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Abstract

Recent trends in Global Navigation Satellite System (GNSS) applications in urban environments have led to a proliferation
of studies in this field that seek to mitigate the adverse effect of non-line-of-sight (NLOS) phenomena. However, these methods
reduce the availability of positioning in deep urban conditions. For such harsh urban settings, this paper proposes a methodology of
constructive use of NLOS signals, instead of their elimination. We propose to compensate for the NLOS errors using a 3D GNSS
simulator to predict the measurements bias and integrate them as observations in the estimation method. We investigate a novel
GNSS positioning technique based on measurement similarity scoring of an array of position candidates. We improve this technique
using an estimation of the uncertainty on the bias prediction by 3D modeling. Experiment results using real GNSS data in a deep
urban environment confirm the theoretical sub-optimal efficiency of the proposed approach, despite it intensive computational load.

Keywords: GNSS in urban canyons; Multipath and NLOS reception; Maximum Likelihood Estimation; GNSS simulators

I. INTRODUCTION

APlethora of land navigation applications benefits from the free accessibility and suitable accuracy of Global Navigation
Satellite System (GNSS) for location and timing in urban areas [1]. Motivated by this exponential increase of GNSS

based applications in these environments, recent attention has focused on improving positioning accuracy in urban settings. On
the one hand, GNSS positioning services are poised to be receiving stringent positioning requirements in cities. On the other
hand, these harsh environments present significant challenges for satellite positioning that prevent achieving user requirements.

Actually, the presence of line-of-sight (LOS) blockage deteriorates the positioning accuracy for three reasons. First, it
engenders very challenging technical issues for acquiring and tracking the attenuated signals. Hence, the continuity of position
estimation cannot be guaranteed if tunnels, tall building and foliage disrupt the GNSS navigation completely. Secondly, the
interaction with the environment usually results in the reception of multipath (MP) signals. Besides, if the line of sight
(LOS) is blocked and the satellite signal is eventually received through a reflected non-line-of-sight (NLOS) path, the related
pseudo-range (PR) measurement will be affected by an additional bias [2]. These combined NLOS and MP biases degrade
the position estimation and result in hundreds of meters of positioning error in some situations [3]. Thirdly, blocked satellite
signals engender a poor constellation geometry that may affect the Dilution of Precision (DOP) unfavourably which further
reduce the positioning accuracy. In view of such technical challenges in urban areas, there is a pressing need for mitigating
these unwanted effects to achieve the required positioning accuracy.

This paper is divided into four main sections. The first one proposes a review of the state on the MP/NLOS problem. In the
second section, we introduce our contribution for positioning in MP/NLOS conditions. The third section outlines experimental
results obtained in an urban canyon in Toulouse using the proposed approach and a 3D GNSS simulator. Finally, some
conclusions are summarized in section 4.



II. RELATED WORKS

Broadly speaking, the literature on the NLOS problem falls into three main categories: NLOS identification, NLOS mitigation
and NLOS constructive use. The former tends to distinguish between clean LOS signals and NLOS range measurements.
Some of the proposed methods investigate the use of additional hardware, allowing this NLOS-LOS distinction. Hardware-
based distinction techniques include the use of a dual polarization antenna, a GNSS antenna array and a sky-pointing camera.
Without using additional hardware, [4] proposes other indicators of NLOS reception such as elevation angle selection, C/N0-
based NLOS detection and inter-satellite consistency checking [5]. MP/NLOS measurements, once identified, can be either
discarded [6], down-weighted [7] or used constructively to improve positioning performances [8].

The second approach typically tends to reduce the adverse impact of deteriorated NLOS signals on the estimation accuracy. A
number of classical techniques for MP/NLOS mitigation exist in the literature and represent standard features of professional
grade GNSS receivers, in particularly those based on narrow and double-delta correlators [9]. In-receiver MP mitigation
methods include strobe correlator [10], the Multipath Estimating Delay Lock Loop (MEDLL) [11] and Fast Iterative Maximum-
Likelihood Algorithm (FILMA) [12]. However, these in-receiver techniques do not bring a considerable enhancement in case
of NLOS reception due to the absence of a LOS signal. Other scientific studies have been carried out for NLOS mitigation at
the level of antenna and hardware design, receiver, post-receiver [13], by robust estimation [14], [15], MP modeling [16] or
by hybridizations with other external sensors [17].

To deal with the lack of GNSS signals redundancy in urban environments, a new trend of techniques attempt to detect these
degraded measurements and use them constructively [8], [18], [19]. In fact, under the poor conditions of satellite visibility, we
would like to use constructively these degraded NLOS observables. The idea behind this methodology is to use all available
signals in harsh areas since most GNSS signals are prone to reflections in these environments. Discarding degraded GNSS
signals will often induce less signal availability which unable to cater continuous navigation throughout the operation.

New trends of methods aim to use constructively degraded measurements by exploiting the measurements model via aiding
information about the geometric environment of reception from 3D city models, as in [8], [20]. However, to deal with the
problem of the vicinity of the input point provided to the 3D simulator and the unknown position to be estimated, some studies
predict the path delay of the NLOS signals across an array of candidate positions [18], [20], [21], [22], i.e. considering signal
reception at multiple candidate positions. The positioning technique is then based on scoring position hypotheses by comparison
between observations at the receiver and information provided by the 3D model/3D simulator such as the sky visibility [20],
the NLOS signal delay [21], the PR measurements [22], [23]. Others approaches combine a simplified 3D model, called urban
trench, with a probabilistic method to enhance performances [24].

Another way of exploiting the 3D city model is to predict the NLOS bias via GNSS propagation simulations and then
correcting it in the PR measurements [8], [18]. We use a 3D model jointly with a GNSS simulator to characterize on-the-fly
the measurements errors in urban environments and to predict blockage and reflection of GNSS signals. With an initial position
input, these GNSS simulators simulate the GNSS propagation in a representative type of environment (e.g. open sky, urban and
deep urban) and provide the user with several types of information, such as the number and the characteristics of reflections,
additional PR biases, etc. The quality and reliability of the simulated signals depends on how close the a priori input position
is to the true position and on the reliability of the propagation modeling at the ray-tracing level. In [8] and [18], we have
used the 3D model to predict PR errors and use it constructively on the estimation step. We have used these bias predictions
in different ways, including instantaneous corrections, using the mean and variance, and other statistics such as the minimum
and maximum bounds as constraints in the estimation process.

In [18], we propose a positioning algorithm, called the range bias correction (RBC-3D), based on correcting degraded
measurements using information provided by a 3D GNSS simulator. The RBC-3D estimator is based on finding upper and
lower bounds of NLOS biases and performing a range bias correction, in the measurements domain, using these predicted PR
bias bounds to compute a new position with corrected PR measurements. 3D-mapping measurements correction is therefore
performed using a 3D GNSS simulator, able to estimate the PR ranging errors and then correct them.

This PR correction step is a sensitive task: poor PR bias predictions may engender an erroneous ranging correction and
then may sensitively reduce the position estimation instead of enhancing it [25]. Besides, unless the search area is small, these
approaches are generally computationally intensive. The performances of the PR measurements-based-correction method are
strongly linked to the performances of PR bias estimations. One of the greatest challenges is that generally these biases are
environment-dependent and highly time-varying and hence very difficult to be estimated.

In this study, we use the 3D GNSS Simulator SPRING to estimate these ranging errors. These estimated biases are then
used to define an approximate maximum likelihood estimate. This estimate, called AML-3D, compute a likelihood function
over an array of position hypothesis based on the similarity between measured and predicted range information. The proposed
estimator produces then an estimation of the final solution over an array of candidate in the position domain. In this work,
we use the 3D GNSS simulator SPRING [26], provided by the French Space Agency (CNES), to predict PR errors in urban
areas. Experimental results show that better performance can be obtained by using the AML-3D even in harsh environment
with mixed MP and NLOS receptions.



III. PROPOSED POSITIONING ALGORITHM

A. Effect of MP/NLOS biases on Position estimation

GNSS is a global technology that allows users over the globe to locate themselves to navigate and have a mean for
synchronization on a common time reference. The user position is provided by a dedicated GNSS device able to estimate the
time of travel of emitted signals along line-of-sight (LOS) paths from at least four GNSS satellites. However, signal obstruction
and degradation are more prominent in harsh environments as opposed to open sky environments, inducing then an additional
MP/NLOS ranging bias. Considering N emitting GNSS satellites, the following linearized equation formulates the satellite
positioning problem at each time step [27]:

y = H0x + v + b (1)

Where, throughout this paper, the [M, 1] state vector x = (x − x0, y − y0, z − z0, bRx)> contains the parameters of
primary interest, i.e. the three coordinates of the user position (x, y, z)> and the receiver clock bias bRx, which is common
between all the received satellites. It is important to note that the first three parameters in the unknown x to be estimated
represent an incremental deviation from the known reference point x0 = (x0, y0, z0)T about which the linearization took
place. y = (y1, · · · , yN )> is the [N, 1] linearised pseudorange (PR) measurements vector, or PR innovation around a reference

location x0. H = (
∂h1(x0)

∂x
, · · · , ∂hN (x0)

∂x
)> contains the unit line-of-sight (LOS) vectors between the satellites and the

previous user position x0. This matrix describes the linear connection between the measurements y and the unknowns x.
b = (b1, · · · , bN )>refers to the additional measurement bias caused by MP/NLOS receptions [N, 1] and is commonly called
PR bias. v = (v1, · · · , vN )> is the measurement noise supposed to be a white Gaussian noise characterized by a known
covariance matrix R = E{vv>}.

The likelihood cost function for user position estimation is straightforward [28]:

J(y|x,b) = ‖y −H0x− b‖2R−1 = (y −H0x− b)>R−1(y −H0x− b) (2)

The maximum likelihood estimate (ML) is the estimate that minimizes the above likelihood cost function as:

x̂ML = argmin
x

J(y|x,b) = H+
0 (y − b) (3)

where H+
0 = (H>R−1H)−1H>R−1 is the pseudo-inverse of H0 weighted by the inverse of the measurements covariance

matrix R. The mean square error (MSE) of this estimator can be expressed as:

MSE[x̂ML] = E{(x̂ML − x)(x̂ML − x)>} = E{H+
0 n(H+

0 n)T } = H+
0 E{nnT }(H

+
0 )T = (H>0 R

−1H0)−1 (4)

The ML estimate can be seen also as a least squares solution applied on corrected ranging measurements: a sum of a bias
free-estimate H+

0 y, i.e. computed as if no additional bias were present, and a bias-correction term H+
0 b.

In general, the bias-correction term cannot be computed since the MP/ NLOS is unknown, highly variable and hard to be
estimated. Thus, the ML computation is impossible and only a bias free-estimate can be performed. This bias free-estimate is
equal to the least squares estimator (LS) of problem (1). This estimator is less efficient than the optimal ML estimate. Indeed,
we have the following inequality satisfied by the overall mean square error OMSE (trace of the MSE matrix):

OMSE[x̂LS ] = Tr{(H>0 R−1H0)
−1}+Tr{H+

0 E{bb
>}(H+

0 )
>} ≥ Tr{(H>0 R−1H0)

−1} = OMSE[x̂ML] (5)

B. Approximate Maximum Likelihood estimate (AML-3D)

Since the computation of the likelihood cost function (2) is theoretically impossible without any prior information on the
PR bias, we propose a new cost function that approximates the theoretical maximum-likelihood cost function. To do that, we
make use of the 3D GNSS simulator SPRING.

First of all, we distinguish between two kinds of 3D models: ones providing pure geometrical information on the building
and street sizes [20] and others combined with 3D GNSS simulators. The latter are more informative and provide users with
simulated GNSS signals at any input position and time using Ray-Tracing techniques [26]. This second kind of cited 3D models
are used jointly with a 3D GNSS simulator in order to characterize on-the-fly measurement errors in urban environments. It
is evident that the predicted bias and errors from the 3D propagation model cannot be instantaneous and accurate. The quality
and reliability of the PR bias estimation depends on many factors such as the accuracy of signal propagation modeling, the
precision of 3D city modeling, receiver setting, etc...

In this study, we use the 3D GNSS Simulator SPRING to estimate these ranging errors. We start by defining a search area in
the environment under study. Within this search area, we set up an array of candidate positions Γ = {xi = (xi, yi, zi, bRx)>}
with a defined spacing. Providing an input position and a GNSS time, the 3D simulator SPRING is used to predict the
corresponding PR biases for each received ranging measurement, i.e. for this grid of candidate positions Ω = {b3D(xi) =



(b3D(xi)1, · · · ,b3D(xi)N )>}, we estimate a bank of MP/NLOS bias vectors. Finally, we define the approximate maximum-
likelihood cost function as:

Π : Γ→R
xi 7→ Π(y|xi,b3D(xi)) = ‖y −H0xi − b3D(xi)‖2R−1

(6)

By evaluating this score function on the array of candidate positions, we define an approximate maximum likelihood (AML)
estimator as:

x̂AML = argmin
xi

Π(y|xi,b3D(xi)) (7)

This AML estimator represents the candidate position that minimizes likelihood scores (approximate maximum-likelihood
function) for the set of candidate positions. In this sub-section, we will derive some properties on AML estimator x̂AML and
cost function that demonstrate the convergence of this estimator to the ML estimator over some conditions. Since the bias
estimation by 3D simulations cannot be accurate, we define the uncertainty on the bias estimation as:

δ3D = ‖b− b3D(x)‖2R−1 (8)

1) Lemma 1:Convergence of cost function to maximum-likelihood cost function:: if we consider η � 1 , then:

|min
xi

Π(y|xi,b3D(xi))−min
xi

J(y|xi,b)| ≤ (1 + η)δ3D (9)

Proof:
Using the reverse triangle inequality, the difference between the two cost functions can be increased by:

|Π(y|xi,b3D(xi))− J(y|xi,b)| ≤ ‖[y −H0xi − b3D(xi)]− [y −H0xi − b]‖2R−1

It follows:
|Π(y|xi,b3D(xi))− J(y|xi,b)| ≤ ‖[b− b3D(xi])‖2R−1

Using the following inequality:

‖b− b3D(xi)‖2R−1 ≤ ‖b− b3D(x)‖2R−1 + ‖b3D(x)− b3D(xi)‖2R−1

We can conclude that:

|min
xi

Π(y|xi,b3D(xi))−min
xi

J(y|xi,b)| ≤ δ3D + min
xi

‖b3D(x)− b3D(xi)‖2R−1

If the array of candidate positions is wisely chosen, the true position will be close or among the considered grid of candidate
positions and hence we will get:

min
xi

‖b3D(x)− b3D(xi)‖2R−1 ≤ ηδ3D

This proves lemma 1. This lemma shows that, conditioned by 3D GNSS simulator accuracy, the minimum of the approximate
maximum-likelihood cost function Π converges to the minimum of the maximum-likelihood cost function J .

2) Lemma 2: Convergence of AML estimator to true position::

Tr{MSE(x̂AML)} −→
δ3D→0

Tr{MSE(x̂ML)} (10)

Proof: See Appendix A.
Lemma 2 demonstrates that, conditioned by 3D GNSS simulator accuracy, the overall mean square error (trace of the MSE

matrix) of the AML estimator converges to the minimum overall mean square error of the ML solution of problem (1).
3) Lemma 3: Convergence of AML estimator to ML estimator:: If we suppose that all the diagonal values of the covariance

matrix are equals, i.e R = σI, then we have:

‖x̂AML − x̂ML‖22 ≤
N ×GDOP

σ2
(1 + η)δ3D (11)

where GDOP is the Geometric Dilution Of Precision, N is the number of received GNSS signals and η � 1.
Proof: See Appendix B.
Lemma 3 proves that, conditioned by 3D GNSS simulator accuracy, the AML estimator converges to the ML estimator,

i.e. if the 3D GNSS simulator is so accurate, the AML will converge to the ML estimator which is the Minimum Variance
Unbiased Estimator (MVUE) of the problem (1).



C. Practical Implementation

1) Scoring Function Computation:
Even if it has been proven that the AML estimator converges to the most efficient ML estimator under the assumption of an
accurate 3D simulation, the expression of such estimator is very computationally intensive since it requires a research over a
grid of candidate position containing four unknowns. These unknowns are the user position (x, y, z) and the clock bias bRx
(common between all the received satellites).

To reduce the estimation complexity, a classical hypothesis consists of using the 3D GNSS simulator to avoid the estimation
of the height information. Given the horizontal coordinates of each grid point, a height is associated to this point using the
3D city model which avoids the computational load over a 3D search area.

For the sake of simplification, the receiver clock bias is eliminated by proceeding to a differentiation of all ranging
measurements across satellites using a reference satellite. The selection of reference satellite is quite important. This satellite
must have a reliable and almost clean ranging measurement. Basic indicators for this selection process include elevation angle
and C/N0 values. Ref. [29] proposes a reference satellite selection using LOS probability obtained via signal power distributions
and experimental data.

Since the proposed approach is 3D-simulation-accuracy-dependent, we propose to estimate the uncertainty on bias estimation
provided by the 3D GNSS simulator. Preliminary tests on the evaluation of the performance of this tool show that PR biases of
high elevation signals are usually correctly estimated, as the signal have less interactions with the environment surrounding the
receiver contrary to low or medium elevation signals. Then, we propose the following formula as estimation for this uncertainty
on bias prediction. αMax−Inaccuracy refers to the highest error on bias estimation.

δ̃3D = αMax−Inaccuracy exp(Elev/(Elev − 90)) (12)

where Elev refers to satellite elevation angle in degrees. Similarly, we can also estimate this uncertainty on bias prediction
based on the C/N0 ratio as:

δ̃3D = αMax−Inaccuracy10
C/N0

C/N0Max (13)

Once a reference satellite is selected, we modify the approximate maximum-likelihood cost function (6) as follows:

Π̃(y|xi) = ‖y − yref − (H0 −H0(ref, :))xi − b3D(xi)− δ̃3D‖2R−1 (14)

where yref is the ranging measurement of the reference satellite and H0(ref, :) is the row of matrix H0 corresponding to
the reference satellite. The array of candidate positions is now an array of 2D points Γ = {xi = (xi, yi, z)

>} , where the
height z is computed using terrain height aiding via the 3D simulator.

2) Final Position Estimation:
Considering the final position as the candidate position having the lowest score, i.e. minimizing the approximate maximum-
likelihood cost function in (14), is risky. Therefore, we propose to estimate the final AML-3D solution as a weighted average
of the candidate positions with the lowest scores, i.e. the highest PR measurements matching, as:

x̂AML =

NTh∑
i=1

(Π̃(y|xΩ
i ) < Th)xΩ

i

NTh∑
i=1

(Π̃(y|xΩ
i ) < Th)

(15)

Where Th is the threshold used for selecting the lowest scores, NTh corresponds to the number of grid points with a matching
score lower than the threshold Th and the set Ω = {xΩ

i , i = 1, · · · , NTh} refers to the subset of candidate positions with the
lowest scores. Practically, we have fixed Th to the 15th percentile of the values in the approximate maximum-likelihood cost
function, i.e. the final AML-3D solution is an average of the 15% of points having a score matching higher than Th.

As a way of illustration, a block diagram of our proposed algorithm is given in Fig. 1. Finally, the proposed approach is
summarized in the algorithm 1 below.

IV. EXPERIMENTAL RESULTS

A. General Experimental Setup

To evaluate the proposed solution, a dynamic positioning test was conducted in an urban environment. GPS L1 C/A code
PR measurements were collected around Capitole Square in Toulouse using an UBLOX 6T receiver, and a SPAN Novatel
system including a DGPS receiver tightly integrated with an IMU-FSAS (from iMAR), both at a rate of 4 Hz. We consider
the trajectory provided by the Novatel receiver as the reference trajectory for comparison with our algorithms.

An overview of the considered urban environment and the Sky-plot of the GPS received satellites in the deep urban section
are shown in Fig. 2.



Fig. 1: AML-3D algorithm block diagram

Algorithm 1 AML Estimation

Inputs: y,H0 and maybe δ̃3D
Output: x̂AML

1: Reference satellite selection using elevation criterion
2: Define search area and grid of candidate positions

Define an array of 2D points Γ = {xi = (xi, yi, z)
>}

3: Estimate a bank of PR biases over candidate positions
Estimate PR biases, using 3D GNSS simulations, for the considered array of candidate positions
Ω = {b3D(xi) = (b3D(xi)1, · · · ,b3D(xi)N )>}

4: Likelihood scoring for each candidate position
Compute Π̃(y|xi) using (14)

5: AML-3D position estimation
Estimate AML-3D solution x̂AML using (15)

(a) Tested Urban Environment (b) Sky-plot of GPS satellites

Fig. 2: Overview of experimental setup

For this validation test, we have selected a trajectory along an urban environment characterized by narrow streets and
medium-height buildings, which are predominantly the down-towns of European cities. We have used the elevation angle as
criterion for reference satellite selection.

For illustration of the used grid of candidate positions, Fig. 3 shows the used array of positions. In this experimental
evaluation of our algorithm, we have used 1600 candidate positions in a square area in the region of interest. These positions
are uniformly distributed in this search area with a spacing of 1m. A pre-processing algorithm is implemented to exclude the
indoor points based on the 3D model of the city. Hence, this grid of candidate positions contains only outdoor locations. The
red dots refer to the used reference trajectory, while white dots represent the considered candidate positions.



Fig. 3: Used Grid of candidate positions

B. 3D Simulations

For each of these candidate positions, we perform 3D simulation using the 3D GNSS simulator SPRING. The simulator
SPRING, provided by the French space agency CNES-Toulouse, is used to estimate the PR bias errors. SPRING is a full software
simulator that models the pseudo-range measurements and calculates the PVT solution considering the 3D environment of the
receiver antenna. At each time step, the 3D simulation is applied to an input point that allows the calculation and the prediction
of the bias error on each received signal at this point.

Fig. 4 shows the 3D simulations of GNSS measurements in one candidate position at a defined GPS time. The main steps
used for 3D PR bias estimation at each candidate position are summarized in the algorithm 2 below.

Algorithm 2 3D GNSS Simulation
Inputs: GPS Time, Satellite ephemeris, 3D city Model and candidate position xi
Output: 3D bias b3D(xi)

1: Compute satellite positions
2: Determine LOS distance between each satellite and the candidate position

For each satellite Sati, compute PRLOSi = ‖xi − xSatii ‖2
3: Predict 3D received PR measurements

For each satellite Sati, predict PR3D
i , using the 3D model, ray-tracing algorithm and the receiver model implemented in

SPRING
4: Compute PR bias

As all the other ranging errors are not modelled, PR bias is the difference between predicted PR measurements and LOS
distance: [b3D(xi)]i = PR3D

i − PRLOSi

Fig. 4: 3D GNSS Simulation using SPRING



C. Comparison Algorithm
Considered among the most mature 3D model based positioning approaches, Shadow Matching solution [30] use 3D building

models to improve cross-track positioning accuracy in harsh environments by predicting which satellites are visible from
different candidate locations and comparing this information with the measured satellite visibility to determine the final user
solution. This positioning approach is based on GNSS and 3D model fusion for satellite shadows scoring of candidate positions.
By achieving metre-order cross-street positioning in urban canyons, it was implemented for smartphone applications [31], [32].
The basic Shadow-Matching approach can summarized in the algorithm 3 below.

Algorithm 3 Shadow-Matching Estimation
Inputs: y,H0, C/N0 Coefficients (for satellite visibility)
Output: x̂SM

1: Define search area and grid of candidate positions
2: Building Boundaries (BB) computation

For each candidate position, predict building edges using the 3D city model
3: Predict satellite visibility

For each candidate position, predict satellite visibility using the Building Boundaries information
4: Measure satellite visibility

Use C/N0 ratios to determine the observed satellite visibility
5: Scoring of candidate positions

Based on matching between predicted and measured satellite visibility, score each candidate point
6: Final position estimation

Estimate the final user position based on weighting of position having the highest scores

In this experimentation, we have used our implementation of Shadow Matching solution to compare and assess the perfor-
mance of our proposed algorithm. Shadow Matching algorithm have been implemented using GPS and GLONASS signals. Our
proposed AML-3D have been implemented using GPS signals only since 3D GNSS simulation using GLONASS constellation
is not yet optimized in the current version of the simulator.

D. Performances of the Proposed Solution
For this validation test, we have compared the positioning performance using AML-3D solution without 3D simulation error

correction, i.e. δ3D = 0, Shadow-Matching solution (SM-3D), the UBLOX receiver solution, a SEPTENTRIO receiver solution,
and a conventional Least-Squares solution. Fig. 5 shows the cumulative distribution function of the horizontal position errors of
the proposed AML-3D solution, Shadow-Matching solution (SM-3D) and the conventional solution in the considered scenario.
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Fig. 5: CDF of Horizontal Positioning Errors

It is apparent from the CDF figure in Fig. 5 that our approach AML-3D gives more positioning performance compared
to the conventional GNSS solution. AML-3D positioning performance in this scenario is comparable to that of the Shadow-
Matching solution (SM-3D: ISAE Version). We compare horizontal positioning errors (HPE) for these estimators in this
scenario. Results are shown in Table I. We notice that AML-3D outperforms, in average, all solutions even the very accurate
and stable SEPTENTRIO solution.



TABLE I: HORIZONTAL POSITIONING PERFORMANCES

AML-3D SM-3D SEPTENTRIO UBLOX Conventional Algorithm
Mean of HPE [m] 3.18 4.22 4.25 7.27 6.6
HPE at 95% [m] 5.86 7.95 4.5 11.65 14.66
HPE at 97% [m] 6.66 9.15 4.52 11.85 15.78
HPE at 99% [m] 9.18 9.56 4.57 12.41 18.32

The scoring map of the proposed AML-3D solution and the different solution for a fixed time epoch is shown in Fig. 6.
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Fig. 6: AML-3D scoring map with different estimation solution for a fixed time epoch

The previous example illustrates the effectiveness of the proposed AML-3D algorithm even in degraded conditions. Posi-
tioning performance of the AML-3D estimator exceed that of receiver solutions (very good and reliable positioning solutions
in general). Taken into account that the 3D simulator SPRING is continuously improved by CNES, these performance obtained
by AML-3D might reach optimal positioning performance even in presence in MP/NLOS biases.

Despite this performance enhancement, the proposed approach is computationally intensive because of bias estimation using
the 3D GNSS simulator. Nevertheless, this method can be easily implemented on a server mode and send the 3D biases to the
mobile receiver to compute its position.

E. Sensitivity Analysis of Parameters

1) 3D PR bias Prediction Error:

We improve the proposed technique by modeling the uncertainty on the bias prediction by 3D GNSS simulations. In fact,
the performance of this proposed method is strongly linked to the performances of PR bias prediction using 3D simulation.
One of the greatest challenges is that generally these biases are environment-dependent and highly time-varying and hence
very difficult to be estimated.

In this study, we attempt to model this bias prediction inaccuracy using different criterion. We propose two ways to correct
the error of PR bias prediction by 3D simulation: 3D bias uncertainty correction based on satellite elevation angles (12) and
3D bias uncertainty correction based on the C/N0 ratios (13). Horizontal positioning performance of different estimator with
correction of the 3D PR bias prediction error are given in Fig. 7 and in Table II. We compare the positioning performance
of AML-3D algorithm without 3D bias uncertainty correction δ3D = 0, the AML-3D algorithm with the 3D bias uncertainty
correction (12) and the AML-3D algorithm with the 3D bias uncertainty correction (13).

We note performance enhancement by modeling the 3D simulation uncertainty either with (12) or (13). In this considered
scenario, the 3D bias uncertainty model based on elevation angle is given better positioning accuracy compared the 3D bias
uncertainty based on the C/N0.
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TABLE II: HORIZONTAL POSITIONING PERFORMANCES

AML-3D
with δ3D = 0

AML-3D
with δ3D ∼ (12)

AML-3D
with δ3D ∼ (13)

H-RMSE [m] 3.18 2.75 2.84

HPE at 95% [m] 5.86 5.34 5.32

2) Effect of Grid Size:

Another important parameter used the proposed AML-3D method is the selection of the array of candidate positions. In
this subsection, we propose an analysis on the effect of the size of the grid of candidate positions on the performance of the
proposed AML-3D method. To do this, we vary the number of the considered candidate positions, while always ensuring that
the considered grid of candidate positions is centred on the reference solution. Fig. 8 shows the variation of the mean, median
and maximum horizontal positioning errors of the AML-3D algorithm without 3D simulation uncertainty correction δ3D = 0
with respect to the number of candidate positions.

180 280 380 480 580 680 780 880 980 1080 1180 1280 1380 1480 1580
Number of Points Considered in the Grid

2

3

4

5

6

7

8

9

10

H
or

iz
on

ta
l P

os
iti

on
in

g 
E

rr
or

s 
[m

]

Positioning Performance Indicators Variation Versus the Grid Size

Mean Horizontal Errors

Maximum Horizontal Errors

Median Horizontal Errors

Fig. 8: Positioning Performance Versus the size of the considered grid of positions

We note that the positioning performance of the proposed AML-3D algorithm remains almost at the same accuracy level
when varying the number of positions in the considered array of candidate locations. The positioning errors are also bounded
independently of the size of the grid of candidate positions.

This obtained result shows that the proposed method is not highly dependant on the size of the array of candidate positions
as far as the central region of candidate positions is close to the true position. This is explained by the fact that high matching



scores are always in this central region and very low matching scores are obtained in the other regions. As the final solution
is obtained by weighting of the candidate positions with the highest scores, then the final estimation will remain almost the
same independently on the size of the used grid of points.

3) Reference Satellite Selection:

In the proposed AML-3D method, we eliminate the receiver clock bias from the problem estimation by differentiation of all
ranging measurements across satellites using a reference satellite. Hence, the selection of reference satellite is a quite important
step. This reference satellite must verify the following: the pseudorange measurements of this satellite must be reliable and
almost clean, i.e. containing very low PR measurements errors. Basic indicators for this selection process include elevation
angle and C/N0 values. LOS probability indicator is proposed in [29]. This LOS probability is computed using signal power
distributions and some tuning parameters fixed using experimental data. The LOS probility can be expressed as:

PLOS = ln
pLOS(C/N0|Elev)

pNLOS(C/N0|Elev)

Where PLOS is the LOS probability for a considered satellite, pLOS(C/N0|Elev) and pNLOS(C/N0|Elev) are the signal
power distributions of LOS and NLOS satellites, which depend on fixed tuning parameters. Further details about this LOS
probability computation may be obtained in [29].

In this subsection, different indicators for this selection process are evaluated and compared. We evaluate the positioning
accuracy of the AML-3D algorithm with different selection criteria: satellite elevation, C/N0 and LOS probability indicators.
Obtained results are shown in Fig. 9.
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Mean of horizontal positioning errors in these different cases are compared in the following Table III.

TABLE III: HORIZONTAL POSITIONING PERFORMANCES

Selection Based on
Elevation Angle

Selection Based
on C/N0

Selection Based on
LOS Probability

H-RMSE [m] 3.18 4.46 5.91

This analysis shows that the satellite elevation angle indicator gives the best positioning performance. This result is explained
by the fact that during this measurements campaign the GPS satellite (G15) had a very high elevation angle (around 80◦ as
shown in Fig. 2. This satellite was then received all the time in line-of-sight and hence PR measurements from G15 are
always reliable. With other measurements set, the obtained conclusions may be different. Finally, the LOS probability indicator
is giving low positioning accuracy compared to other indicators because this indicator depends highly on parameters set in
advance and is therefore not always reliable.



V. CONCLUSION

Much of the previous research has focused on NLOS mitigation for positioning performance enhancement. But, a new trend
of studies highlights the need for NLOS constructive use by ranging biases correction instead of simple mitigation. In this
regard, this research sheds new lights on PR bias constructive use by use of a 3D GNSS simulator. The proposed idea is
based on position estimation among an array of candidate positions by approximate likelihood scoring. The scoring of each
candidate position is performed using a ranging measurement matching criterion based on a 3D bias estimated using a 3D
GNSS simulator. The key strength of this approach is its sub-optimal effectiveness, which was been proven theoretically and
using real GNSS data. Notwithstanding the significant computational loads, this approach offers valuable insights into precise
GNSS positioning in presence of MP/NLOS receptions.

In terms of directions for future research, further works could focus on enhancing the propagation simulation to reach a
higher positioning performance using our approach. Finally, the permanent advancement made on environment modeling would
help us to achieve higher accuracy using this approach. In this perspective, testing this approach in different environments
would be a fruitful area for further work.
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APPENDIX A

We start by computing the expression of x̂AML:

x̂AML = argmin
xi

{ ∂

∂xi
(Π(y|xi,b3D(xi)) = 0)}

We compute the derivative of the cost function:

∂

∂xi
(Π(y|xi,b3D(xi))) = −2(H>0 +

∂

∂xi
b3D(xi))R

−1G(xi)

Where G(xi) = y −H0xi − b3D(xi). Then, we get the following expression for the approximate maximum likelihood:

y −H0x̂AML − b3D(x̂AML) = 0

Since the MSE matrix is diagonal, the overall mean square error of the AML estimation is expressed as:

Tr{MSE[x̂AML]} = Tr{E[(x̂AML − x)(x̂AML − x)>]} = E[‖x̂AML − x‖22]

The AML estimation error can be expressed as:

‖x̂AML − x‖22 = ‖H+
0 (H0x̂AML −H0x)‖22 = ‖H+

0 (b− b3D(x̂AML) + v)‖22
The previous expression gives:

Tr{MSE[x̂AML]} ≤ E{‖H+
0 (b− b3D(x̂AML))‖22}+ E{‖H+

0 v‖
2
2}

By developing the two parts of this inequality, we show that:

E[‖H+
0 v‖22] = Tr{(H>0 R−1H0)−1} = Tr{MSE[x̂ML]}

E[‖H+
0 (b− b3D(x̂AML))‖22] = Tr{(H+

0 E[δAML
3D (δAML

3D )>](H+
0 )
>)}

Where δAML
3D = b− b3D(x̂AML). Besides, we have the following inequality for all candidate positions:

‖b− b3D(xi)‖2R−1 ≤ ‖b− b3D(x)‖2R−1 + ‖b3D(xi)− b3D(x)‖2R−1

And then, we deduce that:

‖δAML
3D ‖2R−1 = min

xi

‖b− b3D(xi)‖2R−1 ≤ δ3D + min
xi

‖b3D(xi)− b3D(x)‖2R−1 ≤ (1 + η)δ3D

where η � 1 and then lemma 2 is proven.



APPENDIX B

We start from the following relation for the AML solution:

y −H0x̂AML − b3D(x̂AML) = 0

Let us compute the AML and ML solutions difference, which can be expressed as:

‖x̂AML − x̂ML‖22 = ‖H+
0 (H0x̂AML − y + b)‖22 = ‖H+

0 (b− b3D(x̂AML))‖22

By definition of the operator norm of matrix H+
0 :

‖x̂AML − x̂ML‖22 ≤ ‖R−1/2H+
0 ‖2F ‖b− b3D(x̂AML)‖22

Where, we define the Frobenius matrix norm as:

‖R−1/2H+
0 ‖F = Tr{(H+

0 )>R−1H+
0 } = Tr{R−1/2H+

0 (H+
0 )>R−1/2}

Since matrix R is diagonal with equal diagonal elements:

‖R−1/2H+
0 ‖F = Tr{R−2(H>0 R

−1H0)−1}

Matrices in the trace operator are matrices with positive diagonal elements. Then, we get the following inequality:

Tr{R−2(H>0 R
−1H0)−1} ≤ Tr{R−2}Tr{(H>0 R−1H0)−1}

The second term can be expressed as:

Tr{R−2}Tr{(H>0 R−1H0)
−1} = N × Tr{DOP}

σ2
=
N ×GDOP

σ2

Where DOP = (H>0 H0)−1 is the Dilution of Precision (DOP) matrix, GDOP is the Geometric Dilution Of Precision, N
is the number of received GNSS signals and σ are the diagonal values of the noise covariance matrix, i.e R = σI. Finally,
using the previous appendix, we have shown that:

‖b− b3D(x̂AML)‖2R−1 ≤ (1 + η)δ3D

This proves lemma 3.
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