
On sparse graph coding for coherent and
noncoherent demodulation

Charles-Ugo Piat-Durozoi
University of Toulouse,

INPT/IRIT, TéSA
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Abstract—In this paper, we consider a bit-interleaved coded
modulation scheme (BICM) composed of an error correcting
code serially concatenated with a M -ary non linear modulation
with memory. We first compare demodulation strategies for both
the coherent and the non coherent cases. Then, we perform an
asymptotic analysis and try to show that the design of coding
schemes performing well for both the coherent and the non
coherent regimes should be done carefully when considering
sparse graph based codes such as low-density parity-check
(LDPC) codes. It will be shown that optimized coding schemes
for the non coherent setting can perform fairly well when using
coherent demodulation, while on the contrary, optimized coding
schemes for the coherent setting may lead to ”non stable” coding
schemes in the non coherent setting.

I. INTRODUCTION

Continuous phase modulation (CPM) [1],[2], [3] is a partic-
ular modulation characterised by a constant envelop waveform
and a phase continuity. The phase of a CPM signal for a given
symbol is determined by the cumulative phase of previous
transmitted symbols known as the phase memory. Another
important feature of CPMs is the modulation index which
could restrain, in a particular case, the set of the phase memory
to a finite set. A well-known type of CPMs is the CPFSK [4],
[5] described by a rectangular phase response and a memory of
one, meaning that the new phase is computed only from one
previous symbol. In the coherent case, an efficient method
to demodulate is proposed by Cheng based on the well-
knwon BCJR [7]. Cheng [6] implemented the BCJR algorithm
for CPFSK. The trellis consists of Q states where Q is the
cardinal of the set composed of all possible values taken by
the phase memory. Q is also the denominator of the CPFSK
modulation index h= P

Q . To get a coherent detector with a
finite set of phase memory, it is mandatory having h rational.
In noncoherent channel, symbol detection is done through a
multisymbol detector well described by Valenti [8].

Multisymbol receiver proposed by Valenti [8][9] does the
correlation between the block of received symbols and all
existing combinations of same length blocks. The condition
required to use this method is the absence of phase shift
between symbols belonging to the same block. As well, in this
paper perfect frequency and time synchronisation is assumed.
We suppose the phase shift is stable over a block of N
symbols. It exists MN possible combinations for a block

of size N (with M the modulation order). The process is
conducted as follows. The incoming signal is filtered by a
bank of M matched filters. Then the conditional probability
of the transmitted symbols block of size N under the condition
of one of the possible combination is done for each existing
combination. The analytical expression of the conditional
probability is independent of the initial phase of the block,
moreover another extra advantage of the multisymbol receiver
is that it can work for any value of h. It reveals the robustness
of the detector against untimely channel phase shift.

MWM [10] is strictly equivalent to BCJR in coherent
channel but it can also demodulate in noncoherent channel
by getting the best from multisymbol. Like BCJR, MWM is a
trellis based detector. Block of symbols and accumulated phase
are included in states. The aim is to determine the conditional
probability of symbols given the observations. The process is
done across a forward-backward algorithm just as usual BCJR.
The difference lays in the number of states and the correlation
done in the branch metric. Indeed the trellis consists of Q·MN

states and the branch metric connecting two consecutive states
δk and δk+1 is determined from the δk accumulated phase and
the correlation of symbols belonging into the two consecutive
states.

Mutual Information Rate is an efficient tool to evaluate
the performances of a detector by estimating its maximum
achievable rate. The achievable performance has been studied
for coherent CPM, non coherent multisymbol in [11] and
[8] respectively. The design of coded scheme is carried out
in modern communication systems to reach the maximum
achievable rate. However the encountered channel impact the
achievable information rate (AIR) and then coherent and non
coherent channels fit different “optimal” coded schemes.

In this paper, we consider a bit-interleaved coded modula-
tion scheme (BICM) composed of an error correcting code
serially concatenated with a M -ary non linear modulation
with memory. Without loss of generality and for ease of
presentation, we assume here CPFSK as a modulation scheme.
We first compare demodulation strategies for both the coherent
and the non coherent cases. Then, we perform an asymptotic
analysis and try to show that the design of coding schemes
performing well for both the coherent and the non coherent
settings should be done carefully when considering sparse



graph based codes such as low-density parity-check (LDPC)
codes. Indeed, it can be shown that codes designed for the
coherent case may be not “stable” for the non coherent case,
preventing the use of ”optimal” schemes in the coherent case
for the non coherent setting.

The remainder of this paper is organized as follows. In
section II, we describe the system model. Then, in section
III, we describe and compare different coherent and non
coherent receivers. In section IV, we perform an asymptotic
analysis and discuss sparse graph based code design for both
the coherent and the non coherent case. Finally, section V
concludes the paper.

II. SYSTEM MODEL

In this paper, we consider a bit-interleaved coded modula-
tion scheme (BICM) composed of an error correcting code
serially concatenated with a M -ary non linear modulation
with memory. Without loss of generality and for ease of
presentation, we assume here CPFSK as a modulation scheme.
The study can be extended to any modulation scheme having
an EXIT chart converging to the point (1, 1) in the case
of coherent demodulation. It includes the general class of
CPM modulations as well as trellis-coded modulations such
as differential modulations. At the emitter, a binary message
vector b=[b0, · · · , bKb−1]∈GF (2)Kb is encoded into a code-
word c=[c0, · · · , cNb−1]∈GF (2)Nb using an error correcting
code of rate R=Kb/Nb. Each binary codeword c is then
interleaved, mapped into a sequence of Ns M -ary symbols
from the considered modulation. Let uNs−10 ={u0, ..., uNs−1}
be the resulting set of Ns symbols belonging to the M -
ary alphabet {0, ...,M − 1}. Symbols are then modulated
following the CPFSK modulation rule. Using the Rimoldi
representation, this can be seen as the serial concatenation of a
continuous phase encoder (CPE) and a memoryless modulator.
The mapping procedure is given as follows [8]. First, the CPE
ensures the continuity between the transmitted continuous-
time waveforms by accumulating the phase of each modulated
symbol using the the following rule

φk+1=φk + 2πhuk (1)

φk is the accumulated phase at the start of the kth symbol
and h is the modulation index. Then, at the kth symbol
interval, the memoryless modulator matches the symbol uk
to the continuous waveform signal xuk(t) corresponding to
the uthk element of X={xi(t), i=0...M − 1}

xi(t)=

√
1

T
· ej2π ihtT , t ∈ [0, T )

where T is the symbol period. It leads to the CPFSK complex
baseband representation of the transmitted continuous-time
waveform during the kth symbol observation interval gven
by

sk(t)=
√
Es · xuk(t) · ejφk (2)

The transmitted signal undergoes a phase rotation θ and it is
transmitted over a complex circular additive white Gaussian
noise (AWGN) channel with noise spectral density N0. The

corresponding complex-baseband received signal is given by
∀ t ∈ [kT ; (k + 1)T ),

rk(t)=sk(t) · a · ejθ + n(t) (3)

where a is a possible channel attenuation which is assumed
known by the receiver. Without loss of generality, we assume
that a=1. In case of a non coherent receiver, θ is assumed
to be unknown, constant over the whole transmission and
uniformly distributed between [0, 2π[. In the coherent case,
θ is assumed perfectly known and thus can be compensated.
n(t) in (3) corresponds to the complex circular AWG noise.
At the receiver side, the signal rk(t) received during the kth

symbol interval is passed through a bank of M matched filters
whose impulse responses are given by x̄i(t), i=0, ...,M − 1
where x̄i(t) is the complex conjugate of xi(t). Considering
a perfect timing synchronization, ri,k is the element resulting
from the correlation between rk(t) and x̄i(t).

ri,k=

T∫
0

rk(t)x̄i(t)dt (4)

In the sequel we adopt the following notation
rk={r0,k, ..., rM−1,k} and the set of observations is
denoted by rNs−10 ={r0, ..., rNs−1}.

III. COHERENT VERSUS NON-COHERENT DETECTION

A. Coherent detection

For general CPMs (including CPFSK) or differential mod-
ulations, optimal coherent maximum a posteriori (MAP) sym-
bol/bit detection is achieved using the BCJR algorithm [6]
based on the underlying trellis representation of the modula-
tion scheme [6]. In our case, we aim to evaluate p(uk|rNs−10 )
for the kth symbol. For the case of CPFSK, the BCJR
states are given by the set of accumulated phases {φk}. The
transition {φk→φk+1} is done such that φk+1=φk + 2πhuk.
The symbol MAP criterion is given by

p(uk|rNs−10 )∼
∑
{φk}

αk(φk)βk+1(φk+1)γ(φk→φk+1, rk)p(uk)

where γ(φk→φk+1, rk),p(rk|φk, uk), αk(φk),p(rk−10 , φk)
and βk+1(φk+1),p(rNs−1k+1 |φk+1). The two latest quantities
can be calculated using the classical forward-backward recur-
sions as follows

αk(φk)=
∑
{φk−1}

αk−1(φk−1)γ(φk−1→φk, rk−1)p(uk−1)

βk+1(φk+1)=
∑
{φk+2}

βk+2(φk+2)γ(φk+1→φk+2, rk+1)p(uk+1)

Moreover, using sufficient statistics at the output of the filter
bank [6], we have

γ(φk→φk+1, rk) = p(rk|uk, a, φk) ∼ e
2a
√
Es

N0
<(e−jφkruk,k)

where <(.) is the real part. Based on these expressions,
iterative detection and decoding can be performed.



B. Noncoherent detection

1) Multisymbol Receiver: Multisymbol detection is a
widely used sub-optimal non-coherent detector enabling com-
plexity versus performance trade-off [9]. Following this ap-
proach, soft symbol MAP detection can also be easily
derived. We illustrate this detector for the CPFSK case
as proposed by [8]. The multisymbol noncoherent detector
computes the a posteriori probability of a symbol given a
window of symbol observations of length N , denoted by
p(uk+N−1k |rk+N−1k ). This conditional a posteriori probability
is computed for each possible combination of N symbols
uk+N−1k ={uk, ..., uk+N−1}. We have thus MN possible com-
binations. If θ is unknown, averaging over its random phase
distribution leads to the following well-known zero-order
modified Bessel function based likelihood expression

p(rk+N−1k |uk+N−1k , a)∼I0

(
2a
√
Es

N0

∣∣∣µ(uk+N−1k )
∣∣∣)

where
µ(uk+N−1k )=

k+N−1∑
i=k

rui,i · e
−j2πh

i−1∑
n=k

un

Based on these likelihoods, soft symbol MAP detection can
be done and log-likelihood ratios can be computed to enable
soft iterative decoding.

2) Multisymbol With Memory receiver: The multisymbol
detector has been recently improved in [10] by including some
memory within the decoding process (It has been originally
proposed for CPFSK, but can be extended to other modulation
schemes). MWM detector is based on a trellis state representa-
tion allowing to use a modified version of the BCJR algorithm
to compute the conditional probability p(uk+N−1|rNs−10 ). Let
δk={φk, uk, ..., uk+N−2} denote a state of the MWM detector
taking into account the accumulated phase φk and a series
of N − 1 symbols uk+N−2k . The transition {δk→δk+1} must
fulfill to the subsequent equation φk+1=φk + 2πhuk. This
transition corresponds to the emitted symbol uk+N−1. The
conditional probability can be written as follows

p(uk+N−1|rNs−10 )∼
∑
{δk}

αk(δk)βk+1(δk+1)

·γ(δk→δk+1, r
k+N−1
k )p(uk+N−1)

where γ(δk→δk+1, r
k+N−1
k ),p(rk+N−1k |δk, uk+N−1),

αk(δk),p(rk−10 |rk+N−2k , δk)p(δk) and βk+1(δk+1),
p(rNs−1k+N |r

k+N−1
k+1 , δk+1).

The forward-backward recursions read finally as follows

αk(δk) =
∑
{δk−1}

αk−1(δk−1)
γ(δk−1→δk,rk+N−2

k−1 )

p(rk+N−2
k |uk+N−2,δk−1)

p(uk+N−2)

βk+1(δk+1) =
∑
{δk+2}

βk+2(δk+2)
γ(δk+1→δk+2,r

k+N
k+1 )

p(rk+N−1
k+1 |uk+N ,δk+1)

p(uk+N )

For CPFSK modulation, the branch metric can be computed
as

γ(δk→δk+1, r
k+N−1
k ) =p(rk+N−1k |δk, uk+N−1, a)

Averaging over the random phase, we have

p(rk+N−1k |δk, uk+N−1, a)∼I0

(
2a
√
Es

N0

∣∣∣µ(uk+N−1k )
∣∣∣)

which finally gives the following recursions

αk(δk)∼
∑
{δk−1}

αk−1(δk−1)
I0

(
2a
√
Es

N0

∣∣∣µ(uk+N−2
k−1 )

∣∣∣)
I0
(

2a
√
Es

N0
|µ(uk+N−2

k )|
) p(uk+N−2)

βk(δk) ∼
∑
{δk+1}

βk+1(δk+1)
I0
(

2a
√
Es

N0
|µ(uk+N−1

k )|
)

I0
(

2a
√
Es

N0
|µ(uk+N−2

k )|
)p(uk+N−1)

Based on these BCJR like equations, soft iterative detection
and decoding can be performed.

IV. ASYMPTOTIC ANALYSIS AND CODE DESIGN

In this section, we analyse the asymptotic performance of
the different receivers, namely the coherent receiver and the
non coherent multisymbol receiver with and without memory.
First asymptotic AIRs are derived. Then we perform an EXIT
charts analysis showing that the classical area theorem [12],
[13] seems to remain valid in our case. Then, we discuss
properties of the three detectors based on their EXIT charac-
teristics. By referring to state-of-the optimization methods for
sparse-graph based codes, we will see that optimized sparse
graph coding schemes for the coherent case can no longer
be considered for the non-coherent case. This is due to the
fact that threshold optimized code profiles for LDPC codes in
the coherent case can be not stable in the non-coherent case.
But, on the contrary, an optimized profile for the non coherent
case is always stable for the coherent case and optimization
results tend to show that it performs fairly well compared to
constrained profiles in the coherent case.

A. Symmetric Information Rate

The mutual information rate of finite-state machine channels
have been studied by several authors, among them [14], [15],
[16]. Following the general expression given by [16] enabling
the conditioning over an unknown initial channel state, the
mutual information rate between the channel input source U
and the channel output R is given by

I(U ,R)= lim
Ns→∞

1

Ns
I(uNs−10 , rNs−10 |δ0)

where I(uNs−10 , rNs−10 |δ0) is the mutual information be-
tween the input process uNs−10 and the output process
rNs−10 conditioned on the initial state δ0. The expression
of I(uNs−10 , rNs−10 |δ0) can be derived as follows for the
three considered receivers enabling to evaluate the maximum
achievable rate for a given detector.

1) Coherent BCJR Algorithm:

I(uNs−10 , rNs−10 |φ0)=Ns · log2(M)

+
Ns−1∑
k=0

E

[
log2

(
p(uk|rNs−10 , φk0)

)]
Computation of p(uk|rNs−10 , φk0) is performed following [11]
based on BCJR forward-backward recursions.



2) Multisymbol With Memory Detector [10]:

I(uNs−10 , rNs−10 |δ0)=
(
Ns − (N − 1)

)
· log2(M)

+
Ns−N∑
k=0

E

[
log2

(
p(uk+N−1|rNs−10 , δk0 )

)]
Calculation of p(uk+N−1|rNs−10 , δk0 ) is also performed fol-
lowing [11] but using δk0 .

3) Multisymbol Receiver [8]: Let B be the set of MN

possible combinations for a symbols block of size N , the
mutual information can be directly expressed as follows [8]

I(uk+N−1k , rk+N−1k )=N · log(M)

+E

log2

 p(rk+N−1
k |uk+N−1

k ,a)∑̂
u∈B

p(rk+N−1
k |ûk+N−1

k ,a)




Information rate is obtained dividing the above quantity by N .

B. EXIT charts and code design

For all the considered receivers, we also have performed an
EXIT charts analysis [17], [13]. An example is shown in Fig.
2 for Es/N0=0 dB. It is shown that only the coherent receiver
is converging to the point (1, 1), which is a common feature
to non linear modulations with memory such as CPM/CPFSK
or differential modulations (if no specific precoding is used)
or also for precoded linear channels with memory. This issue
will strongly impact the code design when iterative decoding
is used. We have calculated the area under the EXIT curves
which is often conjectured as a good approximation for the
maximum achievable coding rate in various situations [13]
for a serially concatenated system. It has only been proved
for concatenated codes over the erasure channel [12]. An
approximation of the information rate is finally given by

Capprox.'log2(M) ·
∫ 1

0

Ie(x)dx (5)

where Ie is the mutual information measured at the output
of the soft receiver. As shown in Fig. 1 for the case of CPFSK
based detectors, the approximation is relatively accurate when
compared to direct calculation of the mutual information rate.
This suggests that good coding schemes under iterative decod-
ing can be designed by state-of-the-art curve fitting methods to
approach these maximum achievable rates. When considering
sparse graph based binary coding schemes such as binary
LDPC codes, these methods are generally derived from some
multi-edge type extensions of the original approach proposed
by [18]. A recent example is given by [19]. The remaining
question is how to design good codes that can perform fairly
well in both regimes (coherent and non coherent). Usually,
the problem is solved sub-optimally by first considering the
design of a good coding scheme for the coherent regime
and then, it is applied to the non coherent case relying on
some robustness arguments. We will see that it may be not
the best option. We first consider the non-coherent case. As
in most serially concatenated systems, EXIT curves do not
reach the point (1, 1) and so methods as in [18][19] can be
used for LDPC code design. This leads to an upper bound

on the degree 2 nodes associated with the Tanner graph of
the code. This is due to the so-called stability condition.
We now consider the coherent case. For this scheme, the
EXIT curves reach the point (1, 1). Several approaches are
possible. Mainly, non systematic low-density generator matrix
based coding schemes have been considered as in [6], [20]
using some analogies with irregular-repeat accumulate coding
schemes. For the case of LDPC codes, it has been shown in
[21], [22] that some good LDPC codes can be designed if
some degree one nodes are carefully introduced satisfying a
stability condition constraining degree one nodes only. In that
case, degree 2 nodes are not anymore constrained. It follows
from this simple fact that coding scheme designed for the
coherent case cannot be used for the non coherent setting
since the resulting profiles cannot be stable. On the contrary,
a code designed for the non coherent case is always stable
under coherent decoding. Of course, for the coherent case, one
can also avoid degree one nodes in the design. Unfortunately,
based on our experiments, it appears that, for the same AIR,
the fraction of degree two nodes for code profiles optimized in
the coherent case is always greater than the fraction of degree
two nodes for a code profile optimized in the non coherent
case. Here, again the code may be not stable under non
coherent decoding. To have good coding schemes operating
in both regimes, it seems reasonable to design first codes for
the non coherent case and then assess the performance in the
coherent case. In Fig. 3, we have compared the bit error rate
(BER) performances of different optimized coding schemes
for rate one-half codes with Nb=4096 coded bits following
[21][19]. For fair comparison, we consider the optimization in
the coherent case without degree one nodes. The best scheme
is the optimized coherent case with no degree one nodes, fol-
lowed by the scheme optimized for the non coherent case with
the MWM detector but operating with the coherent receiver.
It shows that we have a relatively small loss compared to the
optimal coherent case with no degree one node allowed. The
two last curves correspond to the optimized non coherent cases
with both MWM and multi-symbol detectors respectively. As
we can see, good performances can be achieved with the
improved MWM detection approach.

Table 1 : Degree distribution of the code used Fig.3.

dc dv ρ λ

Coherent/MWM {4, 5} {2, 8} {0.54, 0.46}/{0.34, 0.66} {0.87, 0.13}/{0.81, 0.19}

Multisymb {5, 6} {2, 8} {0.94, 0.06} {0.715, 0.285}

V. CONCLUSION

In this paper, we have discussed the design of sparse graph
based coding schemes serially concatenated with some non
linear modulations such as CPFSK considering both coherent
and non coherent demodulations. We have performed an
asymptotic analysis computing information rates. Based on
EXIT analysis, we have shown that optimized coding schemes
for the coherent setting may be not at all suited for the non-
coherent case. On the contrary, it seems possible to design



Fig. 1. Approximate (Approx) and theoretical (Th) AIR: coherent BCJR,

noncoherent MWM and Multisymbol of 4-CPFSK with h=
5

7
and N=3

Fig. 2. Exit charts: coherent BCJR, noncoherent MWM and Multisymbol of

4-CPFSK with h=
5

7
for Es

N0
=0dB.

coding schemes for the non coherent setting that perform fairly
well when using coherent demodulation. The study could be
extended to any modulation scheme having an EXIT chart
converging to the point (1, 1) in the coherent case.
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