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ABSTRACT
This paper introduces a new statistical model for clock phases assuming a multivariate Gaussian distribution for the clock phase
deviations from a common time scale. This model allows us to derive a maximum likelihood estimator for the clock phases,
which is consistent with the current methods of computing a common time scale for a collection of clocks. Detailing a statistical
model of the clock phases, which assumes a Gaussian distribution allows us to find the MLE for each clock’s phase deviation
from a common time scale. For verification, the MLE for the clock phases is shown to be consistent with the result of the
existing basic time scale equation. The statistical distribution of the frequency states resulting from this statistical model is
Gaussian over a window of past time instants. This property can be used to design a new time scale based on the maximum
likelihood estimator of frequency and frequency variances that are alternatives to the exponential filters designed for AT1. With
the appropriate number of past frequency samples, this MLE has identical performance to the optimal AT1 algorithm in a
nominal context. The statistical distribution of the frequency when the clock suffers a phase jump anomaly is then identified as
a Student’s t-distribution. The Student’s t-distribution models the statistics of datasets contaminated by outliers, leading to the
derivation of a different MLE that is robust to those outliers. The time scale using the robust MLE provides estimates of each
clock’s frequency and frequency variance that are unaffected by phase jump anomalies and improves the long-term frequency
stability when each clock in the ensemble experiences phase jump anomalies within some window of time.

I. INTRODUCTION
Satellites are susceptible to many challenges in maintaining consistent timing due to their remote and harsh environment.
Indeed, modification of the payload environment causes variations in the states of onboard clocks that would not be expected
in a laboratory. Time transfers between satellites are subject to noise and can be influenced by outliers such as missing data
(due to limited windows of access), instantaneous faults in electronics due to cosmic radiation, and hardware degradation due
to the impossibility of maintenance. The context of this work revolves around a swarm of nanosatellites whose objectives rely
on consistent timing, the “Nanosatellites pour un Observatoire Interferométrique Radio dans l’Espace” (NOIRE) study. The
objective of NOIRE is to use a swarm of nanosatellites that form a radio array telescope in lunar orbit where there is no radio
pollution (Cecconi et al., 2018). A radio array telescope uses the principle of radio interferometry, which relies heavily on
the precise timing and positioning of each satellite to make the desired observations. There exist proposals for Lunar global
navigation satellite systems (GNSS) that could aid in the positioning and synchronization of the swarm (Pereira et al., 2022).
However, these projects are still young and can benefit from the same methods proposed for time scale generation. The general
context can be expanded to satellites in lunar orbit, which will require a robust time-scale algorithm in real-time, that combines
data from a large number of satellites, and autonomously compensates for the expected anomalies. Emphasis is placed on
the autonomous aspect of the algorithm because access to ground stations or laboratory clocks is considered impossible. The
objective of this work is to design a specific robust Maximum Likelihood Estimator (MLE) that accounts for the effects of
outliers on the noise statistics of each clock.

For simplicity of mass production for the nanosatellites, it is assumed that the clock technology is homogeneous throughout the
swarm. Based on this assumption, fifty simulated clocks have been generated with each matching the typical performance of
an Oven Controlled Crystal Oscillator (OCXO). This type of clock is considered an initial design choice for implementation
in the NOIRE satellites. The clock data is generated by following the power law representation of clock noise processes as
described in (Kasdin and Walter, 1992). Due to the stochastic nature of the clock noise processes, we can consider the phase
difference measurements to be random variables. In addition, the clock frequencies are considered random variables. Works
that consider Kalman Filters for the determination of a time scale commonly consider the clock noises (and any measurement
noise) as Gaussian processes (Barnes et al., 1982; Breakiron, 2002; Coleman and Beard, 2020). The Gaussian assumption has
also been recently used in a method of detecting anomalies up to a specified probability of false alarm (Trainotti et al., 2022).
It has been shown that the effects of a frequency jump result in datasets that do not strictly follow the Gaussian law (Marszalec
et al., 2021). Some other studies have also identified the non-Gaussianity caused by anomalies in general and how that can help
in detecting them (Trainotti et al., 2022; Tryon and Jones, 1983).

The methodology of the MLE design consists of two major steps, with a series of assumptions and estimations made during
each step. The first step begins with the inputs being a set of clock phase differences between the simulated clocks. The inputs
represent phase differences that are obtained through inter-satellite links. For this work, it is assumed that all satellites can
always have links with any other satellite. The clock phase differences are then considered to be linear combinations of each
clock’s phase deviation from a theoretically perfect clock, with random variations introduced by the internal clock noises. To
obtain the last observation of our system, we make a prediction of each clock’s frequency offset using previously estimated
values. This, in turn, allows the prediction of each clock’s phase offset from the ideal clock to create a new indirect observation
with the weighted sum of phase predictions. The phase prediction error is considered another source of noise in the observation
of the offsets from the perfect clock. We then model the joint distribution of phase differences and the weighted sum of phase
predictions as a multivariate Gaussian distribution.



There are still not enough available observations to allow for the estimation of both the mean and variance of the modeled
distribution. Hence, we assume fixed variances of the clock phases and derive the MLE of the phase offsets. The result gives the
estimator of each clock’s deviation from an ideal clock. This estimator is equivalent to the Basic Time Scale Equation (BTSE)
that computes the deviation from the common time scale in previously validated time scale algorithms (Thomas et al., 1994;
Stein, 2003). The AT1 algorithm is a common solution to compute a time scale under nominal conditions, that uses the BTSE
(Weiss and Weissert, 1991). The Gaussian assumption on the clock phase data allows us to derive the MLE for the proposed
model. Considering that the Gaussian assumption represents nominal clock operations, we expect some congruence between
the AT1 and MLE time scale algorithms. This is represented in the fact that the time scales are computed with the same first
step of determining phase offsets. The difference in algorithms is evident in the following step.

In the second step of our estimation strategy, we propose to use a sliding window of past frequency predictions to construct a new
dataset. This dataset allows more states to be estimated, e.g., frequency and frequency variances. To perform this estimation,
we model the past predictions of each clock’s frequency using the previous Gaussian model but with known clock phases and an
unknown covariance matrix. This means we can use the frequency predictions from step 1 as inputs for an MLE in the second
step. The MLEs of the frequencies and frequency variances are then computed and used to update the predictions of each
clock’s phase offset and the weights of the clocks. The AT1 algorithm uses a different method for estimating the frequency and
frequency variance (Weiss and Weissert, 1993), resulting in different phase predictions and weights to input into the first step.

The types of anomalies that have been identified for clocks operating in space include phase jumps, frequency jumps, periodic
components, and missing data (Riley, 2008; Galleani and Tavella, 2012, 2013; Coleman and Beard, 2020). For this paper, the
focus is placed on phase jump anomalies because they are observed to cause outliers in the frequency of the clocks. In the
realm of robust statistics, methodologies exist that autonomously compensate for the impacts of such outliers without losing
performance when the outliers are absent (Maronna et al., 2006). One such method is extending the MLE to a statistical
distribution that appropriately accounts for the occurrence of outliers. The resulting robust MLE time scale repeats the previous
two-step estimation strategy using a Student’s t-distribution to compensate for the impact of phase jumps on the estimates of
the frequencies and frequency variances. The derivation of an MLE for the Student’s t-distribution requires an Expectation-
Maximization algorithm that converges to the desired estimate (Doğru et al., 2018; Hasannasab et al., 2020).

There are several contributions that arise from our new methods of generating a time scale: (i) visualization of the clock states
as random variables following a specified statistical distribution, (ii) application of the MLE to detail a justification behind the
BTSE, and to propose new estimation methods for frequency and frequency variance, (iii) analysis on the effects of phase jumps
on the statistical distribution of the clock data, and comparison to the Student’s t-distribution, (iv) derivation of a new robust
MLE based on the Student’s t-distribution to estimate the clock frequencies and frequency variances, generating a robust time
scale for the types of anomalies investigated. This study finally promotes the benefits of using the robust MLE for frequency to
help in future work aimed towards detecting anomalies before treating them.

II. MEASUREMENT MODEL
To reproduce an ideal time scale, we want to have access to the phase difference between each independent clock and a
theoretically perfect clock. We can imagine the theoretically perfect clock as an oscillator with constant frequency and no
uncertainty in the evolution of the clock phase. The perfectly stable phase state of the perfect clock is denoted as hp(t).
Similarly, the predictable phase state of some clock i is then denoted as hi(t). In reality, clocks suffer deviations from the
predictable phase according to a series of unpredictable internal noises. So the actual clock phases are equivalent to the
predictable component of each clock plus some random deviation,

h
′

i(t) = hi(t) + εi(t), εi(t) ∼ N (0, σ2
i (t)). (1)

When observing the phase state of a clock, only a comparison between clock i and some other reference clock can be measured.
In the case of simulated clock data, we generate the individual phase deviations from a perfect clock including the effects of the
internal noises

xi,p(t) = h
′

i(t)− hp(t), (2)
where the true evolution of the phase state from a time instant τ seconds earlier is:

h
′

i(t) = hi(t− τ) + τfi(t− τ) + εi(t). (3)

The term fi(t− τ) is the ideally constant frequency for clock i and we assume any unpredictable deviations from that frequency
are contained in εi(t). The predictable phase component is then hi(t) = hi(t − τ) + τfi(t − τ). For the propagation of the
perfect clock, we obtain the same equation without the random deviations:

hp(t) = hp(t− τ) + τfp(t− τ). (4)



The frequency deviation of clock i from the perfect clock is denoted as yi,p(t) = fi(t)− fp(t). The phase deviation of clock i
from the perfect clock is then defined as the sum of the ideal propagation component θi(t) = hi(t)−hp(t) and the unpredictable
component εi(t). The resulting random variable is assumed to follow a Gaussian distribution, leading to the following model

xi,p(t) = h
′

i(t)− hp(t) = θi(t) + εi(t), (5)
xi,p(t) ∼ N (θi(t), σ

2
i (t)). (6)

To clarify, the term θi(t) is the phase deviation that clock i should have from a perfect clock in the case it had a perfectly stable
frequency and predictable phase. We identify the θi(t) values as the parameters we wish to estimate, where any error in the
estimates contributes to an error in our estimate of the perfect clock. The result is a phase deviation of each clock with respect to
a reference clock that varies from the perfect clock. This reference clock is defined as our ensemble clock or time scale hE(t),
yielding,

θ̂i(t) = hi(t)− hE(t) = xi,E(t). (7)
In practice the xi,p(t) values are not observable, instead, we observe only the differences between pairs of clocks xij(t) =
xi,p(t)−xj,p(t). The phase differences provideN−1 non-redundant equations under the assumption of negligible measurement
noise. That is, selecting a common reference clock for each of the measurements xi1(t) allows the reproduction of all other pairs
of clocks using linear combinations. For example, the phase difference measurement x23(t) is not necessary if both x21(t) and
x31 are already available (x23(t) = x21(t)−x31(t)). In the context of a swarm of nanosatellites, measurement noise is expected
to be influential but for the derivations presented in this work, we maintain the common assumption that measurement noise
is negligible in comparison to the clock noises in εi(t). It is also assumed that the number of satellites capable of measuring
phase differences is constant so there is always access to the N − 1 phase differences. With only N − 1 measurements and N
parameters to estimate, the system is indeterminate. We then use a common method amongst time scale algorithms, defining a
constraint on the weighted sum of the predicted θi(t) values Thomas et al. (1994)

N∑
i=1

wi(t− τ)x̂i,E(t) =
N∑
i=1

wi(t− τ)θi(t). (8)

This constraint is satisfied for an ideal time scale but depends on the weights and predictions of the phase deviations x̂i,E(t).
The difficulty in using the predictions is that they can only be made using the previous estimates,

x̂i,E(t) = θ̂i(t− τ) + τ ŷi,p(t− τ). (9)

The above requires appropriate estimates of the previous phase and frequency deviations. For optimal estimation, the error in
the previous estimates should approach the value of the unpredictable fluctuations due to the internal clock noises. As we are
assuming that the unpredictable fluctuations in both phase and frequency are contained in εi(t), we can rewrite the prediction
equation as:

x̂i,E(t) = θi(t− τ) + τyi,p(t− τ) + εi(t) = θi(t) + εi(t). (10)
The final measurement uses the previously computed weights to take a weighted sum of the phase predictions. The weighted
sum is used as a method of constraining the time scale performance. As explained in Stein (2003), the weighted sum of the
clock noise should be set to zero to obtain the ideal time scale constraint in (8)

N∑
i=1

wi(t− τ)x̂i,E(t) =
N∑
i=1

wi(t− τ) (θi(t) + εi(t)) . (11)

The design objective is then
∑N

i=1 wi(t − τ)εi(t) = 0, indicating that the weight computations should assign low weights to
clocks with high variance or high error between predictions and estimates. The measurement model will include the stochastic
clock processes from the equation above as variances arising from an assumed distribution. The joint statistical model according
to the distribution of the individual clock phases is now presented for the complete set of measurements:

z(t) =


x21(t)
x31(t)

...
xN1(t)∑N

i=1 wi(t− τ)x̂i,E(t)

 ∼ N



θ2(t)− θ1(t)
θ3(t)− θ1(t)

...
θN (t)− θ1(t)∑N

i=1 wi(t− τ)θi(t)

 ,Σ(σ2(t))

 = N (µ(θ(t)),Σ(σ2(t))), (12)



where the vector θ(t) = [θ1(t) · · · θN (t)]
T contains the independent predictable components of the clock phase deviations and

σ2(t) =
[
σ2
1(t) · · ·σ2

N

]T contains the variances of each clock. Both the mean vector and covariance matrix can be written in
the form of matrix products with θ(t) and σ2(t), respectively. The mean vector is

µ(θ(t)) =


−1 1 0 · · · 0

−1 0 1
. . .

...
...

...
. . . . . .

...
−1 0 0 · · · 1

w1(t− τ) w2(t− τ) w3(t− τ) · · · wN (t− τ)



θ1(t)
θ2(t)

...
θN (t)

 = A(t)θ(t). (13)

When forming the joint distribution of these random variables it is important to include the correlation between each of the
phase difference measurements and the predicted phase deviations. Since clock 1 is considered the common reference for all
the phase differences, we can expect that the variance of clock 1 affects all the observations. The measurement noises for each
pair of clocks are considered independent. Hence, the covariance matrix of the measurement vector z(t) can be written as:

Σ(σ2(t)) =


σ2
2 + σ2

1 σ2
1 · · · σ2

1 w2σ
2
2 − w1σ

2
1

σ2
1 σ2

3 + σ2
1 σ2

1

...
...

...
. . . . . . σ2

1

...
σ2
1 · · · σ2

1 σ2
N + σ2

1 wNσ
2
N − w1σ

2
1

w2σ
2
2 − w1σ

2
1 · · · · · · wNσ

2
N − w1σ

2
1

∑N
i=1 w

2
i σ

2
i

 = A(t)D(σ2(t))AT (t), (14)

where we denote D(σ2) as the diagonal matrix with the vector σ2 on the diagonal. The above covariance model is an expansion
of the model expressed by Levine (2012), which assumes equal variances for the clocks and does not include the N th row
and column. It is known that elliptically symmetric distributions are stable under linear transforms, including the Gaussian
distribution (Hasannasab et al., 2020). Hence, the following property is obtained

A−1(t)z(t) ∼ N
(
A−1(t)µ(θ(t)),D(σ2(t))

)
, (15)

A−1(t)z(t) ∼ N
(
θ(t),D(σ2(t))

)
. (16)

Pre-multiplying the set of measurements z(t) by the inverse of A(t) is equivalent to solving the system of N equations that
come from the phase difference measurements and the constraint on the weighted sum of the clock error. This is demonstrated
by writing the equations without noise and assuming a perfect estimation for x̂i,E(t)

x21(t) = θ2(t)− θ1(t)
x31(t) = θ3(t)− θ1(t)

...
xN1(t) = θN (t)− θ1(t)∑N

i=1 wi(t− τ)x̂i,E(t) =
∑N

i=1 wi(t− τ)θi(t)

←→ z(t) = A(t)θ(t). (17)

The explicit solutions for θj(t) in the above system of equations are

θj(t) =

N∑
i=1

wi(t− τ)(x̂i,E(t)− xij(t))←→ θ(t) = A−1(t)z(t). (18)

However, if we evaluate the above equations with the clock noises and estimation error, we only obtain estimates of the phase
states θ̂i(t) = xi,E(t), and not the true clock phases. That is, the estimates represent the deviation from some time scale, which
is the result of the BTSE as presented in (Weiss and Weissert, 1993; Thomas et al., 1994)

xj,E(t) = hi(t)− hE(t) =
N∑
i=1

wi(t− τ)(x̂i,E(t)− xij(t))←→ θ̂(t) = A−1(t)z(t). (19)



According to (16) and (19), the estimated deviation of each clock from the time scale remains a random variable. In this case,
we expect any other calculations that use this estimate to also follow some statistical distribution. For example, if we take the
slope between the current and previous phase estimates, we will obtain noisy samples of the clock frequencies. We propose to
use a statistical model of these frequency samples to obtain our frequency predictions and weights. In the following section, we
derive the new MLE time scale that uses the statistics of the frequencies to determine an estimator for the frequency and the
frequency variance. By estimating these parameters, we introduce new methods of finding the frequency predictions used in (9)
and determining the weights using the frequency variance estimates.

III. A NEW TIME SCALE BASED ON A GAUSSIAN MLE
To derive the MLE for the presented assumptions on the statistics of the measurements, we must define the multivariate
probability density function (PDF) for the measurements:

f(z(t);µ(θ(t)),Σ(σ2(t))) =
1√

(2π)N |Σ(σ2(t))|
exp

(
−1

2
(z(t)− µ(θ(t)))TΣ(σ2(t))−1(z(t)− µ(θ(t)))

)
. (20)

This PDF gives the probability of the N measurements occurring at some instant in time, so we can estimate at most N
parameters using the maximum likelihood estimator. The parameters to be estimated are the xi,p(t) values, which give us the
prediction of the time scale under ideal conditions. To find the xi,p(t) values that have maximum probability, we can maximize
the log-likelihood function l(θ(t);µ(θ)) =

log(f) = −N
2
log(2π)− 1

2
log

∣∣Σ(σ2(t))
∣∣− 1

2
(z(t)− µ(θ(t)))TΣ(σ2(t))−1(z(t)− µ(θ(t))). (21)

Taking the derivative w.r.t. θ(t) :

∂ log(f)

∂θ(t)
=

(
∂µ(θ(t))

∂θ(t)

)T

Σ(σ2(t))−1[z(t)− µ(θ(t))] = 0, (22)

θ̂(t) = A−1z(t). (23)

The final result is identical to simultaneously solving the N equations defined in (17). Therefore, the BTSE can be considered
the result that maximizes the likelihood for the measurement model specified above. However, the output of the BTSE still
follows some statistical distribution (see (16)). Due to this inherited uncertainty in the estimate of the time scale, the prediction
of frequency can also be considered a random variable. Using a slope approximation of the frequency, and presenting the slope
of the error in the time scale offset as ηi(t)

yi,s(t) =
xi,E(t)− xi,E(t− τ)

τ
= yi,p(t) + ηi(t), (24)

yi,s(t) ∼ N (yi,p(t), σ
2
yi
(t)). (25)

We assume that the frequency predictions made at consecutive time instants maintain a constant mean and variance. That is,
each clock is representative of a clock with a constant frequency that suffers some stochastic deviations at each point in time.
Then, we obtain independent samples of the constant frequency using slope approximations across a chosen window of past
time steps. The samples are then defined as yi,s(t −Mτ), · · · , yi,s(t), where M is the number of past samples used and the
window length is M + 1.

Using at least 2N samples of frequency (obtainable using only the N frequency approximations from the current and previous
time steps), we can obtain the MLE for both the frequency and the frequency variance of each clock. Under the assumption
of a Gaussian distribution, the parameter MLEs for this set of observations are simply the sample mean and sample variance
Maronna et al. (2006):

ŷi,p(t) =
1

M + 1

M∑
m=0

yi,s(t−mτ), (26)

σ̂2
yi
(t) =

1

M + 1

M∑
m=0

(yi,s(t−mτ)− ŷi,p(t))2. (27)



To avoid the need for saving all past samples and increasing memory demand, the estimation is performed on a sliding window of
samples with a fixed size. The sliding window size must be large enough to ensure MLE convergence to the optimum estimate.
It is noted here that we draw a specific parallel to the nominally optimal AT1 time scale. The algorithm to compute AT1 defines
two time constants, mi and Nτ for the exponential filters in the following relations

ŷi,p(t) =
yi,s(t) +miŷi,p(t− τ)

1 +mi
, (28)

ϵ2i (t) =
ϵ̂2i (t) +Nτ ϵ

2
i (t− τ)

1 +Nτ
. (29)

Where ϵ̂i = |xi,E(t)− x̂i,E(t)| is the clock prediction error. The exponential filters essentially place lower weights on the
more recent predictions to avoid rapid changes that could cause instabilities. The magnitude of the time constants relates to
the amount of time between two samples that will vary according to some desired type of stochastic noise. The time constant
for the prediction error (Nτ ) is set to the period at which the white frequency noise is expected to be constant (Weiss and
Weissert, 1991). Similarly, the time constant for the frequency update (mi) is selected to be the period at which the random walk
frequency noise first becomes dominant (Weiss and Weissert, 1991). If flicker frequency noise is more suitable than random
walk frequency noise, mi is the time interval at which the white noise intercepts with flicker noise on the ADEV curve. Both
time constants can be set to be equal for the simulated OCXO clocks, Nτ = mi = 100 (see Appendix A). We then take this
value of the time constants as the constant width of the sliding window for the MLE algorithm. As the MLE is expected to
improve estimation accuracy with more samples, we will also assess higher values ofM and correspondingly alter the AT1 time
constants for comparison. With the window length defined, the MLEs for the frequency and frequency variance are computed
as alternatives to the outputs of the exponential filters in the AT1 algorithm.

The key difference between the AT1 time scale and the Gaussian MLE time scale is that the weights are computed with respect
to an estimated frequency variance instead of a prediction error. The weights from the previous iteration of either algorithm
cause a bias in the estimation of the variance, which is corrected with the factor Ki derived by Tavella et al. (1991):

ϵ̂2i (t) = |xi,E(t)− x̂i,E(t)|
2
Ki(t), (30)

σ̂2
yi
(t) =

Ki(t)

M + 1

M∑
n=0

(yi,s(t− nτ)− ŷi,p(t))2, (31)

Ki(t) =
1

1− wi(t− τ)
. (32)

Finally, these corrected estimates of prediction error and frequency variance are inverted and normalized to obtain the weights
to be used in the next iteration of the BTSE.

wi,AT1(t) =

1
ϵ2i (t)∑N
i=1

1
ϵ2i (t)

, (33)

wi,MLE(t) =

1
σ̂2
yi

(t)∑N
i=1

1
σ̂2
yi

(t)

. (34)

With the equations above, the Gaussian MLE time scale is fully defined. The algorithm follows familiar steps to the existing
AT1 algorithm but with an alternate method for predicting the frequency and frequency variance, which leads to changes in the
phase predictions and weights, respectively. The resulting Gaussian MLE and AT1 time scales for equal window lengths and
time constants are presented in Section VI, together with the MLE derived for a more outlier inclusive distribution defined in
the next section. More precisely, we assume a different distribution of the frequency approximations over the sliding window.
The Student’s t-distribution is selected to represent the effect of phase jump anomalies and is verified in the following section.

IV. ANOMALOUS CLOCK STATISTICS AND STUDENT MLE
Anomalies occur at unpredictable times and result in an unpredictable change in the instantaneous clock states. We expect the
presence of phase jumps in the ensemble to cause a greater occurrence of outlying samples. A phase jump at some time can
be related to a temporary frequency jump (outlier in frequency) at the same time. The histograms presented in this section
will show the distribution of the frequency of a specific clock over a window of time samples, with and without outliers. In



addition, the PDFs corresponding to both a Gaussian distribution and a Student’s t-distribution are computed and superimposed
to see if they fit the data. The t-distribution is chosen as it belongs to the same family of distributions as the Gaussian but
differs according to a shape parameter called the degrees of freedom ν. As is illustrated in Figure 1a, for a high value of ν, the
t-distribution is approximately equivalent to the Gaussian distribution. Conversely, Figure 1b demonstrates that outliers have a
higher probability with fewer degrees of freedom (see the scale of the samples on the x-axis).

(a) Examples of the probability density for 1000 samples generated by the
Student’s t-distribution parameterized as t(0, 1, 300).

(b) Examples of the probability density for 1000 samples generated by the
Student’s t-distribution parameterized as t(0, 1, 3).

Figure 1: Histograms of synthetically generated data.

To verify the Student’s t-distribution as a reasonable assumption for clock data in presence of anomalies, we include significant
magnitudes of phase jumps on the simulated clock data. These magnitudes are ∆x = 10 ns multiplied by a random scalar
value to keep the same order of magnitude but have an unpredictable amplitude. A greater number of jumps occurring on a
single clock further modifies the statistics of the data for that clock. In Figure 2a we present the baseline for a simulated clock’s
frequency statistics in nominal operations. As expected, including a phase jump on a clock introduces an outlier in the frequency
state of that clock. As seen in Figure 2b, the effect of one clock having one phase jump over a window of 1000 samples causes a
noticeable change in the frequency statistics. The Gaussian PDF that is computed to fit this distribution is skewed by the outlier,
resulting in an inflated variance and a shift in the mean. This indicates that robust estimation of the frequency based on the
t-distribution should neglect the impact of the phase jump.

(a) Baseline frequency statistics for a single clock under nominal operating
conditions.

(b) Frequency distribution for a window of 1000 samples, with one phase
jump at the end of the window.

Figure 2: Histograms of clock frequency data.



The objective of a robust MLE is to provide the best estimate of the parameters of the distribution that includes outliers, where
the outliers do not have any negative impact. Assuming that the frequency states of the clocks have a t-distribution, the following
distribution of the frequency can be obtained:

yi,s(t) ∼ t(yi,p(t), σ2
yi
(t), νi). (35)

Since we cannot guarantee knowledge of which clock is experiencing the anomaly, it is not possible to make this assumption on
only the faulty clock. Considering the potential for anomaly detection algorithms (Galleani and Tavella, 2012; Trainotti et al.,
2022), this could be an eventual application. However, for the remainder of this work, we make the same assumption for all
clocks and place a phase jump on each clock at a different time. This is equivalent to stating that each clock has some chance
of suffering a phase jump within our total simulation period. This assumption is not baseless for the context of this project,
where the NOIRE swarm has a collection of homogeneous clocks operating in the same hostile environment. Then, the joint
assumption on all clocks allows us to introduce the multivariate PDF for ys(t) ∼ t(µy(t),Σ(t), ν(t)) (Doğru et al., 2018):

f(ys(t);µy(t),Σ(t), ν(t))

=

M∏
m=0

Γ
(

ν(t)+M
2

)
|Σ(t)|−

1
2

(πν(t))M/2Γ
(

ν(t)
2

) [
1 +

1

ν(t)
(ys(t−mτ)− µy(t))

TΣ(t)−1(ys(t−mτ)− µy(t))

]− (ν(t)+M)
2

, (36)

where Γ(a) is the gamma function, the frequency slope approximations are contained in the random vector ys(t) =

[y1,s(t) · · · yN,s(t)]
T , and the ideal frequency offsets for each clock are µy(t) = [y1,p(t) · · · yN,p(t)]

T . The exact
MLEs for the parameters in the above PDF are difficult to derive. However, by introducing latent variables that are related to
the target parameters, an approximation of the MLE can be obtained (Doğru et al., 2018). An Expectation-Maximization (EM)
algorithm is used to generate a sequence of parameters that converge to a local maximum of the Student’s t-likelihood. For
iteration k of the EM algorithm, the parameters are updated according to the following equations:

û(k)m =
ν̂(k−1) +N

ν̂(k−1) + (ys(t−mτ)− µ̂(k−1)
y )T Σ̂

−1

(k−1)(ys(t−mτ)− µ̂(k−1)
y )

(37)

µ̂(k)
y (t) =

∑M
n=0 û

(k)
n ys(t−mτ)∑M
n=0 û

(k)
n

, (38)

Σ̂(k)(t) =
1

M + 1

M∑
m=0

û(k)m (ys(t−mτ)− µ̂(k)
y (t))(ys(t−mτ)− µ̂(k)

y (t))T , (39)

ν̂(k)(t) : solve ψ

(
ν̂(k)(t)

2

)
− ψ

(
ν̂(k−1)(t) +N

2

)
+

M∑
m=0

(
u(k)m − log(u(k)m )− 1

)
= 0, (40)

where the terms û(k)m are weighting factors that assign less importance to outliers, and ψ(a) is the digamma function. The
correction factor Ki(t) is applied after the EM algorithm to remove biases due to past weights. A term depending on ν is also
included to convert the estimated scale matrix Σ̂ to an equivalent covariance matrix C(t) = ν̂(t)

ν̂(t)−2Σ̂(t) for the t-distribution.
The new correction term can then be applied as follows:

Ki(t) =
1

1− wi(t− τ)
ν̂(t)

ν̂(t)− 2
, (41)

σ̂2
i (t) = Ki(t)Σ̂(i,i)(t), (42)

where Σ̂(i,i)(t) is the ith diagonal element of the matrix Σ̂(t). The implemented EM algorithm uses the “classical EM” code
from Hasannasab et al. (2020). It requires us to initialize the parameters, which can be done using the Gaussian MLE results
before computing ûm and consequently updating the parameter estimates until reaching the stopping rule e < 10−5 with

e =

√∥∥µk − µk−1

∥∥2 + ∥Σk −Σk−1∥2√∥∥µk−1

∥∥2 + ∥Σk−1∥2
+

√
(log(νk)− log(νk−1))

2

|log(νk−1)|
. (43)



It is acceptable to consider that each clock in the ensemble has the same number of degrees of freedom because each clock has
a chance to experience the same type of anomaly with the same order of magnitude. The time scale generated with the results
of the robust MLE is referred to as the Student MLE time scale. It is constructed in the same manner as the Gaussian MLE time
scale but obtains the frequency estimates and computes weights using (38) and (39), respectively.

V. ALGORITHMS
The time scale algorithms introduced in this paper are compared with the AT1 time scale as a reference. Before analyzing the
resulting characteristics of the time scales, the similarities and differences between the algorithms are presented in the following
algorithm summaries. The initialization, prediction, and time scale generation steps are identical for AT1, Gaussian MLE, and
Student MLE, although the numerical output of these steps differs because of the reliance on the later steps.

Algorithm 1 AT1 algorithm
Input: xij(t), N = 50, tf = 10486 s, xi,p(0), xi,p(10)

Initialization: mi = 100 s, Nτ = 100 s, wi(10) =
1
N , τ = 1 s, ŷi,p(t− τ) = xi,p(10)−xi,p(0)

10τ , xi,E(10) = 0
for t = 11, · · · , t = tf do

Prediction:
x̂i,E(t) = xi,E(t− τ) + τ ŷi,p(t− τ),
Time scale generation:
xi,E(t) =

∑N
j=1 wj(t− τ) (x̂j,E(t)− xji(t)),

Frequency update:
yi,s(t) =

xi,E(t)−xi,E(t−τ)
τ , ŷi,p(t) = yi,s(t)+miŷi,p(t−τ)

1+mi
,

Weight computation:

Ki(t) =
1

1−wi(t−τ) , ϵ̂2i (t) = |xi,E(t)− x̂i,E(t)|
2
Ki(t), ϵ2i (t) =

ϵ̂2i (t)+Nτ ϵ
2
i (t−τ)

1+Nτ
, wi(t) =

1

ϵ2
i
(t)∑N

i=1
1

ϵ2
i
(t)

end for
Output: xi,E(t)

The key design differences between algorithms are in the frequency update and weight computation steps. The AT1 algorithm
uses the concept of exponential filters to reduce the influence of more recent estimates. In the initialization step, appropriate
time constants are chosen so that only variations over a certain interval can contribute to the frequency and weight estimates.
The idea of the MLE algorithms is to make a similar choice in time constant by choosing a number of past frequency samples
M that provides a certain statistical distribution of data, i.e., a certain level of random variations affects the frequency.

Algorithm 2 Gaussian MLE algorithm
Input: xij(t), N = 50, tf = 10486 s, xi,p(0), xi,p(10)

Initialization: M = 100 s, wi(10) =
1
N , τ = 1 s, ŷi,p(t− τ) = xi,p(10)−xi,p(0)

10τ , xi,E(10) = 0
for t = 11, · · · , t = tf do

Predict:
x̂i,E(t) = xi,E(t− τ) + τ ŷi,p(t− τ),
Time scale generation:
xi,E(t) =

∑N
j=1 wj(t− τ) (x̂j,E(t)− xji(t)),

Frequency update:
yi,s(t) =

xi,E(t)−xi,E(t−τ)
τ , ŷi,p(t) = 1

M+1

∑M
n=0 yi,s(t− nτ),

Weight computation:

Ki(t) =
1

1−wi(t−τ) , σ̂2
yi
(t) = Ki(t)

M+1

∑M
n=0(yi,s(t− nτ)− ŷi,p(t))2, wi(t) =

1
σ̂2
yi

(t)∑N
i=1

1
σ̂2
yi

(t)

end for
Output: xi,E(t)



The weights of the MLE algorithms are defined as the inverse of the estimated frequency variances. The estimate of the frequency
variance concerns the uncertainty in the slope approximation of the frequency, which differs from the phase prediction error
ϵi(t) used in the AT1 algorithm. Nevertheless, both algorithms observe the instability in the change of phase using the new
estimates. The AT1 algorithm applies another exponential filter to avoid large contributions from the most recent prediction
error. The MLE algorithms use the sliding window to ensure that each new sample is only 1 out of M samples that contribute
to the variance estimates.

Algorithm 3 Student MLE algorithm
Input: xij(t), N = 50, tf = 10486 s, xi,p(0), xi,p(10)

Initialization: M = 100 s, wi(10) =
1
N , τ = 1 s, ŷi,p(t− τ) = xi,p(10)−xi,p(0)

10τ , xi,E(10) = 0
for t = 11, · · · , t = tf do

Predict:
x̂i,E(t) = xi,E(t− τ) + τ ŷi,p(t− τ),
Time scale generation:
xi,E(t) =

∑N
j=1 wj(t− τ) (x̂j,E(t)− xji(t)),

Frequency update:
yi,s(t) =

xi,E(t)−xi,E(t−τ)
τ , ŷi,p(t) =

∑M
m=0 û(k)

m yi,s(t−nτ)∑M
m=0 û

(k)
m

,

ûm = ν̂+N
ν̂+sm

, sm =
∑N

i=1
(yi,s(t−mτ)−yi,E(t))2

σ̂2
i (t)

Weight computation:

Ki(t) =
1

1−wi(t−τ)
ν

ν−2 , σ̂2
yi
(t) = Ki(t)

M+1

∑M
m=0 ûm(yi,s(t−mτ)− ŷi,p(t))2, wi(t) =

1
σ̂2
yi

(t)∑N
i=1

1
σ̂2
yi

(t)

end for
Output: xi,E(t)

VI. RESULTS
The time scales are assessed in nominal conditions with the simulated clocks as detailed in Appendix A. Figure 3a shows the
frequency stability performance of each time scale with the best choice of time constants and MLE window size chosen to
match those time constants. The metric used to assess the frequency stability is the Overlapping Allan Deviation (OADEV)
and is plotted against the averaging time τ . The time scales have a similar trend in OADEV with a similar order of magnitude.
However, the OADEV of the AT1 time scale with sampling intervals of 500 seconds is preferred over the MLE time scales. To
assess the similarity in the choice of window size and time constants, the same time scales are again computed with different
initialization of those parameters. Figure 3b shows that when M = 300, the MLE time scales approach the same OADEV as
the AT1 time scale with the preferred time constants. Furthermore, increasing both the window size and time constants to 1000
seconds also results in equal performance (seen with triangle data points), although this performance has higher OADEV.

This gives insight into the selection of the window size for the MLE time scales. As expected, the number of samples included in
the window should be sufficient enough to ensure that the EM algorithm converges to accurate estimates. However, the number
of samples should not be too large because the dominant noise of the clocks could change to a non-preferred type, as is the case
with the AT1 time constants. For the next analysis on performance with phase jump anomalies, the time constants for AT1 are
kept as mi = Nτ = 100, as shown above, and the window size is M = 300. The robustness of the time scale algorithms is next
to be assessed. By including a phase jump at a random time on each clock in the ensemble, we appropriately represent some
common effects on all clocks due to the space environment. A phase jump on a clock causes an outlier in that clock’s frequency.
We expect this outlier to be automatically accounted for with the robust estimator, i.e., the Student MLE. Figure 4a shows that
this is the case for the frequency estimation, where the Gaussian MLE and AT1 estimates of frequency are clearly impacted
by the outlier. Similarly, the weight estimate from the Student MLE is shown to neglect the outlier in Figure 4b. This is also
expected for a robust estimator, that considers the outliers as actual samples occurring with some designated low probability.

A weight that is blind to an outlier is typically useless in the time scale design. Nevertheless, the robust estimator has achieved
its task of eliminating the outlier from its estimates. As detailed in (37), (38), and (39) there are different weights assigned to
the past samples of the frequency to determine the robust frequency and variance estimates, without a priori knowledge of the
anomaly and without losing performance in the nominal case. The end results are the approximated values of yi,E(t) and wi(t)
that would be obtained if clock i had no outlier. The performances of the time scales are presented in Figure 5. Despite the
weight being poorly assigned, the improved frequency estimate has resulted in some gain in the long-term frequency stability
for the Student MLE time scale.
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Figure 4: Robust estimates.

Using the robust MLE solution is a passive way of lowering the impact of the phase jump anomalies, where there is no design
choice required in terms of thresholds, probabilities of false alarms, or empirically chosen weight smoothing functions. For
future work, the results from the robust MLE could be included in an active anomaly detection procedure. One potential method
could include choosing a threshold for the difference between the robust estimates and the non-robust estimates. This would
then be comparable to the active phase jump detection methods suggested for AT1 in Levine (2012) and Weiss and Weissert
(1993) (which were not used in our realization of AT1). The same weight control terms that were suggested for use in AT1
could even be applied using a new threshold based on the robust estimate of frequency variance.



8800 9000 9200 9400 9600 9800 10000

-6

-4

-2

0

2

10
-10

Gaussian MLE estimate

Student MLE estimate

AT1 estimate

(a) Time scale frequencies.

10
0

10
1

10
2

10
3

10
4

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10
-11

Gaussian MLE timescale with M=300

Student MLE timescale with M= 300

AT1 timescale with m
i
= 100

(b) Time scale stabilities.

Figure 5: Frequency performance when each clock experiences a phase jump.

VII. CONCLUSION
Statistical models of clock phase and frequency have been used to derive the MLE of clock phases, frequencies, and frequency
variances. It has been proven that the result of the BTSE maximizes the likelihood of the specified model of phase measurements.
Consequently, the new MLE-based time scales use identical prediction and update equations to the estimates of phase. The
key differences in the design of the MLE-based time scales and the AT1 time scale are the frequency updates and weight
computations. Indeed, another MLE solution is obtained using a sliding window of past frequency approximations to replace
the exponential filters of the AT1 algorithm. The sliding window size must be large enough to ensure a good convergence of
the EM algorithm, but not so large that the frequency variance is defined by some undesirable clock noise process.

Nanosatellites operating in a harsh environment will be prone to a variety of anomalies. It is important to mitigate the presence
of these anomalies in the generation of a time scale amongst a swarm of nanosatellites. This paper focuses on phase jump
anomalies that are equivalent to outliers in frequency data, which can then be modeled by the Student’s t-distribution. The time
scales based on the Gaussian MLE and Student MLE are confirmed to match the performance of the AT1 time scale under
nominal conditions. Finally, when each clock in the ensemble is affected by a phase jump anomaly at some random point in
time, the Student MLE time scale is shown to robustly estimate the frequency and frequency variance of the anomalous clock,
and obtain slight improvements in the long-term frequency stability. The next steps of this work include exploring the statistics
resulting from different clock anomalies and using the robust MLE methodology to aid in detecting anomalies.

A. SIMULATED CLOCKS
The outputs of our clock simulation model are detailed in Figure 6. The clock generator code was created by inputting
characteristics from the expected Allan deviation curves for typical space-qualified OCXO clocks. The clock variances were
randomly modified to ensure that each clock has unique behaviors from the other clocks generated. Finally, phase jumps with
the order of magnitude of 10 ns are used to produce the clocks in the presence of anomalies.
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