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Inverse problems
Definition y=Ax + €

where x € R" signal
y € R™ observed measurements
A € R™" jll-posed forward sensing operator (m < n)
e € R™ Is noise

» Goal: recover signal x from y

 Inverse problems are ubiquitous in science and engineering



Examples

Magnetic resonance imaging Computed tomography Image inpainting
e A = subset of Fourier modes « A = 2D projections « A = diagonal matrix
(k — space) of 2D/3D images (sinograms) of 2D/3D with 1’s and Os.

images




Why it is hard to invert?

Even in the absence of noise, infinitely many X consistent with y:

£=ATy+v
where AT is the pseudo-inverse of A and v is any vector in nullspace of A

» Unique solution only possible if set of plausible x is low-dimensional
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Regularised reconstruction

Idea: define a loss p(x) that allows valid signals from low-dim set X

X = argmin ||y — Ax||2 + p(x)
X

Examples: total-variation, sparsity, etc.

Disadvantages: hard to define a good p(x) in real world problems,
loose with respect to the true signal distribution




Learning approach

ldea: use training pairs of signals and measurements (x;, y;) to directly
learn the inversion function

CAJ
7\
’o
¢/
o'o/ /

{I)
()
i)

o
¢
V¥

N

(XS

7.
4
&
-

A .4
\Y

|

<
)

{

] 2
arg}mnz_uxi — ol

where f: R™ —» R" is parameterized as a deep neural network.



Learning approach

Advantages: fastMRI
o State-of-the-art reconstructions

I - A I ing MR | i ith Al
« Once trained, f is easy to evaluate ccelerating MR Imaging wit

Total variation Deep network
Ground-truth (28.2 dB) (34.5 dB)

x8 accelerated MRI [Zbontar et al., 2019]



Learning approach

Main disadvantage: Obtaining training signals x; can be expensive or
Impossible.

* Medical and scientific imaging

« Only solves inverse problems which we already know what to expect

« Risk of training with signals from a different distribution




Learning approach

Learning from only measurements y?
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argmin ) [ly = 4£ 00|
i

Proposition: Any reconstruction function f(y) = ATy + g(y) where
g: R™ = NN, is any function whose image belongs to the nullspace of A.
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Geometric intuition

Toy example (n = 3,m = 2): Signal setis X = span[1,1,1]T
Forward operator A keeps first 2 coordinates.




Purpose of this talk

How can we learn reconstruction f: y = x from noisy
measurement data only y;?

1. Learning with no noise y = Ax
2. Learning with noise y = Ax + ¢



Symmetry prior

How to learn from only y? We need some prior information

Idea: Most natural signals distributions are invariant to certain groups of
transformations:

VxEX, VgEG, x' =Tyx €X T,x for different g € G

Example: natural images are shift invariant

G = group of 2D shifts




Exploiting invariance

How to learn from only y? We need some prior information
For all g € G we have

y = Ax = AT, T;'x = Ayx’
AT, x for different g

* Implicit access to multiple operators A,
« Each operator with different nullspace




Geometric intuition

Toy example (n = 3,m = 2): Signal set is X = span[1,1,1]!
Forward operator A keeps first 2 coordinates.
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Basic definitions

* LetG ={g4,..., 96} be afinite group with |G| elements. Alinear
representation of ¢ acting on R™ is a mapping T: G = GL(R") which verifies

T, T, =T

g1 92 919>
Tgfl — Tgl

« Amapping H: R™ » R™ is equivariant if
HT,=T';Hforallg € G

where T': G » GL(R™) is a linear representation of G acting on R™.



Necessary conditions

Proposition [T., Chen and Davies '22]:
AT,

Learning only possible if rank =n, thus m = n/|G|

_AT|G|_

Theorem [T., Chen and Davies '22]: Learning only possible if A is not
equivariant to the group action

* If Ais equivariant, all AT, have the same nullspace!



Consequences

Magnetic resonance imaging

* A = subset of Fourier modes
(k — space) of 2D/3D images

» Equivariant to shifts

« Not equivariant to rotations,
which have max¢; ~ Vn

m>2k++n+1

[l -

Computed tomography

« A = 2D projections
(sinograms) of 2D/3D
images

« Equivariant to shifts

* Not equivariant to rotations,
which have max¢; ~ Vn

m>2k+yn+1

Image inpainting

e A = diagonal matrix with 1’s
and Os.

* Not equivariant to shifts,
which have max¢; ~ 1

m> 2k + 2




Equivariant imaging loss

How can we enforce invariance in practice?

Idea: we have f(AT,x) = T,f(Ax), i.e. f o A should be G-equivariant




Equivariant imaging

Unsupervised training loss
arg;nin Lyc(f) +Lg (f)

o Lyc(f) =Xy — Af(yl-)||2 measurement consistency

2
enforces equivariance of Ao f

¢ La(f) = Tig || (ATyFO0) ~ Tof )

Network-agnostic: applicable to any existing deep model!



Experiments

Tasks:
* Magnetic resonance imaging ,
64 6464 64 C C
Network |
« f =gy AT where gy is a U-net CNN - B Il
Comparlson lv 128 128 128
 Pseudo-inverse A'y; (no training) |"I -
o4 1 256 256 256 128
. - - wsp 3x3 Conv + BN + RelLu
* Meas. consistency Af (y;) = y; I ! L . .
- E— - 3x3 Up-Conv +gBN +Relu

2% S12 =) 1x1 Conv

* Fully supervised loss: f(y;) = x;

» Equivariant imaging (unsupervised)
Af(y;) = y; and equivariant Ao f



Magnetic resonance imaging

* Operator A is a subset of Fourier measurements (x2 downsampling)
e Dataset is approximately rotation invariant

Signal x Measurements y

i




2. Learning from noisy
measurements




What about noise?

Noisy measurements y|lu~ qu(y)
u = Ax

Examples: Gaussian noise, Poisson noise. Poisson-Gaussian noise
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MRI with different noise levels: \
« EI degrades with noise! 26 -
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Gaussian noise standard deviation



Handling noise via SURE

Oracle consistency loss with clean/noisy measurements pairs (u;, y;)

Luc(f) = ) |l = Af oI’

However, we don’t have clean u;!

Idea: Proxy unsupervised loss Lsyre (f) which is an unbiased estimator, i.e.

EyutLlmc(f)} = EyiLsyre(f)}



Handling noise via SURE

Gaussian noise y ~ N (u,Ic?)

Lsure (D) = ) |y = AFODI|” = 0?m + 20%div(A © )

where div(h(x)) = ), j% IS approximated with a Monte Carlo estimate which only
J

requires evaluations of h [Ramani, 2008]

Theorem [Stein, 1981] Under mild differentiability conditions on the function A o f,

the following holds
Eyu{Lyc(f)} = Ey{iLsyre (f)}



Robust EI: SURE+EI

Robust Equivariant Imaging

argr;lin Lsyre(f) + Lg(f)

* Loyre(f): unbiased estimator of oracle measurement consistency
- noise dependent
- Gaussian, Poisson, Poisson-Gaussian

* Lg;(f): enforces equivariance of Ao f



Experiments

Tasks:
» Magnetic resonance imaging (Gaussian noise)
* Image inpainting (Poisson noise)
« Computed tomography (Poisson-Gaussian noise)

Network ¢ e s c

* f = ggo AT where g4 is a U-net CNN | |

- = || - | —>h—

Comparison

» Meas. consistency Af (y;) = y; 1o 126 126

N :
* Fully supervised loss: f(y;) = x; I
l_,! ._.. :C

) EqUIvarIant Imaglng (l:lnsuperVISed) -— - 3x3 Up-Conv + BN + Relu
Af(y;) = y; and equivariant A o f — 1t oo



Magnetic resonance imaging
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Magnetic resonance imaging

* Operator A is a subset of Fourier measurements (x4 downsampling)
* Gaussian noise (o = 0.2)
e Dataset is approximately rotation invariant

Measurements y Signal x Supervised Meas. consistency
30.40

Robust El




Inpainting

e Operator A4 is an inpainting mask (30% pixels dropped)
e Poisson noise (rate=10)
e Dataset is approximately shift invariant

Measurements y
Y01 ; -

Supervised Robust El




Computed tomography

* QOperator A4 is (non-linear variant) sparse radon transform (50 views)
* Mixed Poisson-Gaussian noise
 Dataset is approximately rotation invariant

Clean signal x Supervised Meas. consistency Robust El

Noisy
measurements y



Conclusions

Novel unsupervised learning framework

« Theory: Necessary & sufficient conditions for learning
« Number of measurements
* Interplay between forward operator/ data invariance

« Practice: deep learning approach
« Unsupervised loss which can be applied to any model




Conclusions

Novel unsupervised learning framework

« Ongoing/future work
e More inverse problems
* Other signal domains T 7 - 2020
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Thanks for your attention!
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