
Graphical Abstract (Optional)

To create your abstract, please type over the instructions in the template box below. Fonts or abstract dimensions should not be
changed or altered.

Generalized Isolation Forest for Anomaly Detec-
tion
Julien Lesouple, Cédric Baudoin, Marc Spigai and
Jean-Yves Tourneret

This letter introduces a generalization of Isolation Forest (IF)
based on the existing Extended IF (EIF). EIF has shown some
interest compared to IF being for instance more robust to some
artefacts. However, some information can be lost when com-
puting the EIF trees since the sampled threshold might lead to
empty branches. This letter introduces a generalized isolation for-
est algorithm called Generalized IF (GIF) to overcome these is-
sues. GIF is faster than EIF with a similar performance, as shown
in several simulation results associated with reference databases
used for anomaly detection.

Research Highlights (Required)

It should be short collection of bullet points that convey the core findings of the article. It should include 3 to 5 bullet points
(maximum 85 characters, including spaces, per bullet point.)

• We propose a new unsupervised Anomaly Detection (AD) algorithm

• This algorithm is based on Isolation Forest with random hyperplanes instead of random dimensions

• The proposed method improves the existing Extended Isolation Forest (EIF) in terms of computation time

1

Pattern Recognition Letters
journal homepage: www.elsevier.com

Generalized Isolation Forest for Anomaly Detection

Julien Lesouplea,∗∗, Cédric Baudoinb, Marc Spigaib, Jean-Yves Tournereta,c

aTéSA, 7 Boulevard de la Gare, 31000 Toulouse, France
bThales Alenia Space, 26 Avenue Jean-François Champollion, 31100 Toulouse France
cUniversity of Toulouse/INP-ENSEEIHT/IRIT, 2 Rue Charles Camichel, 31071, Toulouse, France

ABSTRACT

This letter introduces a generalization of Isolation Forest (IF) based on the existing Extended IF (EIF).
EIF has shown some interest compared to IF being for instance more robust to some artefacts. How-
ever, some information can be lost when computing the EIF trees since the sampled threshold might
lead to empty branches. This letter introduces a generalized isolation forest algorithm called General-
ized IF (GIF) to overcome these issues. GIF is faster than EIF with a similar performance, as shown
in several simulation results associated with reference databases used for anomaly detection.

c© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Anomaly Detection (AD, Chandola et al. (2009)) has gained
attention in the past few years, due to the enhancement of mod-
ern computers and the increasing interest for machine learn-
ing algorithms. AD consists in detecting rare patterns or un-
observed samples in data, referred to as anomalies. It is widely
used in potentially critical environments, e.g., in credit fraud de-
tection (Brause et al. (1999)), crowd surveillance (Leach et al.
(2014)), or in satellite telemetry monitoring (Yairi et al. (2017);
Pilastre et al. (2020)). AD has received an increasing interest
for satellite monitoring in the past few years, with new satellite
constellations, resulting in a huge amount of data to be pro-
cessed at the same time. Time-series resulting from satellite
telemetry are of course used for the constellation mission but
also for system monitoring and failure prevention.

This letter focuses on unsupervised AD algorithms, which
learn the normal behavior of unlabeled data using a so-called
training dataset. The performance of the algorithm can then
be tested using a labeled dataset called test set. Various
AD algorithms have been proposed in the literature including
those based on nearest neighbors (Local Outlier Factor, Bre-
unig et al. (2000), Local Outlier Probability (LoOP), Kriegel
et al. (2009) or Neighborhood Construction (NC), İnkaya et al.
(2015)), support vector machines (Support Vector Data De-
scription, Tax and Duin (2004), One Class Support Vector Ma-

∗∗Corresponding author: Tel.: +33-5-61-24-73-64;
e-mail: julien.lesouple@tesa.prd.fr (Julien Lesouple)

chines, Schölkopf et al. (2001)), Sparse Coding (Dutta and
Banerjee (2019)), or Isolation Forest (IF, Liu et al. (2008)).

A specific attention is devoted in this letter to IF, which aims
at finding anomalies with the idea that in some feature space,
anomalies should be “far” from other data. To look for these
anomalies, IF generates random isolation trees in order to iso-
late each data point. The number of branches required to iso-
late each point is then computed for each tree. The mean of this
number of branches defines the expected path length, which is
used to isolate a point of interest. The expected path length is
generally small for anomalies (contrary to nominal data) since
anomalies are far from the majority of nominal data. However,
the trees generated by IF are considering a random feature at
each node, which can lead to some artefacts in the score map
function, as shown in Hariri et al. (2019). In order to improve
the isolation of data points, tree branches with random hyper-
planes can be considered (Hariri et al. (2019)). Random hyper-
planes are not necessarily parallel to one of the components of
the feature vector and have been used in the extended IF (EIF)
algorithm. Unfortunately, this strategy generates a lot of empty
branches, which increases the complexity of the trees belonging
to the forest. This letter goes a step further by proposing a new
IF construction inspired by the work of Hariri et al. (2019) lead-
ing to the generalized isolation forest (GIF) algorithm. The GIF
algorithm generates trees without any empty branch, which sig-
nificantly improves the execution times when compared to EIF.

This letter is organized as follow: Section II recalls the prin-
ciples of IF and EIF and introduces the proposed GIF algorithm.
Section III evaluates the performance of GIF using experiments

2

-10 -5 0 5 10 15

-10

-5

0

5

10

-10 -5 0 5 10 15
-10

-5

0

5

10

Fig. 1: Illustration of IF problems using artificial 2D data. Training data are depicted in the left figure as well as the curve s(x, n) = s0 (displayed in red). The right
figure shows the heat map of the anomaly score (dark blue corresponds to values next to 0 and light yellow to value close to 1).

on both synthetic and real benchmark datasets. Conclusion are
reported in Section IV.

2. Isolation Forest

2.1. Original Formulation

IF generates t > 0 random trees to partition the data, and
computes for each tree the number of nodes required to isolate
each training vector. Anomalies are then detected as the vectors
whose average path lengths are the smallest, motivated by the
fact that nominal data are more concentrated than anomalies
and thus require more nodes to be isolated.

To create a random isolation tree, assume that we have n
training data {x1, . . . , xn}, where xi =

[
xi,1 . . . xi,d

]T
∈ Rd.

We will also use the notation X =
[
x1 . . . xn

]T
∈ Rn×d for

the matrix gathering all the training data. To create a random
node and split the dataset into two subsets, one component of
Rd (denoted as q) is chosen randomly, and a split value p is sam-
pled uniformly in the interval [mini=1,...,n xi,q; maxi=1,...,n xi,q].
The dataset is then split into two parts: the so-called left branch
corresponding to the set {xi, xi,q ≤ p} and the so-called right
branch, corresponding to the set {xi, xi,q > p}. The tree is cre-
ated by applying this procedure iteratively to each branch until
a branch contains a unique data point, or until some depth l has
been reached. To create an IF, this procedure could be applied
several times to the whole learning dataset. However, authors
in Liu et al. (2008) have shown that for each tree, a sub-sample
of the whole dataset of size ψ > 0 (chosen to ψ = 256 in this let-
ter) can be considered with similar performance and improved
computation time.

Once the forest has been created by generating t random iso-
lation trees, the expected path length h(x) to isolate a point x is
computed using the mean of the path lengths required to isolate
the point using each generated tree. Finally, an anomaly score
is defined as

s(x) = 2−
E[h(x)]

c(ψ) , (1)

where c(n) is the average value of h(x) for a dataset of size n,
which can be computed as

c(n) = 2H(n − 1) −
2(n − 1)

n
, (2)

where H(n) is the nth harmonic number (that can be approxi-
mated by ln(n) + γ, where γ ≈ 0.577 is the Euler-Mascheroni’s
constant). Thus, when E[h(x)] = c(n), the anomaly score of x
is s(x, n) = 0.5. When h(x) tends to +∞, i.e., when x is not
an isolated point, the anomaly score tends to 0. Finally, when
h(x) is small compared to c(n), i.e., when x is an isolated point,
the corresponding anomaly score tends to 1. Thus we can de-
fine an anomaly threshold s0 ∈ [0, 1] such that x is detected
as an anomaly when s(x) > s0, and as a nominal data when
s(x) ≤ s0. Of course, the closer the anomaly score to 1, the
more likely x is an anomaly, and the closer the anomaly score
to 0, the more likely x is a nominal vector. Thus, a trade-off

has to be made to determine an appropriate value of s0. Au-
thors in Liu et al. (2008) have proposed values for the different
parameters that are summarized in Table 1. The resulting IF

Table 1: Proposed values for the various parameters of IF.

Parameters Meaning Proposed value
t Number of trees 100
ψ Sub-sample size 256
l Tree maximum depth ceil(log2 ψ) = 8
s0 Anomaly detection threshold 0.6

algorithm is a convenient solution to detect anomalies without
assumptions on the data distribution and it is computationally
efficient. However, this algorithm suffers from a bias due to
the way trees are created. Indeed, by randomly choosing one
dimension to split the data, parallel hyperplanes are used (with
a normal vector collinear to the selected dimension), and data
spread around stripes parallel to the axis and passing through
the cluster have a lower anomaly score, as depicted in Figure 1.

3

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

Fig. 2: Illustration of an EIF drawback using artificial 2D data. A splitting
hyperplane is created by sampling a random unit vector and a random intercept
in the sampling area. As one can see, using this strategy, all the data points are
below the hyperplane (for this outcome). Thus the corresponding right branch
of the tree will be empty.

2.2. Extended IF
To avoid artefacts such as those illustrated in Fig. 1, an im-

proved solution was presented in Hariri et al. (2019) referred
to as EIF. As explained in Hariri et al. (2019), the main draw-
back of IF is due to the way hyperplanes are constructed to
split the data. Indeed, since the drawn normal vectors are
chosen according to each dimension of Rd, a discrete set of
orthogonal directions is generated, which is at the origin of
these vertical lines appearing in the level sets of s(x). To
mitigate this problem, a normal vector w can be sampled for
each decision hyperplane randomly chosen in the unit sphere
of Rd (Hariri et al. (2019)), i.e., a Gaussian vector is sampled
according to u ∼ N(0, Id) ∈ Rd and normalized leading to
w = u/‖u‖2 (Muller (1959)). To select the split value, an in-
tercept vector p ∈ Rd is sampled uniformly in the smallest
axis-bouding hypercube enclosing all the samples at a branch-
ing point (as illustrated in Fig. 2). The two branches of the
tree are defined depending on whether (x − p)T w > 0 (right
branch of the tree) or (x − p)T w ≤ 0 (left branch of the tree).
The hyperplane is thus the one defined by the normal vector
w and containing the intercept point p. One drawback of this
method is that it can lead to empty branches in the tree, which
goes against the idea of IF (whose idea is to split the tree until
the number of points equals one or until a given maximal depth
has been reached in order to efficiently isolate the data). This
situation is depicted in Fig. 2 for the previous 2D example.

This letter studies a variation of EIF avoiding empty branches
in each tree, referred to as generalized isolation forest (GIF),
which is detailed in the next section.

2.3. Generalized Isolation Forest
In order to avoid empty branches in EIF, we transpose the

EIF problem into the original one defining IF. More precisely,
we propose to project all the data on the sampled normal unit

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

Fig. 3: Illustration of the proposed GIF approach. A splitting hyperplane is cre-
ated by sampling a random unit vector and a random intercept in the sampling
area, which reduces to a line (and not a square). This strategy has the advantage
of having data points on each side of the splitting hyperplane.

vector, look for the minimum and maximum values of the pro-
jections (identified by the dotted lines in Fig. 3) and sample a
split value uniformly between these two values. Note that this
sampling ensures that there is at least one data in each branch
of a tree: the first branch being defined from the min value
and the second branch associated with the max value. This is
equivalent to sample an intercept point on the restriction of the
line spanned by the normal vector to the segment between the
minimum and maximum values of the projected data points as
shown in Fig. 3. This strategy ensures that the two branches
of a tree are not empty, contrary to EIF. Note that it is equiv-
alent to EIF where the sampling volume has been reduced to
the convex hull of the data. Empty branches in EIF are due
to intercepts sampled outside the convex hull of the considered
samples and inside the axis-bounding hypercube. For EIF, the
probability of sampling an intercept leading to an empty branch
is therefore the volume between the hypercube and the convex
hull, divided by the volume of the hypercube. Conversely, this
volume equals 0 for GIF. Note that probability of having an
empty branch in EIF increases as the number of dimensions in-
creases, due to the curse of dimensionality, which motivates the
need to avoid such situations. Finally, the proposed method can
be defined by three algorithms summarized in Alg. 1, 2 and 3,
inspired by Hariri et al. (2019) and Liu et al. (2008).

3. Experiments

This section evaluates the performance of the proposed
GIF algorithm using synthetic 2D data and some benchmark
datasets considered in Hariri et al. (2019) and Goldstein (2015).

3.1. Synthetic datasets

In order to appreciate the benefits of GIF with respect to EIF
and IF, we first consider three datasets of synthetic 2D samples

4

Algorithm 1 Create the forest
Input: X - input data, t - number of trees, ψ - subsampling size
Output: Forest - a set of iTrees

1: function iForest(X, t, ψ)
2: initialize Forest ← struct . Empty structure
3: set l = ceil(log2 ψ) . Height limit
4: for all i = 1 to t do
5: X′ ← Sample(X, ψ) . Subsample of size ψ
6: Forest.Tree(i)← iTree(X′, 0, l)
7: end for
8: end function

Algorithm 2 Create a tree
Input: X - input data, e - current tree height, l - height limit
Output: Tree - an iTree

1: function iTree(X, e, l)
2: initialize Tree← struct . Empty structure
3: if e ≥ l or |X| ≤ 1 then
4: Tree.S ize← |X| . Number of remaining data
5: Tree.Type← ’ext’ . No nodes after this one
6: else
7: draw w ∼ N(0, Id)
8: w← w/‖w‖2 . Random unit vector of Rd

9: pmin ← min(Xw)
10: pmax ← max(Xw)
11: draw p ∼ U([pmin; pmax])
12: Xl ← X(Xw ≤ p, :)
13: Xr ← X(Xw > p, :)
14: Tree.Level← e . Level of the node
15: Tree.Le f t ← iTree(Xl, e + 1, l)
16: Tree.Right ← iTree(Xr, e + 1, l)
17: Tree.Normal← w
18: Tree.Threshold ← p
19: Tree.Type← ’int’ . Nodes after this one
20: end if
21: end function

Algorithm 3 Compute isolation score (Path Length)
Input: x - input vector, Tree - an iTree, e - current path length

1: # e must be initialized to 0 when first called
Output: Length - isolation score

2: function PL(x,Tree, e)
3: if Tree.Type = ’ext’ then
4: if Tree.size > 1 then
5: Length← e + c(Tree.size) . see (2)
6: else
7: Length← e
8: end if
9: else

10: w← Tree.Normal
11: p← Tree.Threshold
12: if xT w ≤ p then
13: Length← PL(x,Tree.Le f t, e + 1)
14: else
15: Length← PL(x,Tree.Right, e + 1)
16: end if
17: end if
18: end function

displayed in Fig. 4. For each dataset, IF, EIF and GIF are run on
the same data to learn the corresponding isolation forest. After
building the isolation forests, a square area containing all the
samples is transformed into a 100 × 100 grid. The anomaly
score is computed for each point of this grid in order to build
heat maps that are displayed in Fig. 5. The advantages of EIF
and GIF with respect to IF, as already highlighted in Hariri et al.
(2019), are clear: the “cross” on the single blob, the sinusoid,
and the ghost blobs for the second example disappear for GIF
and EIF. In order to have a quantitative appreciation of the vari-
ous methods, the next experiments consider several benchmark
datasets whose anomalies are detected using the different algo-
rithms.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 0 5 10 15

-5

0

5

10

15

-5 0 5 10 15 20 25 30

-3

-2

-1

0

1

2

3

Fig. 4: Synthetic 2D datasets used to visualize the gain of EIF and GIF.

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

-5 0 5 10 15

-5

0

5

10

15

-5 0 5 10 15

-5

0

5

10

15

-5 0 5 10 15

-5

0

5

10

15

0.5

0.55

0.6

0.65

0.7

0.75

0 10 20 30

-3

-2

-1

0

1

2

3

0 10 20 30

-3

-2

-1

0

1

2

3

0 10 20 30

-3

-2

-1

0

1

2

3

0.6

0.65

0.7

0.75

Fig. 5: Heat maps for the three algorithms and the three datasets: IF, EIF, GIF
from left to right, and single blob, dual blob and sinusoidal from top to bottom.
Pink values correspond to low anomaly scores and yellow to high.

5

3.2. Benchmark datasets

This section evaluates the performance of GIF on the datasets
investigated in Hariri et al. (2019)1 and Goldstein (2015). Note
that the different datasets are described in Table 2 and are
ranked in increasing order regarding the anomaly proportion
(datasets in italic are those used in Hariri et al. (2019)). Since

Table 2: Datasets used in the experiments.

Name Samples n Features d Anomalies
Pen Local 6724 16 0.15%

Forest Cover 286048 10 0.96%
Speech 3686 400 1.65%
Shuttle 46464 9 1.89%

Mammography 11183 6 2.32%
Breast Cancer 367 30 2.72%

Aloi 50000 27 3.02%
ANN Thyroid 6916 21 3.61%

Letter 1600 32 6.25%
Cardio 1831 21 9.60%

Pen Global 809 16 11.12%
Satellite 6435 36 31.64 %

Ionosphere 351 33 35.90 %

IF-based anomaly detectors include some randomness due to
the way the trees are built, Monte-Carlo simulations (using 100
iterations) were performed for all the datasets and the three
methods (IF, EIF and GIF) to compute the average area under
the curve (AUC) for both receiver operational characteristics
(ROC) and precision recall (PR) curves, as well as quantiles
α/2 and 1 − α/2 where α = 5% in order to obtain 95% confi-
dence intervals. The results are gathered in Fig. 6 for the ROC
and in Fig. 7 for PR curves. Note that the computations were

0.4 0.5 0.6 0.7 0.8 0.9 1.0

ROC AUC

’Pen Local’

’Forest Cover’

’Speech’

’Shuttle’

’Mammography’

’Breast Cancer’

’Aloi’

’ANN Thyroid’

’Letter’

’Cardio’

’Pen Global’

’Satellite’

’Ionosphere’ Standard
Extended
Generalized

Fig. 6: Comparison of ROC AUC for several datasets (a line represents a 95%
confidence interval and a dot the corresponding mean).

1The datasets can be downloaded from http://odds.cs.stonybrook.

edu/

0.0 0.2 0.4 0.6 0.8 1.0

PR AUC

’Pen Local’

’Forest Cover’

’Speech’

’Shuttle’

’Mammography’

’Breast Cancer’

’Aloi’

’ANN Thyroid’

’Letter’

’Cardio’

’Pen Global’

’Satellite’

’Ionosphere’ Standard
Extended
Generalized

Fig. 7: Comparison of PR AUC for several datasets (a line represents a 95%
confidence interval and a dot the corresponding mean).

made using Python, with the IF algorithm from scikit learn2,
EIF from the author’s github3, and our own implementation of
GIF. The whole code as long as the datasets are available on
the first author’s webpage4. Note that all datasets have been
preprocessed in order to obtain zero mean and unit variance for
each feature. This preprocessing is not necessary for IF be-
cause splittings are made along a single feature. However, they
are useful for EIF ad GIF especially in high dimensions since
these algorithms are sensitive to scaling.

As one can see, there is not a significant difference between
EIF and GIF in terms of ROC AUC, except for the datasets
Ionosphere, Satellite, Pen Global, and Letter, where EIF seems
to give a better result, and datasets Forest Cover and Cardio in
favor of GIF. EIF and GIF also provide good results when com-
pared to IF, except for the dataset ANN Thyroid. Regarding PR
AUC, EIF and GIF seem to have the same behavior, except for
datasets Forest Cover and Shuttle, where GIF outperforms EIF.
Finally note that EIF performs better than IF and GIF for the
dataset Ionosphere. From these experiments, we conclude that
the performances of EIF and GIF are globally similar. In order
to appreciate the interest of GIF, we have compared the execu-
tion times of the different algorithms, i.e., the time required to
produce the forest (for both EIF and GIF) and the average pro-
portion of external nodes at the maximum depth among all the
external nodes computed for all the trees of a forest. The results
are shown in Figs 8 and 9.

As one can see, the times to compute the forests are sig-
nificantly smaller for GIF compared to EIF, with generally
smaller confidence intervals. The mean proportion of limit
nodes among all the external nodes shows the capability of the
method to isolate data. Indeed, an external node is either due
to a reach of the given maximal depth, or to an isolated data.
Therefore, if this number is close to one, few data are isolated

2https://scikit-learn.org/stable/
3https://github.com/sahandha/eif
4http://perso.tesa.prd.fr/jlesouple/codes.html

6

0 1 2 3 4 5 6 7 8

Forest creation time [s]

’Pen Local’

’Forest Cover’

’Speech’

’Shuttle’

’Mammography’

’Breast Cancer’

’Aloi’

’ANN Thyroid’

’Letter’

’Cardio’

’Pen Global’

’Satellite’

’Ionosphere’ Extended
Generalized

Fig. 8: Comparison of EIF and GIF computation times for several datasets (a
line represents a 95% confidence interval and a dot the corresponding mean).

0.35 0.40 0.45 0.50 0.55 0.60 0.65

Proportion of external nodes at max depth

’Pen Local’

’Forest Cover’

’Speech’

’Shuttle’

’Mammography’

’Breast Cancer’

’Aloi’

’ANN Thyroid’

’Letter’

’Cardio’

’Pen Global’

’Satellite’

’Ionosphere’ Extended
Generalized

Fig. 9: Comparison of external nodes at maximum depth proportion for several
datasets (a line represents a 95% confidence interval and a dot the correspond-
ing mean).

(and conversely, the lower the mean proportion of limit nodes,
the more data are isolated by the method). As the purpose of
IF methods is precisely to isolate data, this ratio should be as
low as possible. As one can see in Fig. 9, GIF leads to smaller
proportions of this ratio than EIF (except for the Aloi dataset),
which was expected.

3.3. Anomaly scores

To assess the robustness of the EIF to the artefacts presented
in Fig. 1, authors in Hariri et al. (2019) proposed to analyze
the anomaly scores of the algorithm when applied to isotropic
Gaussian data. Indeed, for such data, the anomaly score should
remain almost the same for data located at the same distance
from the mean. To extend these experiments to the proposed
method, IF, EIF and GIF were trained on the 2D single blob
synthetic dataset, and testing points were generated around con-
stant radii, as shown in Fig. 10. The mean scores versus con-

10 5 0 5 10
x

10

5

0

5

10

y

Testing data
Training Data

Fig. 10: Single blob with additional concentric testing data to compute mean
statistics for a given distance to the blob center. The red circles represent 1, 2
and 3 data standard deviations.

stant radius and the corresponding standard deviations are plot-
ted for the various algorithms in Fig. 11a.

As one can see, the anomaly scores are equivalent for all the
algorithms: there is a fast increase from zero to a value in the
interval (2, 3) when the radius increases, and slower variations
afterwards. One can observe that the standard deviations of the
scores are significantly larger for IF than for EIF and GIF, which
is explained by the absence of the “cross” effect for this dataset.
These results were already shown in Hariri et al. (2019) and are
repeated here to show that the proposed GIF performs similarly
to EIF, with the advantage of being faster, thanks to the absence
of empty branches in the trees. The same experiments were run
on a 3D blob and a 4D blob, as shown in Figs. 11b and 11c
leading to the same conclusions.
The convergence of the mean anomaly scores was also studied,
as in Hariri et al. (2019) . The average anomaly scores for the
inner an outer shell of each blob and the corresponding standard
deviations were computed for each blob for various numbers of
trees in the forest. The results are depicted in Figs. 12a, 12b
and 12c for the 2D, 3D and 4D blobs respectively. As one can
see, EIF and GIF provide similar results, with lower standard
deviations when compared to the standard IF algorithm. More-
over, the anomaly scores for EIF and GIF seem to converge to a
constant value using a relatively small number of trees (around
100 trees in each forest).

4. Conclusion

This letter studied a new isolation forest algorithm referred to
as generalized isolation forest for anomaly detection. This al-
gorithm allows some artefacts of isolation forest to be bypassed
and produces trees without empty branches, which is a draw-
back of the extended isolation forest (EIF) algorithm. Experi-
mentations on both synthetic and benchmark datasets allowed

7

0 2 4 6 8 10
Radius

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
S

co
re

 M
ea

n

Standard
Extended
Generalized

0 2 4 6 8 10
Radius

0.01

0.02

0.03

0.04

0.05

S
co

re
 S

ta
nd

ar
d

D
ev

ia
tio

n

Standard
Extended
Generalized

(a) 2D blob.

0 2 4 6 8 10
Radius

0.40

0.45

0.50

0.55

0.60

0.65

0.70

S
co

re
 M

ea
n

Standard
Extended
Generalized

0 2 4 6 8 10
Radius

0.01

0.02

0.03

0.04

S
co

re
 S

ta
nd

ar
d

D
ev

ia
tio

n

Standard
Extended
Generalized

(b) 3D blob.

0 2 4 6 8 10
Radius

0.40

0.45

0.50

0.55

0.60

0.65

0.70

S
co

re
 M

ea
n

Standard
Extended
Generalized

0 2 4 6 8 10
Radius

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

S
co

re
 S

ta
nd

ar
d

D
ev

ia
tio

n

Standard
Extended
Generalized

(c) 4D blob.

Fig. 11: Mean anomaly scores (left) and corresponding standard deviations
(right) for the various algorithms versus the radius. The vertical blue lines
represented the 1, 2 and 3 standard deviations.

us to evaluate the performance of the proposed method, which
is similar to that obtained with EIF. However, the proposed al-
gorithm has a significantly reduced execution time when com-
pared to EIF, and requires few parameters to store (a threshold
at each node for GIF versus an intercept vector for each node
for EIF). Future work will consider active learning and the in-
jection of user feedback into the anomaly detectors to reduce
the false alarm rate and improve anomaly detection.

References

Brause, R., Langsdorf, T., Hepp, M., 1999. Neural Data Mining for Credit Card
Fraud Detection, in: Proc. Int. Conf. on Tools with Artificial Intelligence, pp.
103–106.

Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J., 2000. LOF: Identifying
Density-Based Local Outliers, in: Proc. Int. Conf. on Management of Data
(SIGMOD), Dallas, Tx. pp. 93–104.

Chandola, V., Banerjee, A., Kumar, V., 2009. Anomaly Detection: A Survey.
ACM Computing Surveys 41, 15:1–15:58.

Dutta, J.K., Banerjee, B., 2019. Comparison of Sparse Coding-based versus
Traditional Outlier Detection Methods. Pattern Recognition Letters 122,
99–105.

Goldstein, M., 2015. Unsupervised Anomaly Detection Benchmark. URL:
https://doi.org/10.7910/DVN/OPQMVF, doi:10.7910/DVN/OPQMVF.

Hariri, S., Kind, M.C., Brunner, R.J., 2019. Extended Isolation Forest. IEEE
Trans. Knowl. Data Eng. , 1–1.

İnkaya, T., Kayalgil, S., Özdemirel, N.E., 2015. An Adaptive Neighbourhood
Construction Algorithm Based on Density and Connectivity. Pattern Recog-
nition Letters 52, 17–24.

Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A., 2009. LoOP: Local Outlier
Probabilities, in: Proc. Int. Conf. on Information and Knowledge Manage-
ment (CIKM), Hong-Kong, China. pp. 1649–1652.

Leach, M.J.V., Sparks, E.P., Robertson, N.M., 2014. Contextual Anomaly De-
tection in Crowded Surveillance Scenes. Pattern Recognition Letters 44,
71–79.

Liu, F.T., Ting, K.M., Zhou, Z.H., 2008. Isolation Forest, in: Proc. Int. Conf.
on Data Mining (ICDM), Pisa, Italy. pp. 413–422.

Muller, M.E., 1959. A Note on a Method for Generating Points Uniformly on
N-Dimensional Spheres. Commun. ACM 2, 19–20.

Pilastre, B., Boussouf, L., d’Escrivan, S., Tourneret, J.Y., 2020. Anomaly De-
tection in Mixed Telemetry Data Using a Sparse Representation and Dictio-
nary Learning. Signal Processing 168, 107474.

Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.,
2001. Estimating the Support of a High-Dimensional Distribution. Neural
Computation 13, 1443–1471.

Tax, D.M., Duin, R.P., 2004. Support Vector Data Description. Machine Learn-
ing , 45–66.

Yairi, T., Takeishi, N., Oda, T., Nakajima, Y., Nishimura, N., Takata, N., 2017.
A Data Driven Health Monitoring Method for Satellite Housekeeping Data
Based on Probabilistic Clustering and Dimensionality Reduction. IEEE
Trans. Aerosp. Electron. Syst. 53, 1384–1401.

8

0 100 200 300 400
Number of Trees

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
no

m
al

y
S

co
re

0 100 200 300 400
Number of Trees

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
no

m
al

y
S

co
re

0 100 200 300 400
Number of Trees

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
no

m
al

y
S

co
re

(a) 2D blob.

0 100 200 300 400
Number of Trees

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
no

m
al

y
S

co
re

0 100 200 300 400
Number of Trees

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
no

m
al

y
S

co
re

0 100 200 300 400
Number of Trees

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
no

m
al

y
S

co
re

(b) 3D blob.

0 100 200 300 400
Number of Trees

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
no

m
al

y
S

co
re

0 100 200 300 400
Number of Trees

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
no

m
al

y
S

co
re

0 100 200 300 400
Number of Trees

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
no

m
al

y
S

co
re

(c) 4D blob.

Fig. 12: Mean score for inner (bottom) and outer (top) shells versus the number of trees in the forest with corresponding standard deviations (vertical lines) for IF
(left), EIF (center) and GIF (right).

