

Equivariant Imaging: learning to solve inverse problems without ground truth

TéSA Seminar March 2022

Joint work with Dongdong Chen and Mike Davies

Julián Tachella CNRS Physics Laboratory École Normale Supérieure de Lyon

Inverse problems

Definition
$$y = Ax + \epsilon$$

- where $x \in \mathbb{R}^n$ signal $y \in \mathbb{R}^m$ observed measurements $A \in \mathbb{R}^{m \times n}$ ill-posed forward sensing operator $(m \le n)$ $\epsilon \in \mathbb{R}^m$ is noise
- **Goal:** recover signal *x* from *y*
- Inverse problems are **ubiquitous** in science and engineering

Examples

Magnetic resonance imaging

A = subset of Fourier modes • (k - space) of 2D/3D images

• *A* = 2D projections (sinograms) of 2D/3D images

Image inpainting

A = diagonal matrix• with 1's and 0s.

X

Why it is hard to invert?

Even in the absence of noise, infinitely many \hat{x} consistent with y:

 $\hat{x} = A^{\dagger}y + v$

where A^{\dagger} is the pseudo-inverse of A and v is any vector in nullspace of A

• Unique solution only possible if set of plausible *x* is low-dimensional

Regularised reconstruction

Idea: define a loss $\rho(x)$ that allows *valid* signals from low-dim set \mathcal{X}

$$\hat{x} = \underset{x}{\operatorname{argmin}} ||y - Ax||^{2} + \rho(x)$$

Examples: total-variation, sparsity, etc.

Disadvantages: hard to define a good $\rho(x)$ in real world problems, loose with respect to the true signal distribution

Idea: use training pairs of signals and measurements (x_i, y_i) to directly learn the inversion function

$$\underset{f}{\operatorname{argmin}} \sum_{i} \left| |x_i - f(y_i)| \right|^2$$

where $f: \mathbb{R}^m \mapsto \mathbb{R}^n$ is parameterized as a deep neural network.

Advantages:

- State-of-the-art reconstructions
- Once trained, *f* is easy to evaluate

fastMRI

Accelerating MR Imaging with AI

x8 accelerated MRI [Zbontar et al., 2019]

Main disadvantage: Obtaining training signals x_i can be expensive or impossible.

- Medical and scientific imaging
- Only solves inverse problems which we already know what to expect
- Risk of training with signals from a different distribution

Learning from only measurements *y*?

$$\underset{f}{\operatorname{argmin}} \sum_{i} \left| |y_i - Af(y_i)| \right|^2$$

Proposition: Any reconstruction function $f(y) = A^{\dagger}y + g(y)$ where $g: \mathbb{R}^m \mapsto \mathcal{N}_A$ is any function whose image belongs to the nullspace of A.

Geometric intuition

Toy example (n = 3, m = 2**):** Signal set is $\mathcal{X} = \text{span}[1,1,1]^{\text{T}}$ Forward operator *A* keeps first 2 coordinates.

Purpose of this talk

How can we learn reconstruction $f: y \mapsto x$ from noisy measurement data only y_i ?

- 1. Learning with no noise y = Ax
- 2. Learning with noise $y = Ax + \epsilon$

Symmetry prior

How to learn from only *y*? We need some prior information

Idea: Most natural signals distributions are invariant to certain groups of transformations:

$$\forall x \in \mathcal{X}, \ \forall g \in G, \ x' = T_g x \in \mathcal{X}$$

Example: natural images are shift invariant

G = group of 2D shifts

$T_g x$ for different $g \in G$

Exploiting invariance

How to learn from only *y*? We need some prior information

For all $g \in G$ we have

$$y = Ax = AT_g T_g^{-1} x = A_g x'$$

 $AT_g x$ for different g

- Implicit access to multiple operators A_a
- Each operator with different nullspace

Geometric intuition

Toy example (n = 3, m = 2**):** Signal set is $X = \text{span}[1,1,1]^T$ Forward operator A keeps first 2 coordinates.

Basic definitions

• Let $G = \{g_1, ..., g_{|G|}\}$ be a finite group with |G| elements. A **linear** representation of G acting on \mathbb{R}^n is a mapping $T: G \mapsto GL(\mathbb{R}^n)$ which verifies

$$T_{g_1} T_{g_2} = T_{g_1 g_2} T_{g_1^{-1}} = T_{g_1}$$

• A mapping $H: \mathbb{R}^n \mapsto \mathbb{R}^m$ is **equivariant** if

$$HT_g = T'_g H$$
 for all $g \in G$

where $T': G \mapsto GL(\mathbb{R}^m)$ is a linear representation of G acting on \mathbb{R}^m .

Necessary conditions

Proposition [*T., Chen and Davies '22]:* Learning only possible if rank $\begin{pmatrix} \begin{bmatrix} AT_1 \\ \vdots \\ AT_{|G|} \end{bmatrix} = n$, thus $m \ge n/|G|$

Theorem [*T., Chen and Davies '22]:* Learning only possible if *A* is not equivariant to the group action

• If A is equivariant, all AT_g have the same nullspace!

Consequences

Magnetic resonance imaging

- A = subset of Fourier modes
 (k space) of 2D/3D images
- Equivariant to shifts
- Not equivariant to rotations, which have $\max c_j \approx \sqrt{n}$ $m > 2k + \sqrt{n} + 1$

Computed tomography

- A = 2D projections (sinograms) of 2D/3D images
- Equivariant to shifts
- Not equivariant to rotations, which have $\max c_j \approx \sqrt{n}$ $m > 2k + \sqrt{n} + 1$

Image inpainting

- A = diagonal matrix with 1's and 0s.
- Not equivariant to shifts, which have $\max c_j \approx 1$ m > 2k + 2

Equivariant imaging loss

How can we enforce invariance in practice?

Idea: we have $f(AT_g x) = T_g f(Ax)$, i.e. $f \circ A$ should be *G*-equivariant

Equivariant imaging

Unsupervised training loss

$$\operatorname{argmin}_{f} \mathcal{L}_{MC}(f) + \mathcal{L}_{EI}(f)$$
• $\mathcal{L}_{MC}(f) = \sum_{i} ||y_{i} - Af(y_{i})||^{2}$ measurement consistency

•
$$\mathcal{L}_{EI}(f) = \sum_{i,g} \left\| f\left(AT_g f(y_i)\right) - T_g f(y_i) \right\|^2$$
 enforces equivariance of $A \circ f$

Network-agnostic: applicable to any existing deep model!

Experiments

Tasks:

• Magnetic resonance imaging

Network

• $f = g_{\theta} \circ A^{\dagger}$ where g_{θ} is a U-net CNN

Comparison

- Pseudo-inverse $A^{\dagger}y_i$ (no training)
- Meas. consistency $Af(y_i) = y_i$
- Fully supervised loss: $f(y_i) = x_i$
- Equivariant imaging (unsupervised) $Af(y_i) = y_i$ and equivariant $A \circ f$

Magnetic resonance imaging

- Operator A is a subset of Fourier measurements (x2 downsampling)
- Dataset is approximately rotation invariant

2. Learning from noisy measurements

What about noise?

Noisy measurements

$$y|u \sim q_u(y)$$
$$u = Ax$$

Examples: Gaussian noise, Poisson noise. Poisson-Gaussian noise

MRI with different noise levels:

• El degrades with noise!

Handling noise via SURE

Oracle consistency loss with clean/noisy measurements pairs (u_i, y_i)

$$\mathcal{L}_{MC}(f) = \sum_{i} \left| \left| u_{i} - Af(y_{i}) \right| \right|^{2}$$

However, we don't have clean $u_i!$

Idea: Proxy unsupervised loss $\mathcal{L}_{SURE}(f)$ which is an unbiased estimator, i.e.

$$\mathbb{E}_{y,u}\{\mathcal{L}_{MC}(f)\} = \mathbb{E}_{y}\{\mathcal{L}_{SURE}(f)\}$$

Handling noise via SURE

Gaussian noise $y \sim \mathcal{N}(u, I\sigma^2)$

$$\mathcal{L}_{SURE}(f) = \sum_{i} \left| |y_i - Af(y_i)| \right|^2 - \sigma^2 m + 2\sigma^2 \operatorname{div}(A \circ f)(y_i)$$

where $\operatorname{div}(h(x)) = \sum_{j} \frac{\delta h_{j}}{\delta x_{j}}$ is approximated with a Monte Carlo estimate which only requires evaluations of *h* [Ramani, 2008]

Theorem [Stein, 1981] Under mild differentiability conditions on the function $A \circ f$, the following holds

$$\mathbb{E}_{y,u}\{\mathcal{L}_{MC}(f)\} = \mathbb{E}_{y}\{\mathcal{L}_{SURE}(f)\}$$

Robust EI: SURE+EI

Robust Equivariant Imaging

$$\underset{f}{\operatorname{argmin}} \mathcal{L}_{SURE}(f) + \mathcal{L}_{EI}(f)$$

- $\mathcal{L}_{SURE}(f)$: unbiased estimator of oracle measurement consistency
 - noise dependent
 - Gaussian, Poisson, Poisson-Gaussian
- $\mathcal{L}_{EI}(f)$: enforces equivariance of $A \circ f$

Experiments

Tasks:

- Magnetic resonance imaging (Gaussian noise)
- Image inpainting (Poisson noise)
- Computed tomography (Poisson-Gaussian noise)

Network

• $f = g_{\theta} \circ A^{\dagger}$ where g_{θ} is a U-net CNN

Comparison

- Meas. consistency $Af(y_i) = y_i$
- Fully supervised loss: $f(y_i) = x_i$
- Equivariant imaging (unsupervised) $Af(y_i) = y_i$ and equivariant $A \circ f$

Magnetic resonance imaging

Magnetic resonance imaging

- Operator A is a subset of Fourier measurements (x4 downsampling)
- Gaussian noise ($\sigma = 0.2$)
- Dataset is approximately rotation invariant

Inpainting

- Operator *A* is an inpainting mask (30% pixels dropped)
- Poisson noise (rate=10)
- Dataset is approximately shift invariant

Computed tomography

- Operator A is (non-linear variant) sparse radon transform (50 views)
- Mixed Poisson-Gaussian noise
- Dataset is approximately rotation invariant

Conclusions

Novel unsupervised learning framework

- **Theory:** Necessary & sufficient conditions for learning
 - Number of measurements
 - Interplay between forward operator/ data invariance
- **Practice:** deep learning approach
 - Unsupervised loss which can be applied to any model

Conclusions

Novel unsupervised learning framework

- Ongoing/future work
 - More inverse problems
 - Other signal domains

Papers

[1] "Equivariant Imaging: Learning Beyond the Range Space", Chen, Tachella and Davies, ICCV 2021

[2] "Robust Equivariant Imaging: a fully unsupervised framework for learning to image from noisy and partial measurements", Chen, Tachella and Davies, CVPR 2022

[3] "Sampling Theorems for Learning from Incomplete Measurements", Tachella, Chen, Davies, Arxiv, 2022

[4] "Sampling Theorems for Unsupervised Learning in Inverse Problems", Tachella, Chen and Davies, To Appear.

Thanks for your attention!

Tachella.github.io

- ✓ Codes
- ✓ Presentations
- \checkmark ... and more