
Julián Tachella 
CNRS

Physics Laboratory

École Normale Supérieure de Lyon

Equivariant Imaging: learning to 
solve inverse problems without 

ground truth
TéSA Seminar March 2022

Joint work with Dongdong Chen and Mike Davies



2

Inverse problems

Definition 𝑦 = 𝐴𝑥 + 𝜖

where 𝑥 ∈ ℝ𝑛 signal

𝑦 ∈ ℝ𝑚 observed measurements

𝐴 ∈ ℝ𝑚×𝑛 ill-posed forward sensing operator (𝑚 ≤ 𝑛)
𝜖 ∈ ℝ𝑚 is noise

• Goal: recover signal 𝑥 from 𝑦

• Inverse problems are ubiquitous in science and engineering
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Examples

Magnetic resonance imaging

• 𝐴 = subset of Fourier modes 

(𝑘 − space) of 2D/3D images

Image inpainting

• 𝐴 = diagonal matrix 

with 1’s and 0s.

Computed tomography

• 𝐴 = 2D projections  

(sinograms) of 2D/3D 

images

𝑥𝑦 𝑦 𝑥𝑦 𝑥
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Why it is hard to invert?

Even in the absence of noise, infinitely many ො𝑥 consistent with 𝑦:

ො𝑥 = 𝐴†𝑦 + 𝑣

where 𝐴† is the pseudo-inverse of 𝐴 and 𝑣 is any vector in nullspace of 𝐴

• Unique solution only possible if set of plausible 𝑥 is low-dimensional 

reconstruct
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Regularised reconstruction

Idea: define a loss 𝜌 𝑥 that allows valid signals from low-dim set 𝒳

ො𝑥 = argmin 𝑦 − 𝐴𝑥
2
+ 𝜌(𝑥)

Examples: total-variation, sparsity, etc.

Disadvantages: hard to define a good 𝜌 𝑥 in real world problems, 

loose with respect to the true signal distribution

𝑥
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Learning approach

Idea: use training pairs of signals and measurements (𝑥𝑖 , 𝑦𝑖) to directly 

learn the inversion function

argmin

𝑖

𝑥𝑖 − 𝑓(𝑦𝑖)
2

where 𝑓:ℝ𝑚 ↦ ℝ𝑛 is parameterized as a deep neural network.

𝑓

𝒇
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Advantages: 

• State-of-the-art reconstructions

• Once trained, 𝒇 is easy to evaluate

Learning approach

x8 accelerated MRI [Zbontar et al., 2019]

Deep network 

(34.5 dB)Ground-truth

Total variation

(28.2 dB)
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Learning approach

Main disadvantage: Obtaining training signals 𝑥𝑖 can be expensive or 

impossible. 

• Medical and scientific imaging

• Only solves inverse problems which we already know what to expect

• Risk of training with signals from a different distribution

train test?
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Learning from only measurements 𝒚?

argmin

𝑖

𝑦𝑖 − 𝐴𝑓(𝑦𝑖)
2

Proposition: Any reconstruction function 𝑓 𝑦 = 𝐴†𝑦 + 𝑔(𝑦) where 

𝑔:ℝ𝑚 ↦ 𝒩𝐴 is any function whose image belongs to the nullspace of 𝐴.

Learning approach

𝒇

𝐴

𝑓
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Geometric intuition

Toy example (𝑛 = 3,𝑚 = 2): Signal set is 𝒳 = span 1,1,1 T

Forward operator 𝐴 keeps first 2 coordinates.

𝐴 𝐴†
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Purpose of this talk

How can we learn reconstruction 𝑓: 𝑦 ↦ 𝑥 from noisy 

measurement data only 𝑦𝑖?

1. Learning with no noise 𝑦 = 𝐴𝑥
2. Learning with noise 𝑦 = 𝐴𝑥 + 𝜖
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Symmetry prior

How to learn from only 𝒚? We need some prior information

Idea: Most natural signals distributions are invariant to certain groups of 

transformations:

∀𝑥 ∈ 𝒳, ∀𝑔 ∈ 𝐺, 𝑥′ = 𝑇𝑔𝑥 ∈ 𝒳

Example: natural images are shift invariant

𝐺 = group of 2D shifts

𝑇𝑔𝑥 for different 𝑔 ∈ 𝐺
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Exploiting invariance

How to learn from only 𝒚? We need some prior information

For all 𝑔 ∈ 𝐺 we have

𝑦 = 𝐴𝑥 = 𝐴𝑇𝑔𝑇𝑔
−1𝑥 = 𝐴𝑔𝑥′

• Implicit access to multiple operators 𝐴𝑔
• Each operator with different nullspace

𝐴𝑇𝑔𝑥 for different 𝑔



14

Geometric intuition 

Toy example (𝑛 = 3,𝑚 = 2): Signal set is 𝑋 = span 1,1,1 T

Forward operator 𝐴 keeps first 2 coordinates.

𝐴 𝐴𝑇1 𝐴𝑇2
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Basic definitions

• Let 𝐺 = {𝑔1, … , 𝑔 𝐺 } be a finite group with |𝐺| elements. A linear 

representation of 𝐺 acting on ℝ𝑛 is a mapping 𝑇: 𝐺 ↦ 𝐺𝐿(ℝ𝑛) which verifies

𝑇𝑔1𝑇𝑔2 = 𝑇𝑔1𝑔2
𝑇𝑔1−1 = 𝑇𝑔1

• A mapping 𝐻:ℝ𝑛 ↦ ℝ𝑚 is equivariant if

𝐻𝑇𝑔 = 𝑇′𝑔𝐻 for all 𝑔 ∈ 𝐺

where 𝑇′: 𝐺 ↦ 𝐺𝐿(ℝ𝑚) is a linear representation of 𝐺 acting on ℝ𝑚.
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Necessary conditions

Proposition [T., Chen and Davies ’22]:

Learning only possible if rank

𝐴𝑇1
⋮

𝐴𝑇|𝐺|
= 𝑛, thus 𝑚 ≥ 𝑛/ 𝐺

Theorem [T., Chen and Davies ’22]: Learning only possible if 𝐴 is not 

equivariant to the group action

• If 𝐴 is equivariant, all 𝐴𝑇𝑔 have the same nullspace!
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Consequences

Magnetic resonance imaging

• 𝐴 = subset of Fourier modes 

(𝑘 − space) of 2D/3D images

• Equivariant to shifts

• Not equivariant to rotations, 

which have max 𝑐𝑗 ≈ √𝑛

𝑚 > 2𝑘 + 𝑛 + 1

Image inpainting

• 𝐴 = diagonal matrix with 1’s 

and 0s.

• Not equivariant to shifts, 

which have max 𝑐𝑗 ≈ 1

𝑚 > 2𝑘 + 2

Computed tomography

• 𝐴 = 2D projections  

(sinograms) of 2D/3D 

images

• Equivariant to shifts

• Not equivariant to rotations, 

which have max 𝑐𝑗 ≈ √𝑛

𝑚 > 2𝑘 + 𝑛 + 1

𝑥𝑦 𝑦 𝑥𝑦 𝑥
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Equivariant imaging loss

How can we enforce invariance in practice?

Idea: we have 𝑓 𝐴𝑇𝑔𝑥 = 𝑇𝑔𝑓(𝐴𝑥), i.e. 𝑓 ∘ 𝐴 should be 𝐺-equivariant

𝐴

𝑓
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Equivariant imaging

Unsupervised training loss

argmin ℒ𝑀𝐶 𝑓

• ℒ𝑀𝐶 𝑓 = σ𝑖 𝑦𝑖 − 𝐴𝑓 𝑦𝑖
2

measurement consistency

• ℒ𝐸𝐼 𝑓 = σ𝑖,𝑔 𝑓 𝐴𝑇𝑔𝑓 𝑦𝑖 − 𝑇𝑔𝑓 𝑦𝑖

2

enforces equivariance of 𝐴 ∘ 𝑓

𝑓

Network-agnostic: applicable to any existing deep model!

+ℒ𝐸𝐼 𝑓
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Experiments

Tasks:

• Magnetic resonance imaging 

Network

• 𝑓 = 𝑔𝜃 ∘ 𝐴
† where 𝑔𝜃 is a U-net CNN

Comparison

• Pseudo-inverse 𝐴†𝑦𝑖 (no training)

• Meas. consistency 𝐴𝑓 𝑦𝑖 = 𝑦𝑖

• Fully supervised loss: 𝑓 𝑦𝑖 = 𝑥𝑖

• Equivariant imaging (unsupervised) 

𝐴𝑓 𝑦𝑖 = 𝑦𝑖 and equivariant 𝐴 ∘ 𝑓



Equivariant imaging Fully supervised𝐴†𝑦 Meas. consistency
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Magnetic resonance imaging

• Operator 𝐴 is a subset of Fourier measurements (x2 downsampling)

• Dataset is approximately rotation invariant

Signal 𝑥 Measurements 𝑦
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2. Learning from noisy 
measurements



23

What about noise?

Noisy measurements 𝑦|𝑢 ~ 𝑞𝑢(𝑦)
𝑢 = 𝐴𝑥

Examples: Gaussian noise, Poisson noise, Poisson-Gaussian noise

MRI with different noise levels:

• EI degrades with noise!

Gaussian noise standard deviation
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Handling noise via SURE

Oracle consistency loss with clean/noisy measurements pairs (𝑢𝑖 , 𝑦𝑖)

However, we don’t have clean 𝑢𝑖!

Idea: Proxy unsupervised loss ℒ𝑆𝑈𝑅𝐸 𝑓 which is an unbiased estimator, i.e.

𝔼𝑦,𝑢 ℒ𝑀𝐶 𝑓 = 𝔼𝑦 ℒ𝑆𝑈𝑅𝐸 𝑓

ℒ𝑀𝐶 𝑓 = 

𝑖

𝑢𝑖 − 𝐴𝑓 𝑦𝑖
2
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Gaussian noise 𝑦 ∼ 𝒩(𝑢, 𝐼𝜎2)

ℒ𝑆𝑈𝑅𝐸 𝑓 =

𝑖

𝑦𝑖 − 𝐴𝑓 𝑦𝑖
2
− 𝜎2𝑚 + 2𝜎2div(𝐴 ∘ 𝑓)(𝑦𝑖)

where  div ℎ(𝑥) = σ𝑗
𝛿ℎ𝑗

𝛿𝑥𝑗
is approximated with a Monte Carlo estimate which only 

requires evaluations of ℎ [Ramani, 2008]

Theorem [Stein, 1981] Under mild differentiability conditions on the function 𝐴 ∘ 𝑓, 

the following holds

Handling noise via SURE

𝔼𝑦,𝑢 ℒ𝑀𝐶 𝑓 = 𝔼𝑦 ℒ𝑆𝑈𝑅𝐸 𝑓
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Robust EI: SURE+EI

Robust Equivariant Imaging

argmin ℒ𝑆𝑈𝑅𝐸 𝑓 + ℒ𝐸𝐼 𝑓

• ℒ𝑆𝑈𝑅𝐸 𝑓 : unbiased estimator of oracle measurement consistency

- noise dependent

- Gaussian, Poisson, Poisson-Gaussian

• ℒ𝐸𝐼 𝑓 : enforces equivariance of 𝐴 ∘ 𝑓

𝑓
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Experiments

Tasks:

• Magnetic resonance imaging (Gaussian noise)

• Image inpainting (Poisson noise)

• Computed tomography (Poisson-Gaussian noise)

Network

• 𝑓 = 𝑔𝜃 ∘ 𝐴
† where 𝑔𝜃 is a U-net CNN

Comparison

• Meas. consistency 𝐴𝑓 𝑦𝑖 = 𝑦𝑖

• Fully supervised loss: 𝑓 𝑦𝑖 = 𝑥𝑖

• Equivariant imaging (unsupervised) 

𝐴𝑓 𝑦𝑖 = 𝑦𝑖 and equivariant 𝐴 ∘ 𝑓
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Magnetic resonance imaging

Gaussian noise standard deviation
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Magnetic resonance imaging

• Operator 𝐴 is a subset of Fourier measurements (x4 downsampling)

• Gaussian noise (𝜎 = 0.2)
• Dataset is approximately rotation invariant

Measurements 𝑦 Signal 𝑥 Supervised Meas. consistency Robust EI



30

Inpainting

Signal 𝑥Measurements 𝑦

• Operator 𝐴 is an inpainting mask (30% pixels dropped)

• Poisson noise (rate=10)

• Dataset is approximately shift invariant

Supervised Meas. consistency Robust EI
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Noisy 

measurements 𝑦

Robust EISupervised Clean signal 𝑥 Meas. consistency

Computed tomography

• Operator 𝐴 is (non-linear variant) sparse radon transform (50 views)

• Mixed Poisson-Gaussian noise 

• Dataset is approximately rotation invariant
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Conclusions

Novel unsupervised learning framework

• Theory: Necessary & sufficient conditions for learning
• Number of measurements
• Interplay between forward operator/ data invariance

• Practice: deep learning approach
• Unsupervised loss which can be applied to any model
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Conclusions

Novel unsupervised learning framework

• Ongoing/future work
• More inverse problems
• Other signal domains
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Thanks for your attention!
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✓ Presentations
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