ITSNT 2018 15/11/2018

Joint Design of GNSS Signal and Message Structure for Galileo 2nd Generation

Lorenzo Ortega Espluga*, TéSA* Charly Poulliat, Marie-Laure Boucheret*, Toulouse INP* Marion Aubault, *CNES* Hanaa Al Bitar, *Thales Alenia Space*

- Context: Galileo 2nd Generation (G2G)
- Goal:
 - Improve the acquisition phase
 - Improve the receiver sensitivity
 - Reduce the TTFF*
- Opportunity:
 - \circ $\,$ Design a new signal to improve the acquisition phase $\,$
- Wayforward:
 - Design of a new modulation
 - Design of a new family of PRN* code
 - Co-design of the message structure and the channel coding scheme

ThalesAlenia

PRN* = Pseudo Random Noise TTFF* = Time To First Fix

Content

- Introduction & background
- Design a new modulation for fast acquisition:
 o BCS
- Design new PRN codes for fast acquisition:
 - o Random codes
- Co-design of the message structure and channel coding:

cnes · · · ·

- Maximum distance separable codes(MDS)
- o Full diversity Codes
- Conclusion
- Future Lines

Content

Introduction & background

- Design a new modulation for fast acquisition:
 o BCS
- Design new PRN codes for fast acquisition:
 - o Random codes
- Co-design of the message structure and channel coding :

cnes · · · ·

- Maximum distance separable codes(MDS)
- Full diversity Codes
- Conclusion
- Future Lines

• What does improving the TTFF involve?

• What does improving the receiver sensitivity involve?

· cnes · · ·

• What does improving the TTFF involve?

$$TTFF = T_{warm-up} + T_{acq} + T_{track} + T_{CED} + T_{PVT}$$

- What does improving the receiver sensitivity involve?
 - Acquisition
 - Tracking
 - Data Demodulation ...

cnes · · ·

cnes · · · ·

TeSA

cnes · ·

TesA

Content

- Introduction & background
- Design a new modulation for fast acquisition:
 BCS
- Design new PRN codes for fast acquisition:
 - o Random codes
- Co-design of the message structure and channel coding:

ThalesAlenia . .

- Maximum distance separable codes(MDS)
- Full diversity Codes
- Conclusion
- Future Lines

(10)

TesA

C

cnes ·

ThalesAlenia

Space

• Spreading Modulation Criteria for Design

Figure of Merit	Criteria			
Radio Frequency Compatibility	SSC			
Correlation Properties	ACF			
Resistance Against Multipath	MPEE			
Ranging Performance	Gabor bandwidth			
	Demodulation & anti-jamming of narrowband			
	Code tracking & anti-jamming of narrowband			
Anti-Jamming Capability				
	Demodulation & anti-jamming of matched			
	spectrum			
	Code tracking & anti-jamming of matched			
	spectrum			

(11)

C

cnes · · ·

• Standard spreading modulations:

· · cnes · · · ·

Tes

ThalesAlenia

Space

- Binary Coded Symbol (BCS)
 - Spreading modulation candidate

ThalesAlenia

Space

cnes · · ·

• Spreading modulation candidates

Already proposed candidates		Proposed candidates		
BOCcos(0.5,0.5)	BOCsin(4, 1),	BCS[-1,1](0.5)	BCS[-1,-1, -1, 1, 1](1)	
BOCsin(0.5,0.5)	BOCcos(4,1),	BCS[-1,1,-1](0.5)	BCS[-1,1,-1](1)	
BOCsin(4,0.5)	BOCsin(6.5,0.5)	BCS[-1,-1,-1,1,1](0.5)	BCS[-1,-1,-1,1,-1](1)	
BOCcos(4,0.5)	BOCcos(6.5,0.5)			

Current L1 bandwidth spectral occupation

2

cnes ·

ThalesAlenia

Space

• Evaluation of the spreading modulation candidates

Radio frequency compatibility

Design new modulation

	SSC Coefficients Interfer						interference
BOCcos ₀ (6.5,0.5)	-88.43	-78.27	-79.09	-77.49	-90.91	-90.29	
BOCsin ₀ (6.5,0.5)	-85.40	-77.79	-78.46	-77.85	-94.23	-92.64	
BOCcos ₀ (4,0.5)	-88.96	-73.54	-87.47	-80.91	-96.51	-94.08	
BOCsin ₀ (4,0.5)	-82.93	-73.26	-82.99	-81.20	-95.06	-94.09	
BOCcos ₀ (4,1)	-85.95	-73.66	-84.46	-80.46	-93.48	-93.83	
Candidates BOCsin ₀ (4,1)	-79.92	-73.11	-79.98	-81.00	-92.04	-93.84	
BOCcos ₀ (0.5,0.5)	<u>-66.12</u>	-70.48	-65.27	-83.92	-92.96	-93.57	
BOCsin ₀ (0.5,0.5)	-63.11	-70.32	-66.52	-86.13	-95.17	-95.79	
BCS[-1 1](0.5)	-63.11	-70.32	-66.52	-86.13	-95.17	-95.79	
BCS[-1 1-1](0.5)	-66.75	-70.48	-64.86	-83.92	-92.94	-93.56	
BCS[-1 -1 -1 1 1](0.5	-63.09	-70.32	-66.57	-86.13	-95.17	-95.79	
BCS[-1 -1 -1 1 1](1)	-67.39	-70.56	-65.50	-83.12	-91.68	-92.80	
BCS[-1 1 -1](1)	-71.40	-70.89	-68.98	-80.90	-88.80	-91.90	
BCS[-1 -1 -1 1 -1](1)	-66.11	-70.89	-69.37	-80.90	-91.31	-94.60	Less
	BPSK ₀ (1)	BPSK ₀ (10)	MBOC	BOCsin ₀ (10,5)	BOCcos ₀ (14,2)	BOCcos ₀ (15,2.5)	interference

Current signals

More

• Evaluation of the spreading modulation candidates

ThalesAlenia

Space

Tes

16

cnes ·

• Correlation properties

- Evaluation spreading modulation candidates
 - Resistance against multipath

ThalesAlenia

Space

cnes ·

Tes

• Evaluation of the spreading modulation candidates

ThalesAlenia

Ranging Performance

Tes

cnes

• Evaluation of the spreading modulation candidates

• Anti-Jamming coefficients

cnes ·

Tes

ThalesAlenia

Space

Design new modulation

• Evaluation of the spreading modulation candidates

ThalesAlenia

Space

cnes ·

• Polygon performance

Design new modulation

• Evaluation of the spreading modulation candidates

BCS[-1,-1,-1,1,-1](1)

Ċ

cnes ·

Tes

ThalesAlenia

Space

Content

- Introduction & background
- Design a new modulation for fast acquisition:
 o BCS
- Design new PRN codes for fast acquisition:
 - o Random codes
- Co-design of the message structure and channel coding :

cnes · · · ·

- Maximum distance separable codes(MDS)
- Full diversity Codes
- Conclusion
- Future Lines

23

TéSA

C

cnes · · ·

Design new PRN codes

• PRN codes criteria for design

Criteria	Equations		
Acquisition Criterion	$MEWSD^{MP} = mean(\sum_{n_{foffs}}\sum_{ACF^{e}(l,f_{offs}) > \Phi_{min}}^{N-1} (ACF^{e}(l,f_{offs}) - \Phi_{min})^{2})$		
	$MEWSD^{CT}_{i,j} = mean(\sum_{n_{foffs}}\sum_{CC^{e}(l,f_{offs}) > \Phi_{min}}^{N-1} (CC^{e}(l,f_{offs}) - \Phi_{min})^{2})$		
Tracking Criterion	$MF_{i}^{MP} = \frac{1}{n_{foffs}} \left(\sum_{n_{foffs} \ l=1,2,N-2,N-1} (AC_{i}^{\ e} (l, f_{offs}))^{2} \right)$		
	$MF_{i,j}{}^{CT} = \frac{1}{n_{foffs}} (\sum_{n_{foffs}} (\sum_{l=0}^{N-1} (CC_{i,j}{}^{e} (l, f_{offs}))^{2})$		
Robustness Against Narrow-Band Interferences Criterion	$ELW = 10\log(\frac{1}{n}\sum_{\substack{k=-\frac{n}{2}\\A_k > \sqrt{n}}}^{\frac{n}{2}} (A_k - \sqrt{n})^2)$		

PRN codes assessment

$$R_i = \sum_{j=1}^{5} -w_j \frac{\overline{cv_j} + cv_{i,j}}{\overline{cv_j}} \text{ for } i = 1, 2, \dots K$$

Weight = [0.2, 0.2, 0.2, 0.2, 0.2]

ThalesAlenia

Design new PRN codes

ThalesAlenia

• PRN codes assessment

Content

- Introduction & background
- Design a new modulation for fast acquisition:
 o BCS
- Design new PRN codes for fast acquisition:
 Random codes
- Co-design of the message structure and channel coding:

cnes · · · ·

- Maximum distance separable codes(MDS)
- Full diversity Codes
- Conclusion
- Future Lines

- What do we need ?
- CRC (Cyclic Redundancy Check) which provides information about the integrity of the message.
- Good error correction capabilities under harsh channel conditions.

ThalesAlenia

• Under good channel conditions, be capable of retrieving the CED with just the CED redundancy data (thanks to this capability we are able to reduce the T_{CED}).

ThalesAlenia

C

cnes · ·

GPS L1C Message Structure

Amplitude of block fading channel

Ċ

cnes .

TesA

ThalesAlenia

Space

Co-design message structure and channel cnes · **ThalesAlenia** coding Block fading channel model Block erasure channel Fading $X_{N_f/nc}$ X_{N_f} X_1 X_2

Block 1

Block 2

Fading = not have already received the information

but we are able to retrieve the information with the first part Maximum distance separable (MDS) property

ThalesAlenia

TesA

cnes · ·

- Lowest Density-Maximum Distance Separable (LD-MDS) codes
- Maximum Distance Separable (MDS) codes
- Regular Root codes

LD-MDS codes

With any 2 error-free-blocks we retrieve the information \rightarrow Erasure algorithm In case of errors with more than 2 blocks \rightarrow BP Algorithm

ThalesAlenia

cnes · ·

LD-MDS codes

(36)

TéSA

Ċ

cnes ·

ThalesAlenia

Space

MDS codes

Tesa

ThalesAlenia

Space

MDS codes

(38)

TéSA

Ċ

cnes ·

Regular-Root codes

They have full diversity property under BP algorithm

cnes · ·

ThalesAlenia

Space

Example:

We don't need erasure algorithm → Running BP algorithm, we retrieve the information

TeSA

(39)

ThalesAlenia

(40)

TéSA

cnes ·

Cumulative Distribution Function (CDF)

Under good channel conditions, we reduce the T_{CED}

Ċ

cnes ·

TesA

ThalesAlenia

pace

cnes

Cumulative Distribution Function (CDF)

 $CDF [C/N_0 = 25 dBHz]$

Results

ThalesAlenia

(43)

Content

- Introduction & background
- Design a new modulation for fast acquisition:
 o BCS
- Design new PRN codes for fast acquisition:
 - o Random codes
- Co-design of the message structure and channel coding :

cnes · · · ·

ThalesAlenia

- Maximum distance separable codes(MDS)
- Full diversity Codes

Conclusion

• Future Lines

Conclusion

 Objective : Design a new signal to improve the acquisition phase

cnes · ·

45

ThalesAlenia

 To improve the receiver sensitivity and to reduce the TTFF*

Content

- Introduction & background
- Design a new modulation for fast acquisition:
 o BCS
- Design new PRN codes for fast acquisition:
 - o Random codes
- Co-design of the message structure and channel coding :

cnes · · · ·

46

- Maximum distance separable codes(MDS)
- Full diversity Codes
- Conclusion
- Future Lines

- Next step:
 - \circ Multiplexing the new signal

Ċ

cnes · · · ·

Te

