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Abstract— In standard two-step Global Navigation Satellite
Systems (GNSS) receiver architectures the precision on the
position, velocity and time estimates is driven by the precision
on the intermediate parameters, i.e., delays and Dopplers.
The estimation of the time-delay is in turn driven by the
baseband signal resolution, that is, by the type of broadcasted
signals. Among the different GNSS signals available the so-
called AltBOC modulated signal, appearing in the Galileo
E5 band and the new GNSS meta-signal concept, is the one
which may provide the better time-delay precision. In order
to meet the constraints of safety-critical applications such
as Intelligent Transportation Systems or automated aircraft
landing, it is fundamental to known the ultimate code-based
precision achievable by standalone GNSS receivers. The main
goal of this contribution is to assess the time-delay precision of
AltBOC type signals. The analysis is performed by resorting to
a new compact closed-form Cramér-Rao bound expression for
time-delay estimation which only depends on the signal samples.
In addition, the corresponding time-delay maximum likelihood
estimate is also provided to assess the minimum signal-to-noise
ratio that allows to be in optimal receiver operation.

I. INTRODUCTION

In the context of Intelligent Transportation Systems (ITS),
either for autonomous cars, ships or unmanned ground/air
vehicles (robots/drones), positioning, navigation and timing
(PNT) systems are a fundamental key component to design
reliable, safe and smart ecosystems. More precisely, there is
an actual need to provide precise, continuous and reliable
navigation information, not only for the autonomous system
itself but also for vulnerable road user such as cyclists and
pedestrians, and upper layers of the system dealing, for
instance, with traffic control and emergency services.

Several navigation systems are available, from Global
Navigation Satellite Systems (GNSS), to alternative ranging
strategies exploiting cellular signals (LTE/5G) or dedicated
infrastructure (i.e., IR-UWB), vehicle-to-everything (V2X)
communications to obtain peer-to-peer measurements, local
inertial navigation systems (INS), or possible combinations
of these standalone solutions. Among them, the main player
and positioning gold standard source of navigation infor-
mation is GNSS, both standalone or in multi-sensor data
fusion strategies. But notice that these GNSS still have
several limitations to be used as standalone navigation sys-
tem: i) they may be affected by attacks such as jamming
and spoofing [1], ii) be severely degraded in non-nominal
propagation conditions [2], or iii) lack the precision needed
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in the ITS context (i.e., sub-meter lane-level precision). In
this contribution we further explore the latter.

In the context of precise navigation, it is common practice
to resort to carrier phase-based differential techniques such
as Real-Time Kinematics (RTK) [3, Ch. 26], or Precise Point
Positioning (PPP) techniques [3, Ch. 25]. The former require
a reference station and are only valid for short baseline
ranges to ensure that the two receivers observe the same
propagation errors. The latter require precise satellite orbit,
clocks and propagation errors corrections, and need a long
convergence time of tens of minutes, which limit their use
for many practical real-time applications. In both cases the
main problem is the resolution of carrier phase ambiguities
(i.e., unknown number of cycles inside the baseband signal
resolution). On the other hand, the precision of standard
code-based GNSS navigation is driven by the baseband
signal resolution, that is, by the type of signal broadcasted
by the satellites (i.e., Pseudo-Random Noise (PRN) codes
and subcarrier modulation), which may be on the order of
some meters for the most basic signals (i.e., GPS L1 C/A).

In conventional two-step GNSS receiver architectures, the
positioning precision is linked to the precision on the time-
delay estimation, which can be assessed by resorting to the
Cramér-Rao bound (CRB) [4], an accurate lower bound on
the mean square error (MSE) sense under certain conditions
(i.e., in the high signal-to-noise ratio (SNR) regime). Among
the different GNSS signals the ones which may provide a
better time-delay precision are the so-called Alternate Binary
Offset Carrier (AltBOC), used in the complete Galileo E5
band but which also appear within the context of GNSS
meta-signals [5], [6], being a promising solution for code-
based precise navigation. In this article, we aim to evalu-
ate the achievable time-delay estimation performance (i.e.
assuming no external errors such as atmospherics delays,
orbital or satellite clock errors, or environment-specific ef-
fects) of these AltBOC and GNSS meta-signals. To provide
this performance assessment we resort to a recently proposed
time-delay estimation compact-form CRB expression which
only depends on the signal samples [7]. This new CRB is
computed for the different combinations of GNSS bands (i.e.,
E5A+E5B, E5A + E6-BC, E5B + E6-BC) in order to assess
which is the ultimate time-delay precision achievable by a
standalone GNSS receiver. These results are compared to
the legacy GPS L1 C/A and standalone E6 and E5B signals.
Finally, in order to validate the CRB and obtain the minimum
SNR which allows an optimal receiver operation point, we
also provide the corresponding time-delay maximum likeli-
hood estimate (MLE), known to be asymptotically efficient.



II. SIGNAL MODEL

We consider the transmission of a band-limited GNSS
signal cptq (bandwidth B), so-called PRN code in the GNSS
terminology, over a carrier frequency fc (λc “ c

fc
), from a

transmitter (satellite) T at position pT ptq “ pT ` vT t to
a receiver R at position pRptq “ pR ` vRt. The complex
analytic signal at the output of the receiver’s antenna can be
written as xAptq “ αRcRptq ` nAptq, with nAptq a zero-
mean white complex Gaussian noise, and where the gain
αR depends on the transmitted signal power, the transmit-
ter/receiver antenna gains and polarization vectors, and the
radial distance between T and R, pTR ptq [8], [9]. If this
radial distance can be approximated by a first order model,

}pTR ptq} fi }pR ptq ´ pT pt´ τ ptqq} “ cτ ptq » d` vt,

with τ ptq “ τ`bt, τ “ d{c and b “ v{c. Using the standard
narrow-band assumption then

cR ptq “ c pt´ τq e´j2πfcτej2πfcp1´bqt, (1)

and the baseband output of the receiver’s Hilbert filter is

x ptq “ αc pt´ τq e´j2πfcbt ` n ptq , (2)

with nptq a complex white Gaussian noise within the filter
bandwidth with unknown variance σ2

n, and α “ αRe
´j2πfcτ .

The discrete vector signal model is build from N “ N2 ´

N1 ` 1 samples at Ts “ 1
Fs

,

x “ αa pηq ` n, (3)

x “ px pN1Tsq , . . . , x pN2Tsqq
J,

n “ pn pN1Tsq , . . . , n pN2Tsqq
J,

c pτq “ pc pN1Ts ´ τq , . . . , c pN2Ts ´ τqq
J,

a pηq “ ppc pτqq1e
´j2πfcbN1Ts , . . . , pc pτqqNe

´j2πfcbN2TsqJ,

where η “ rτ, bsT , n „ CN
`

0, σ2
nIN

˘

. Since the trans-
mitter/receiver antenna gains and polarization vectors are
in general unknown, α is assumed to be an unknown
complex parameter as well [9]–[13]. Thus, the unknown
deterministic parameters [14] can be gathered in vector ε “
rσ2
n, τ, b, α, α

˚sT , where α˚ is the complex conjugate of α.

III. TIME-DELAY CRB FOR BAND-LIMITED SIGNALS
AND MAXIMUM LIKELIHOOD ESTIMATION

A. CRB for Time-delay Estimation

In a recent contribution [7] we derived a new compact
closed-form CRB for the time-delay estimation of a generic
band-limited signal, given by

Fτ |ε pεq “ 2SNRoutF
2
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where SNRout “
|α|2E
pσ2
n{Fsq

“
|α|2

σ2
n

cHc and E the energy of the
signal. Λ and V are defined as (for N1 ď n, n1 ď N2)
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n1 “ n : 0
. (5b)

B. Maximum Likelihood Time-delay Estimator

Considering the signal model (3), the time-delay MLE is
defined as1 [13]

τ̂ “ argmin
τ
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which is useful to determine the value of SNRout (threshold)
which allows to reach the CRB, because it is known that such
estimator is asymptotically efficient (e.g., in the high SNR
regime) for the conditional signal model of interest [15] [16].

IV. INTRODUCTION TO GNSS META-SIGNALS

In this section, we present the concept of GNSS meta-
signals, introduced for the first time in [5]. The GNSS meta-
signal idea is that two different GNSS signals transmitted
at two different carrier frequencies can be expressed as a
single Alternate Binary Offset Carrier (AltBOC) modulated
signal [17]. Based on that initial work, [6] further discussed
the fundamental concept of GNSS meta-signals, proving
through analytical and practical implementations that unlike
other conventional methods, where GNSS receivers process
multiple signals, the GNSS meta-signal method was capable
to improve the single-point ranging accuracy over that of the
better of the two generating signals.

A. Generalized AltBOC

The AltBOC modulation was original introduced as a
method to combine Galileo signals within the E5a and E5b
bands. This solution was rapidly accepted by the Galileo
Signal Task Force (GSTF) due to the fact that the AltBOC
modulation: i) provides a Constant Envelope Modulation
(CEM), which avoids non-linear distortions at the output of
the High Power Amplifier (HPA), and ii) it provides a high
level of isolation between two frequency bands [17].

The easiest form of AltBOC modulation is the one where
two independent PRN codes are multiplexed. Let us define
the BOC subcarrier with cosine and sine phasing as,

SCcosptq “ sign pcos p2πFsubtqq , (7)
SCsinptq “ sign psin p2πFsubtqq . (8)

1Let S “ span pAq, with A a matrix, be the linear span of the set of its
column vectors, SK the orthogonal complement of the subspace S, ΠA “

A
`

AHA
˘

AH the orthogonal projection over S, and ΠK
A “ I´ΠA.



where Fsub represents the subcarrier frequency. Then, we
can built the Single Side Band (SSB) subcarrier SCSSB and
its conjugate SC˚SSB as,

SC4,SSBptq “
1
?
2
pSCcosptq ` j ¨ SCsinptqq , (9)

SC˚4,SSBptq “
1
?
2
pSCcosptq ´ j ¨ SCsinptqq . (10)

Note that (9) can take 4 values and it can be also derived as,
$

’

&

’

%

SCSSBptq “ ejp
π
4`i¨

π
2 q;

t mod Tsub P

”

i¨Ts
4 , pi`1q¨Tsub

4

ı

,

(11)

with i P r0, 1, 2, 3s and Tsub “ 1{Fsub. Finally, the 2 code
AltBOC can be defined as,

cptq “ cAptqSC
˚
4,SSBptq ` cBptqSC4,SSBptq

“ rcAptq ` cBptqsSCcosptq

` j ¨ rcBptq ´ cAptqsSCsinptq (12)

where cAptq and cBptq represent binary PRN codes of the
low (A) and high (B) band signals, respectively. Note from
the previous equation that codes cAptq and cBptq are not
required to have the same chip rate.

Considering two independent codes (in-phase/quadrature)
per each frequency band, a 4 code AltBOC modulation can
be expressed as,

cptq “ rcA,Iptq ` j ¨ cA,QptqsSC
˚
4,SSBptq

` rcB,Iptq ` j ¨ cB,QptqsSC4,SSBptq (13)

where cA,Iptq and cA,Qptq represent binary in-
phase/quadrature codes of the A band and cB,Iptq and
cB,Qptq represent binary in-phase/quadrature codes of the
B band. The resulting constellation from (13) was shown
in [17] to not a have constant envelope and consequently
such modulation cannot be used with HPA working
at the saturation point. In order to obtain a CEM, an
intermodulation product [18] must be added within the
composite signal, yielding (13) to [19],

cptq “ rcA,Iptq ` j ¨ cA,QptqsSC
˚
8,SSBptq

` rcB,Iptq ` j ¨ cB,QptqsSC8,SSBptq

`

”

cA,Iptq ` j ¨ cA,Qptq
ı

SC˚P,8,SSBptq

`

”

cB,Iptq ` j ¨ cB,Qptq
ı

SCP,8,SSBptq (14)

where,

cA,Iptq “ cA,QptqcB,IptqcB,Qptq,

cA,Qptq “ cA,IptqcB,IptqcB,Qptq,

cB,Iptq “ cB,QptqcA,IptqcA,Qptq,

cB,Qptq “ cB,IptqcA,IptqcA,Qptq, (15)

and SC8,SSBptq is the SSB "single" subcarrier of the 4 code
AltBOC. Moreover, SCP,8,SSBptq is defined as the "product"

subcarrier. Both subcarriers can take 8 different values [17],
$
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(17)

with i P r0, 1, 2, 3, 4, 5, 6, 7s. Note from [17] that most of
the energy of SCP,8,SSBptq and SC˚P,8,SSBptq is located
in the fundamental harmonics, Fsub and ´Fsub, respec-
tively. On the other hand, the energy of SCP,8,SSBptq and
SC˚P,8,SSBptq is located in the harmonics ´3Fsub, 5Fsub
and 3Fsub, ´5Fsub, respectively.

B. GNSS Meta-signal Examples

In previous works, three different GNSS meta-signals have
been proposed
‚ Galileo E5A + E6-BC: AltBOC(50,10,5) [5], [6],
‚ Galileo E5B + E6-BC: AltBOC(35,10,5) [5], [6]
‚ GPS L5 + L2C: AltBOC(25,10,1) [6].

In both works [5], [6], the GNSS Meta-signal build from the
combination of the Galileo E5b and Galileo E6-BC signals
has been shown to be especially interesting. This is due
to the fact that this specific GNSS meta-signal is centered
at 1242.925 MHz which is exactly half frequency of the
carrier frequency of a possible S-band signal [5]. In this
paper, we focus on those GNSS meta-signals build from
the combination of different Galileo signals. Then, in the
following subsection we summarize the signal structure of
Galileo E5 and Galileo E6.

B.1) Galileo E5
Within the Galileo E5 band, the Galileo System generates

and broadcasts the sE5ptq signal. This signal is separated
in four signal components and it is allocated in two differ-
ent frequency sub-bands, denoted as E5-A (1176.45 MHz)
and E5-B (1207.14 MHz). Within each sub-band, one data
component (in-phase), denoted as sE5X,I ptq, and one pilot
component (in quadrature), denoted as sE5X,Qptq, are trans-
mitted. Note that X denotes the frequency sub-band, yielding
to X “ A when the frequency sub-band is E5-A and X “ B
when the frequency sub-band is E5-B [20].

The signal components contain the following elements:
‚ The F/NAV navigation message [20] dE5A,I ptq, trans-

mitted by the signal component sE5A,I ptq with a symbol
rate of 50 symbols/s.

‚ The I/NAV navigation message [20] dE5B,I ptq, transmit-
ted by the signal component sE5B,I ptq with a symbol
rate of 250 symbols/s.

‚ The ranging code cE5A,I ptq, transmitted by the signal
component sE5A,I ptq, is a tiered code, where a sec-
ondary code sequence of length 20 symbols is used
to modify successive repetitions of a primary PRN



sequence of 10230 chips. The tiered code period lasts
20 ms.

‚ The ranging code cE5A,Qptq, transmitted by the signal
component sE5A,Qptq, is a tiered code, where a sec-
ondary code sequence of length 100 symbols is used
to modify successive repetitions of a primary PRN
sequence of 10230 chips. The tiered code period lasts
100 ms

‚ The ranging code cE5B,I ptq, transmitted by the signal
component sE5B,I ptq, is a tiered code, where a sec-
ondary code sequence of length 4 symbols is used
to modify successive repetitions of a primary PRN
sequence of 10230 chips. The tiered code period lasts
4 ms

‚ The ranging code cE5B,Qptq, transmitted by the signal
component sE5B,Qptq, is a tiered code, where a sec-
ondary code sequence of length 100 symbols is used
to modify successive repetitions of a primary PRN
sequence of 10230 chips. The tiered code period lasts
100 ms

‚ The central frequency of the Galileo E5 band is 1191.75
MHz.

B.2) Galileo E6
The signal transmitted in the Galileo E6 band, denoted as

sE6ptq, has two components: the data component sE6´Bptq
which transmits the navigation message, called C/NAV mes-
sage [20], and the pilot component sE1´Cptq.

The signal components contain the following elements:
‚ The C/NAV navigation message dE6´Bptq [20], trans-

mitted by the signal component sE6´Bptq with a symbol
rate of 1000 symbols/s.

‚ The ranging code cE6´Bptq, transmitted by the signal
component sE6´Bptq, is a memory PRN sequence of
5115 chips and it lasts 1 ms.

‚ The ranging code cE6´Cptq, transmitted by the signal
component sE6´Cptq, is a memory code generated with
a primary PRN sequence of 5115 chips and a secondary
code of length 100. It lasts 100 ms .

‚ The carrier frequency used to transmit the signal in the
E6 band is 1278.76 MHz.

Then, the C/NAV navigation data message dE6´Bptq is
modulated by the ranging code cE6´Bptq. In parallel, the
pilot component ranging code cE1´Cptq is generated. Finally,
both signal components are added and carrier modulated.

B.3) Spectral and Correlation Properties
If one wants to compute the AltBOC Power Spectral

density (PSD), it is interesting to use the signal formulation
introduced in [21]. According to [21], any chip within
the PRN code can be seen as a number of equal-length
deterministic segments with different amplitude levels (also
know as Multilevel Coded Spreading (MCS) symbols). Then,
the expression of the chip waveform is given by

pchipptq “
Nx´1
ÿ

n“0

anpsubchippt´ n
Tc
Nx
q, (18)

where Nx is the number of equal-length segments, i.e. sub-

chips, and psubchip represents the sub-chip shape. Note that
in the GNSS framework psubchip is usually assumed to
be rectangular. Moreover, Tc

Nx
can be also defined as the

subcarrier period Tsub. The transmitted signal is defined as

cptq “
`8
ÿ

n“´8

cnpchippt´ nTcq, (19)

with cn the amplitude of the PRN code sequence. Consider-
ing that the PRN code shows ideal statistical properties, the
PSD of cptq simplifies to Gcpfq “ |Cpfq|{Tc [21],

Gcpfq “
1

Tc

sin2
´

πfTc
Nx

¯

pπfq
2
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ˇ

ˇ

ˇ

2

. (20)

where the first term defines the PSD of a Binary Phase Shift
Keying (BPSK) modulation with chip rate Tc

Nx
and the second

term determines the MCS modulation family,

Gcpfq “ GBPSKpfqGmodpfq. (21)

Assuming that the AltBOC transmits codes with the same
chip rate (symmetrical AltBOC), one can use the approach
proposed in [22] in order to compute the symmetrical Alt-
BOC PSD. Since GNSS meta-signals may be generated by
non-symmetrical AltBOC waveforms (i.e. the chip rate of
the upper and lower codes are not the same), we follow
the approach in [6] in order to compute the GNSS meta-
signals PSD. We use the notation AltBOC(p,q,w), where
Fsub “ pf0 is the subcarrier frequency with f0 “ 1.023
MHz, fc,A “ qf0 and fc,B “ wf0 are the lower and upper
codes chip rate, respectively. The non-symmetrical AltBOC
PSD expression is therefore [6],

GAltBOCpp,q,wqpfq “ 4

»

—

—

–

GBPSK,NApfqGmod,NApfq`
GBPSK,NB pfqGmod,NB pfq`
GBPSK,NApfqGmod,NApfq`
GBPSK,NB pfqGmod,NB pfq

fi

ffi

ffi

fl

,

(22)
where,

GBPSK,NApfq “ fc,A
sin2

´

πf
NAfc,A

¯

pπfq
2 , (23)

GBPSK,NB pfq “ fc,B
sin2

´

πf
NBfc,B

¯

pπfq
2 , (24)

GBPSK,NApfq “ fc,A

sin2
´

πf
NAfc,A

¯

pπfq
2 , (25)

with GBPSK,NApfq “ GBPSK,NB pfq, NA “ 4 p2p{qq,
NB “ 4 p2p{wq, NA “ NB “ 4 p2p{LCMpq, wqq and
fc,A “ LCMpfc,A, fc,Bq. Note that LCM stands for the Least



Common Multiple operation. In addition,

Gmod,NApfq “
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where anA , anB , anA and anB are the complex values
derived from SC˚8,SSBptq, SC8,SSBptq, SC˚P,8,SSBptq and
SCP,8,SSBptq, respectively (refer to (16) and (17)).

Finally, in order to define the autocorrelation function
in terms of the PSD, we resort to the Wiener-Khintchine
theorem [23, Chapter 10], which states that the ACF and its
PSD function are a Fourier transform pair defined as,

ACF ptq “

ż Br
2

´Br2

Gcpfqe
´j2πftdf. (30)

with Br the receiver bandwidth. The PSD of Galileo E5/E6
signals along with the GNSS meta-signal PSD defined by
the AltBOC(50,10,5) and AltBOC(35,10,5) is illustrated in
Figure 1. Note from this figure that the PSD of GNSS
meta-signals slightly differs from the PSD of Galileo E5/E6.
This is because the AltBOC modulation adds intermodulation
products (refers to (14)) in order to keep the constant enve-
lope shape. Note also that generating those extra intermodu-
lation products at the receiver replica is totally unnecessary
since they were not generated at the transmission engine
(Galileo E5 and E6 are transmitted with two independent
HPA amplifiers). The corresponding ACFs are illustrated in
Figure 2, which shows that ACFs of GNSS meta-signals are
narrower than those obtained for Galileo E5/E6.

V. RESULTS

In this section, we assess the closed-form CRB in (4) for
five representative GNSS signals: i) 1ms of the Galileo E6B
signal with PRN code of length 5115 chips, ii) 1ms of the
Galileo E5B-I with PRN code of length 10230 chips iii)
1ms of the Galileo E5 AltBOC(15,10) with PRN codes of
length 10230 chips, iv) the meta-signal Galileo E5B + E6-
BC, AltBOC(35,10,5), with PRN codes of length 10230 and
5115 chips, and v) the meta-signal Galileo E5A + E6-BC,
AltBOC(50,10,5), with PRN codes of length 10230 and 5115
chips. Also the legacy GPS L1 C/A signal is considered for
comparison. Notice that the GPS L1 C/A uses a BPSK(1),
Galileo E6B a BPSK(5) and Galileo E5B-I a BPSK(10). The
CRB in (4) and the corresponding MLE in (6) are computed
considering α “ p1` jq ¨

a

SNRin{2. The MLE is obtained
from 1000 Monte Carlo runs. These results are summarized
in Fig. 3, where both time-delay CRB and MLE obtained
are shown for the different signals.
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Fig. 2: GPS L1 C/A, Galileo E6B, E5B-I, E5 and GNSS
meta-signals ACFs

First, note that a SNRout “ 25 dB is obtained for a
C{N0 “ 45 dB-Hz and a coherent integration time TI “ 10
ms. Looking for the time-delay precision that we can obtain
at this particular operation point, we obtain a standard devi-
ation around 2.5 m for the legacy GPS L1 C/A and Fs “ 10
MHz. Using the E6B or E5B-I signals already improves the
standard GPS L1 C/A, leading to a standard deviation equal
to 1 m and 63 cm, respectively, which is obvious considering
the underlying BPSK(5) and BPSK(10) modulations. What
is remarkable is the performance improvement provided by
the Galileo E5 AltBOC(15,10) if we exploit the complete
bandwidth, which at this particular operation point provides
an estimate with a standard deviation equal to 8 cm. In
both cases, L1, E6B, E5B-I and E5, the optimal operation
threshold is around 15 dB (i.e., C{N0 “ 35 dB-Hz for
TI “ 10 ms). From this value of SNRout the MLE is efficient.

Considering now the results obtained with the Galileo
E5B/E6B and E5A/E6 meta-signals, that is, the Alt-
BOC(35,10,5) and AltBOC(50,10,5), respectively, and ex-
ploiting the complete bandwidth we obtain a further im-



provement. At SNRout “ 25 dB the standard deviation for
the E5B/E6B is 4 cm, and for the E5A/E6 equal to 2.5 cm.

It is important to notice the behaviour of the MLE between
the previous 15 dB threshold and the convergence to the
CRB. This is because of the special shape of the ACF,
shown in Fig. 2. With respect to the E5, these meta-signals
have positive secondary ACF peaks which are very close
to the main peak. These secondary peaks induce a second
operation region of the MLE between the CRB and the
threshold. Indeed, in this intermediate operation region the
MLE jumps between secondary peaks because of the noise,
which introduces estimation errors (i.e., this is the effect
known as false locks in high-order BOC signals such as the
BOC(15,2.5) used in the Galileo E1 PRS). We can conclude
that the use meta-signals can improve the delay estimation
with respect to the Galileo E5A, E5B, E6 and the complete
E5 signals if the receiver is able to cope with such false
locks. In addition, to reach such centimeter level accuracy the
receiver needs to exploit a huge bandwidth, thus depending
on the application and receiver design constraints, a wise
choice may be to use the E5 AltBOC(15,10) which provides
3σ delay errors below 25 cm.
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Fig. 3: CRB/MLE for GPS L1 C/A BPSK(1), E6B BPSK(5),
E5B-I BPSK(10), E5 AltBOC(15,10), meta-signal E5B/E6
AltBOC(35,10,5) and meta-signal E5A/E6 AltBOC(50,10,5).

VI. CONCLUSIONS

In this article we explored the achievable delay estimation
capabilities of AltBOC-type signals, either using the E5
signal or the combination of frequency bands known as
GNSS meta-signal. The estimation performance is obtained
with a compact closed-form CRB expression which only
depends on the signal samples. It has been shown that using
the E5 signal we can reduce the delay standard deviation by
a factor 25, 10 and 8 with respect to the L1 C/A, E6B and
E5B-I signals, respectively. This performance can be further
improved by an additional factor 2 and 4 using the E5B/E6
and E5A/E6 meta-signals. The latter comes at expenses of
possible false locks due to high secondary correlation peaks

and a huge bandwidth. These results confirm that AltBOC-
type signals can provide decimetric accuracy, thus being a
promising solution for code-based precise positioning.
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