The second anomaly (box #2 in Fig. 1 and indicated as 2 in Fig. 3) is a uni-

variate anomaly that is also relatively well detected by all the methods. The

first collective anomaly (box #1 in Fig. 1), which corresponds to an abnormal

duration of a discrete parameter, is only detected by NOSTRADAMUS. This

non detection by MPPCAD can be partly explained by the fact that this ap-

proach processes time windows of length w = 1 whereas this kind of anomaly
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Figure 3: Anomaly scores for the dataset with ground-truth marked by red background.

OCSVM (a), MPPCAD (b), NOSTRADAMUS (c) and ADDICT (d).
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clearly requires to consider longer time windows. The fourth anomaly (box #4

in Fig. 1) can be classified as a collective anomaly if we consider its abnormal

duration, or as a multivariate contextual anomaly if we consider the abnormal

joint behaviour of the two discrete parameters. This anomaly is only detected

by NOSTRADAMUS. This result is due to the fact that anomalies affecting

discrete data are poorly managed by the multivariate AD methods. Note that

in this first experiment, the SI option of the proposed method which aims at

solving this problem was not active. On the other hand, the sixth anomaly (box

#6 in Fig 1 and referred to as 6 in Fig. 3), corresponding to a univariate con-

textual anomaly that occurs on continuous data, is detected by the proposed

method but not by the others. The non detection of this anomaly by MPP-

CAD can be explained by the same arguments used for the collective anomaly.

Moreover, this anomaly is not detected by NOSTRADAMUS since it does not

affect significantly features that form the input vector of this algorithm. Fi-

nally, the last anomaly corresponding to a multivariate contextual anomaly for

a continuous parameter (labelled 7 in Fig. 3 and located in box #7 of Fig. 1), is

perfectly detected by the OCSVM and ADDICT. However, it is less significant

for MPPCAD and is not detected by NOSTRADAMUS, which is not able to

handle anomalies due to correlations between the different parameters.

Quantitative results in terms of probability of detection and probability of

false alarm are given in Fig. 4 which displays ROC curves of the four methods

for the anomaly dataset. ROC curves were built using ground-truth. The per-

formances corresponding to the pair (probability of false alarm PFA, probability

of detection PD) located the closest from the ideal point (0, 1) are reported in

Table I. Our comments are summarized below

• Few false alarms are generated by the MPPCAD algorithm but an impor-

tant proportion of anomalies from the database is not detected.

• The OC-SVM method detects the most serious anomalies affecting con-

tinuous parameters but is not able to detect anomalies associated with

discrete parameters.
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Figure 4: ROC curves of OC-SVM, NOSTRADAMUS, MPPCAD and ADDICT for the

anomaly dataset.

Table 1: Values of PD and PFA for OCSVM, MPPCAD, NOSTRADAMUS and ADDICT.

Method Threshold PD PFA

OC-SVM 0.0016 89% 12.3%

MPPCAD 12 67% 25%

NOSTRADAMUS 29 77.26% 6%

ADDICT (τmax = 0) 3.8 84.6% 9.8%

ADDICT (τmax = 5) 3.7 89% 10.2%

• NOSTRADAMUS is able to detect the majority of the univariate anoma-

lies but fails for the multivariate ones. It would be interesting to adapt

NOSTRADAMUS to detect multivariate anomalies in mixed data.

• The results obtained with ADDICT are very encouraging with a high

probability of detection PD = 0.846 and a small probability of false alarm

PFA = 0.098. These results are improved with the SI option leading to

PD = 0.89 and PFA = 0.102, which corresponds to the best performance

for this dataset.
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5.3. Shift Invariant Option

Figure 5: Anomaly scores obtained with ADDICT for the dataset with ground-truth marked

by red background and the shift-invariance option enabled with τmax = 5.

This section investigates the usefulness of the SI option for the proposed

method. Fig. 5 displays the anomaly scores of the proposed method with

a maximum allowed shift τmax = 5. By comparing these results with those

in Fig. 3 (d) obtained without using the SI option (i.e., with τmax = 0), we

observe that the SI option allows anomalies affecting discrete parameters to be

detected (anomalies #1 and #4 in Fig. 1). In addition, the activation of the

SI option decreases scores of nominal signals, which is an interesting property.

More precisely, 70% of nominal signals yield a lower anomaly score when the SI

option is enabled. Reducing this score allows the number of false alarms to be

decreased, improving the performance of the proposed method.

The maximum allowed shift τmax was determined using ROCs that express

the probability of detection PD as a function of the probability of false alarm

PFA. Fig. 6 shows ROCs for different values of τmax showing that τmax = 5 leads

to a good compromise in terms of performance and computational complexity

(the higher τmax the higher the execution time). These results confirm the

importance of the SI option for the proposed method.
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Figure 6: ROC curves for ADDICT with different values of τmax ∈ {0, 1, 3, 5, 8}.

5.4. Selecting the Number of Atoms in the Dictionary

This section explains how the proposed method ADDICT selects the number

of atoms in the dictionary. Intuitively, the more atoms in the dictionary, the

better the sparse representation of nominal signals and the lower the probability

of false alarms. Our experiments have shown that the anomalies are also better

approximated when the number of atoms in the dictionary increases.

Fig. 7 shows the values of PD and PFA returned by the proposed method

ADDICT versus the number of atoms in the dictionary. The performance starts

by improving when the number of atoms increases. For instance, moving from

100 to 2000 atoms allows PD to increase from 77.78% to 88.89% and PFA to

decrease from 26% to 5.72%, which is a significant improvement. Beyond 2000

atoms, the detection performance does not improve, which explains the choice

L = 2000 in our experiments. This analysis emphasizes that choosing the

number of atoms in the dictionary is important for AD using ADDICT.

6. Conclusion

This paper investigated a new data-driven method for anomaly detection

in mixed housekeeping telemetry data based on a sparse representation and
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Figure 7: Values of PD (top) and PFA (bottom) versus the number of dictionary atoms L.

dictionary learning. The proposed method can handle mixed discrete and con-

tinuous parameters that are processed jointly allowing possible correlations be-

tween these parameters to be captured. The approach was evaluated on a

heterogeneous anomaly dataset with available ground-truth. The first results

demonstrated the competitiveness of this approach with respect to the state-of-

the-art. In particular, our experiments showed the usefulness of a shift invariant

option for the detection of anomalies affecting discrete parameters, leading to a

significant reduction in the probability of false alarm.

For future work, different issues might be investigated. The most challenging

task is the dictionary learning step, which should be adapted to mixed discrete

and continuous data. Another research prospect is the potential use of sparse

codes or anomaly signals to identify the causes of the anomaly. Finally, we think
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that integrating the feedback of users in the algorithm might improve the future

detection of anomalies, e.g., by reducing the number of false alarms. This opens

the way for many works related to online or sequential anomaly detection, which

could be useful for spacecraft health monitoring.
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