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ABSTRACT
Fuzz testing is a method used in software testing that involves inputting random or unexpected data into a system to identify
vulnerabilities. Unlike deterministic methods, which test performance under controlled and predictable conditions, fuzz testing
introduces variability to uncover hidden issues. This variability simulates real-world scenarios, uncovering weaknesses that
might otherwise remain unnoticed. For instance, fuzz testing can effectively reveal how GNSS receivers respond to rapid signal
fluctuations and other anomalous behaviors, situations often overlooked by standard tests. Unlike traditional methods that rely
on predefined inputs, Collins Aerospace works on a new fuzz testing framework for GNSS, which employs advanced techniques
such as automated input generation and real-time response monitoring. This approach not only facilitates a comprehensive
assessment of receiver resilience but also allows for the dynamic adaptation of test scenarios in real-time, ensuring that a
wide range of operational conditions is explored. The navigation equipment minimum testing procedures must be defined and
need scenarios definitions as well as test steps and pass/fail criteria to provide minimum guidance to manufacturers for future
equipment certification. The limitations of current testing methods further highlight the necessity of adopting fuzz testing. These
methods predominantly rely on deterministic approaches, which do not effectively simulate the unpredictable nature of real-world
signal degradation or complex interference scenarios posed by advanced spoofing techniques. As technology advances, the
techniques utilized by malevolent actors likewise evolve, emphasizing the necessity for adaptive testing methodologies capable
of responding to these changes. By introducing randomness and variability, fuzz testing plays a critical role in bolstering
the reliability and operational integrity of GNSS systems by rigorously assessing their ability to withstand both known and
unknown threats. The anticipated results from this fuzz testing framework are expected to identify vulnerabilities and enhance
the resilience of GNSS receivers, suggesting that fuzz testing can play a transformative role in GNSS validation.

I. INTRODUCTION
Global Navigation Satellite Systems (GNSS) have become indispensable for a wide range of applications, from navigation and
timing to precision agriculture and autonomous vehicles. However, the increasing sophistication of GNSS receivers, coupled
with the evolving threat landscape, necessitates robust testing methodologies to ensure their reliability and security. Traditional
testing approaches, while valuable, often rely on predefined test cases, limiting their ability to uncover unexpected vulnerabilities.

Fuzz testing, a powerful technique for uncovering software bugs and security vulnerabilities, has emerged as a promising
approach to enhance GNSS receiver testing. By systematically generating and injecting diverse, often malformed, inputs, fuzz
testing can reveal weaknesses in the receiver’s handling of unexpected conditions, including signal anomalies, interference, and
spoofing attacks.

This paper presents a comprehensive framework for applying fuzz testing to GNSS receivers. The framework leverages both
black-box and white-box techniques to systematically explore the receiver’s behavior under various input conditions. By
combining these approaches, we aim to identify vulnerabilities that may be missed by traditional testing methods and enhance
the overall security and reliability of GNSS receivers.

The paper is structured as follows:

• Fuzz Testing Techniques: Discusses various fuzzing techniques, including grammar-based, mutation-based, and evolu-
tionary fuzzing, and their applicability to GNSS receivers.

• Proposed Framework: Details the architecture and components of the proposed fuzz testing framework, including input
generation, execution, and output analysis.

• Case Study: Presents a case study demonstrating the application of the framework to a real-world GNSS receiver.

• Conclusion and Future Work: Summarizes the findings of the research and outlines potential future directions for
enhancing GNSS receiver security through fuzz testing.

By adopting this framework, researchers and industry practitioners can contribute to the development of more secure and
resilient GNSS receivers, safeguarding critical infrastructure and applications that rely on accurate and reliable positioning,
navigation, and timing information.

II. FUZZ TESTING OVERVIEW
Fuzz testing is a traditional software testing method that has been applied since the 80s. It involves that “random” generated
inputs are sent to the target software, which is then monitored to find bugs or crashes. In software testing this is a very
well-established method. In the context of this project this method is being used to perform performance tests (hardware and
software combined) of a GNSS-receiver. There are several fuzz testing approaches, but not all of them are suitable for GNSS
receiver testing. In the following the most suitable approaches will be introduced and discussed.



Core Categories of Fuzz Testing
Fuzz testing can be grouped into three main areas: black-box, white-box, and grey-box testing (Sutton et al. (2007)).

• Black-Box Testing: Operates without knowledge of the system’s internal structure, focusing solely on input and output
behavior.

• White-Box Testing: Utilizes system internals to guide test case generation, such as analyzing code paths.

• Grey-Box Testing: Combines aspects of both black- and white-box approaches, using limited internal knowledge to
enhance test efficiency.

A common assumption is that white-box testing is inherently more efficient than black-box testing. While white-box testing is
crucial for detecting bugs at the source code level, black-box testing remains essential for identifying issues introduced during
compilation, such as assembly-level bugs. For this reason, black-box, white-box, and grey-box approaches should be viewed
not as mutually exclusive but as complementary techniques thatM together enhance overall testing effectiveness (Sutton et al.
(2007)).

Fuzzing Techniques for GNSS Receiver Testing
Over the past decades multiple fuzzing techniques have been developed. In the following the most relevant for this project are
discussed:

• Grammar-Based Fuzzing: This technique generates test inputs based on a predefined grammar that defines the valid
structure of input data. In the context of GNSS, grammar-based fuzzing can be applied to create both valid and malformed
GNSS signal. For instance, by defining the syntax of NMEA sentences, researchers can produce signals that adhere to
the expected format, as well as those that deviate in crucial ways (e.g., incorrect checksums, malformed fields). This
approach is essential for testing the receiver’s ability to detect and reject invalid data while correctly processing legitimate
signals. Yang et al. (2012)

• Probabilistic Fuzzing: This method utilizes statistical models to produce random inputs that reflect real-world conditions.
In GNSS applications, probabilistic fuzzing can simulate varying environmental factors such as atmospheric disturbances
or multi-path effects. By introducing noise and random variations in signal parameters, this approach can help reveal
vulnerabilities in the receiver’s algorithms that handle signal integrity. For example, it can test how well a receiver
maintains lock under fluctuating signal strength or unpredictable interference patterns (Sutton et al. (2007)).

• Mutation-Based Fuzzing: This technique involves modifying existing valid GNSS signal data by introducing random
changes, such as bit flips or alterations to specific fields. Mutation-based fuzzing is particularly useful for assessing
the receiver’s tolerance to minor signal perturbations, which can occur due to various factors such as interference or
hardware imperfections. By generating inputs that mimic real-world signal distortions, this method can uncover how
small deviations in the signal impact the receiver’s performance and decision-making processes (Qian et al. (2023)).

• Evolutionary Fuzzing (Genetic Algorithms): Utilizing genetic algorithms, this fuzzing technique iteratively evolves
test inputs based on previous testing outcomes. In GNSS testing, evolutionary fuzzing can be particularly effective in
generating sophisticated attack vectors that mimic advanced spoofing and jamming techniques. For instance, by analyzing
the receiver’s responses to initial inputs, the algorithm can adjust parameters to create more challenging scenarios,
ultimately revealing weaknesses that might be exploited in real-world attacks (Rawat et al. (2017)).

• Concolic (Concrete + Symbolic) Fuzzing: By combining concrete execution with symbolic execution, concolic fuzzing
generates test inputs that explore both real and hypothetical scenarios. This method is beneficial for identifying control
flow vulnerabilities in GNSS receivers, ensuring comprehensive testing of how the system reacts to unexpected inputs.
For example, concolic fuzzing can help uncover pathways in the code that lead to crashes or unintended behavior under
specific conditions, such as receiving corrupted signal data (Sen et al. (2005)).



Table 1: Fuzzing Techniques for GNSS Receiver Testing

Technique Key Features Application in GNSS Test-
ing

Strengths Weaknesses

Grammar-Based
Fuzzing

Generates inputs based on
a predefined grammar for
valid/invalid signal struc-
tures (e.g., NMEA).

Tests signal validation and
error detection, e.g., mal-
formed fields or incorrect
checksums.

Highly systematic; en-
sures compliance with
input structure.

Limited to the accu-
racy of the grammar;
does not cover random
or environmental vari-
ations.

Probabilistic Fuzzing Uses statistical models to
generate inputs mimicking
real-world conditions (e.g.,
interference).

Simulates environmental
challenges like atmospheric
noise or multipath effects.

Realistic; reveals
weaknesses in signal
integrity handling.

Less effective for sys-
tematic state coverage.

Mutation-Based
Fuzzing

Modifies valid inputs by in-
troducing random changes.

Tests receiver tolerance to
minor signal distortions,
such as bit flips or altered
fields.

Simple to implement;
mimics real-world sig-
nal imperfections.

Random mutations
may lack focus,
leading to inefficient
testing.

Evolutionary Fuzzing Employs genetic algorithms
to evolve inputs based on
feedback.

Generates sophisticated at-
tack vectors, e.g., advanced
spoofing or jamming scenar-
ios.

Adapts to exploit vul-
nerabilities; excellent
for advanced threat
simulation.

Computationally
intensive; requires
iterative feedback.

Concolic Fuzzing Combines concrete and sym-
bolic execution to explore
control flow vulnerabilities.

Identifies issues like crashes
or unintended behaviors un-
der specific input conditions.

Uncovers hidden code
paths and edge cases.

Resource-intensive;
requires access to
the receiver’s internal
execution pathways.

Goal-Oriented Fuzz Testing
These are just some general methods that can be used by fuzzers to generate input for the system under test. To even increase
the prospect of the results of the fuzz test, especially for a complex system as an GNSS-receiver, the fuzzer can be even more
guided to test specific goals like:

• Boundary and Edge Case Analysis: This test targets edge cases in the system under test such as boundary values or
extreme input conditions. By ensuring that the system under test behaves correctly at the boundaries, we verify its stability
under rare or critical scenarios that could otherwise lead to failures. This is especially important for ensuring the system’s
resilience in unpredictable real-world conditions.

• Error Handling and Recovery: This strategy introduces fault conditions, such as network failures or invalid inputs, to
test how the system under test handles and recovers from errors. By simulating real-world failures, we ensure that the
system under test can recover gracefully, maintaining its integrity and reliability even after encountering faults.

• Fuzzing with Randomized Inputs: Randomized input sequences stress the system under test with unpredictable events,
aiming to discover unexpected behaviors or failures that may arise from non-deterministic inputs. This type of fuzz testing
ensures that the system under test remains stable and consistent even when faced with random or irregular inputs, helping
identify edge cases that might otherwise go unnoticed.

• Concurrency Testing: This test examines the system under test’s behavior when multiple transitions occur simultaneously
or in quick succession. By fuzzing for potential race conditions, deadlocks, or other concurrency-related issues, this
strategy ensures that the system under test can handle parallel events without errors, providing a deeper understanding of
the system’s behavior under multi-threaded or multi-process conditions.

• Performance Testing: Performance testing involves stress testing the system under test with large input sequences to
identify performance bottlenecks, memory leaks, or degradation in performance under heavy load. This fuzz test ensures
that the system under test remains efficient, even when handling a high volume of transitions, helping to pinpoint areas
where performance might be optimized.

• Resource Usage Monitoring: This fuzz test focuses on monitoring memory and resource consumption during execution.
It helps identify issues like excessive resource usage, memory leaks, or inefficient resource handling. By ensuring that the
system under test maintains optimal resource utilization, this test ensures that the system operates efficiently even during
resource-intensive operations.



Performance Metrics
After choosing the testing approach, target and fuzzer strategy it is also vital to identify which parameters can be collected
during the testing from the system, apart the initial testing results.(Pargaonkar (2023)) Indeed, these parameters are from high
interest because they are used to guide the fuzzing test process:

• Error Rate: The error rate tracks the percentage of actions or events resulting in errors compared to the total number
of actions performed. This metric provides insights into the robustness of the system. A high error rate could indicate
problems with the system’s handling of certain inputs or events, or with its error recovery mechanisms. By identifying
areas with high error rates, testers can focus on improving fault tolerance and resilience.

• CPU Usage: CPU usage measures the percentage of CPU resources consumed during the test. Monitoring CPU usage
helps assess the computational demands of the system under test. High CPU usage could indicate inefficient processing or
resource-heavy operations, which may need optimization to avoid performance degradation during runtime. This metric
is critical for ensuring the system operates within acceptable computational limits.

• Memory Usage: Memory usage tracks the percentage of memory resources utilized during testing. This metric is
important for detecting potential memory inefficiencies, such as memory leaks, that could negatively affect system
performance. By monitoring memory usage, testers can ensure the system efficiently manages memory, particularly when
handling complex operations or processing large amounts of data.

• Disk Usage: Disk usage measures the percentage of disk space consumed during testing, particularly relevant for systems
that involve disk I/O operations. This metric helps identify whether the system is excessively using disk resources, which
could lead to storage limitations or performance slowdowns. Ensuring that disk usage remains within acceptable levels is
crucial for the stability of the system, especially in environments with limited storage capacity.

To conclude, we observe that a lot of fuzzing techniques can be relevant for GNSS testing. One approach is not better then
another, and all depends on the end wished end results.

Feasibility of Fuzz Testing in Enhancing GNSS Receiver Testing
Traditional deterministic testing methods, widely used in evaluating GNSS receivers, focus on predefined input sets designed to
systematically explore expected operational scenarios. These methods often emphasize compliance with established standards
and specific performance metrics, providing a controlled environment to validate a receiver’s functionality under anticipated
conditions. However, while deterministic testing is effective in confirming that systems meet predefined specifications, it
inherently limits the exploration of unexpected or anomalous behaviors, leaving significant gaps in the assessment of a receiver’s
robustness against real-world threats.

In contrast, fuzz testing introduces a paradigm shift by generating a wide array of random, or unexpected inputs, thereby
expanding the test coverage and enhancing the detection of vulnerabilities that traditional methods may overlook. The stochastic
nature of fuzz testing allows for the exploration of input space that deterministic approaches cannot adequately address. For
instance, while deterministic testing may only examine typical GPS signal structures, fuzz testing can introduce invalid signal
formats, erroneous message sequences, and extreme variations in signal parameters, exposing weaknesses in the receiver’s
handling of atypical situations.

The primary advantage of fuzz testing lies in its ability to simulate dynamic and unpredictable environments, making it a vital
tool for improving GNSS receiver resilience. As GNSS systems face increasingly sophisticated spoofing and jamming attacks,
the capacity to reveal vulnerabilities through the exploration of unanticipated input scenarios becomes essential for ensuring
operational integrity. This expanded coverage is critical not only for enhancing security but also for facilitating the development
of more robust GNSS architectures capable of adapting to emerging threats.

Integrating fuzz testing into existing GNSS testing frameworks necessitates careful consideration of several practical aspects.
First and foremost, the computational requirements associated with fuzz testing can be considerable, particularly when em-
ploying advanced techniques such as evolutionary fuzzing or concolic testing. These approaches often necessitate substantial
computational resources to generate and evaluate a wide range of inputs effectively. Organizations may need to invest in robust
testing infrastructure or utilize cloud-based solutions to scale their fuzz testing efforts, ensuring they can accommodate the
resource-intensive nature of these techniques.

Moreover, input modification for fuzz testing requires a thorough understanding of GNSS signal structures and operational
protocols and effort to include it in existing testing environment. Developing effective fuzzing inputs entails not only generating
random values but also ensuring that these inputs reflect realistic scenarios while challenging the receiver’s capabilities.
Collaboration among software developers, system engineers, and testing teams is crucial to achieve this balance. By fostering
interdisciplinary cooperation, teams can design fuzzing inputs that adequately stress-test the system while remaining grounded
in the realities of GNSS operations.



Evaluating the outcomes of fuzz testing presents its own set of challenges. Unlike deterministic tests, which yield predictable
results based on known input parameters, fuzz tests generate a diverse array of responses that require sophisticated analysis
techniques. To effectively interpret the findings, testing teams must implement comprehensive metrics that encompass error
rates, signal integrity, and state coverage. Metrics such as transition coverage can help assess how well the receiver navigates
through its state space under various inputs, while error tracking can identify specific failure modes that require attention.

To facilitate the analysis of extensive data generated during fuzz testing, automated analysis tools can play a pivotal role. By
employing machine learning algorithms or statistical analysis techniques, testing teams can sift through the data to identify
critical weaknesses in GNSS receivers, allowing for data-driven decision-making in the refinement of receiver designs and
testing protocols.

III. PROPOSED FRAMEWORK FOR GNSS FUZZ TESTING
Overview of the GNSS-Fuzz Testing Framework
The GNSS-Fuzz Testing Framework aims to bolster the robustness of GNSS receivers by incorporating both black-box and
white/grey-box testing approaches. The black-box methodology approach is invaluable for identifying vulnerabilities that could
be exploited by external attackers. In contrast, the white-box methodology provides a deeper examination of the GNSS receivers
internal operations, helping to pinpoint implementation-specific weaknesses, logic errors, and potential flaws that may not be
observable through black-box testing.

By synthesizing these two methodologies, the GNSS-Fuzz Testing Framework facilitates a comprehensive evaluation of the
receiver’s resilience against a wide spectrum of potential threats, including spoofing and jamming. This integrated approach
ensures that both the functional performance and security robustness of the GNSS receiver are rigorously assessed, thereby
providing meaningful insights that can guide subsequent improvements and refinements.

Model-Based Fuzz Testing for GNSS Systems
This research focuses on the development and application of model-based fuzz testing as an innovative approach to evaluating
the performance and robustness of GNSS receivers. The main characteristic of this approach lies in developing a model of
the system to be tested, and then using this model to guide the fuzzy testing process. GNSS receivers, especially in critical
applications such as aviation, are vulnerable to a variety of threats, including signal spoofing, jamming, and environmental
interference. While traditional deterministic testing methods are effective for compliance with established standards, they often
fail to expose vulnerabilities arising from unexpected inputs or environmental variables. Model-based fuzz testing, however,
extends beyond conventional software testing by offering a system-level testing approach that aligns with the unique challenges
of GNSS systems.

A core component of this framework is the use of diverse models to represent the dynamic behavior of GNSS receivers. These
models encompass both software and hardware components, offering a holistic view of system behavior. By leveraging these
models, fuzz tests can be generated systematically, allowing for a comprehensive evaluation of GNSS receivers’ performance,
fault tolerance, and resilience under adverse conditions.

The primary objectives of this research are as follows:

• Development of Model-Based Testing Tools: Design and implement tools that utilize diverse system models, such as
functional, behavioral, and data flow models, to automate fuzz test generation. These tools will focus on both valid and
malformed input sequences to comprehensively evaluate system performance.

• Assessment of GNSS Receiver Robustness: Apply fuzz tests to real-world GNSS receiver models to simulate threats
like signal degradation, environmental interference, and spoofing, assessing the receivers’ resilience in these scenarios.

• Performance Benchmarking: Measure the effectiveness of fuzz testing relative to traditional deterministic approaches,
using key performance metrics such as transition coverage, error rates, and resource utilization.

In model-based fuzz testing, the GNSS receiver is modeled across multiple layers, each representing a different aspect of system
behavior. Testing at each of these layers helps to identify specific vulnerabilities and provides insights into different facets
of system performance and security. This multi-layered approach aligns closely with the principles of Model-Based Systems
Engineering (MBSE), a well-established methodology in systems engineering that leverages models to develop and manage
complex systems. By structuring the GNSS receiver model into these five layers—system architecture, functional, behavioral,
data flow, and simulation—the methodology adopts MBSE elements to guide the testing process systematicallyEstefan (2008).

Consequently, the framework can be characterized as Model-Based Fuzz Testing (MBFT), wherein MBSE principles and fuzz
testing techniques are integrated to evaluate system robustness and reliability. MBFT employs MBSE models not just for system
design but as foundational elements driving fuzz test generation and execution. This integration of MBSE and fuzz testing



provides a structured yet innovative way to uncover vulnerabilities and optimize GNSS receiver performance under a variety of
conditions. These layers include:

• System Architecture Layer At this layer, the focus is on the high-level design and structure of the GNSS receiver,
encompassing hardware components (e.g., antennas, processors) and software modules (e.g., navigation algorithms).
Testing at this level verifies that the system meets key performance criteria such as scalability, fault tolerance, and
robustness.These models that display the system level have to describe the interaction and communication between
various components, offering a comprehensive understanding of the overall system behavior.

• Functional Layer The functional layer models specific tasks and operations performed by the GNSS receiver, such as
signal acquisition, tracking, navigation computation, and fault detection. Testing at this layer ensures that the receiver’s
functions meet expected benchmarks under a variety of operational conditions. Therefor Control Flow Models, State
Machine Models and Data Flow Models can be used. These models help verify the correct operation of functions and the
receiver’s response to different input sequences, ensuring functional integrity.

• Behavioral Layer The behavioral layer models the system’s dynamic responses, including state transitions and reactions
to external inputs. This layer is vital for evaluating how the receiver adapts to changing conditions in real time, such
as transitions between signal acquisition and tracking, or the system’s response to error recovery. Testing at this layer
is particularly useful for assessing robustness in edge-case scenarios. The models used in this layer include State
Machine Models, Temporal Logic Models or Finite State Machines (FSM) These models represent system states and
their transitions, ensuring the receiver’s behavior aligns with operational expectations even in stressful or anomalous
conditions.

• Data Flow Layer The data flow layer focuses on the movement of data, such as satellite signals and navigation solutions,
within the system. Testing at this level evaluates how efficiently the system handles data, performs error correction, and
manages data transformations. The model used at this layer is could be for example a Data Flow Model. These models
describe how data flows and is transformed throughout the system, providing insights into the accuracy and efficiency of
data handling processes.

• Simulation Layer The simulation layer replicates the behavior of the GNSS receiver under controlled or extreme
conditions, such as spoofing, jamming, or signal blockage. Testing at this layer is crucial for assessing system resilience
in scenarios that may be unsafe or impractical to simulate in real-world environments. These models simulate real-world
threats to evaluate the robustness of the GNSS receiver against attacks such as jamming and spoofing.

In this context, the system architecture layer and data model are particularly suitable for black-box fuzzing, as they describe the
system’s high-level interaction with its environment. Black-box fuzzing operates without knowledge of the system’s internal
mechanisms, making these models ideal for generating random but controlled inputs to test system responses in uncertain or
adversarial environments.

On the other hand, the functional, behavioral, and simulation layers rely on models of internal system components, such as state
machine models and temporal logic representations. These models enable grey-box or white-box fuzzing, where some or full
knowledge of the system’s internals is used to guide the test generation. This approach allows for targeted testing, focusing on
edge cases, fault recovery, and resilience under specific adverse conditions.

By combining these methodologies, model-based fuzz testing offers a comprehensive evaluation framework that leverages
the strengths of black-box and grey/white-box testing techniques. It ensures both high-level system robustness and detailed
validation of internal processes under a variety of test conditions.

By integrating these layers within the GNSS-Fuzz Testing Framework, a comprehensive evaluation of the GNSS receiver’s
performance, resilience, and robustness can be achieved. Each layer offers a unique perspective on the system’s behavior, and
the corresponding models enable simulation of a wide range of conditions, including both typical and extreme operational
scenarios. This multi-layered approach ensures that the system is not only functionally correct but also capable of performing
reliably under adversarial conditions, such as spoofing and jamming.

This research aims to address critical gaps in current GNSS testing methodologies by:

• Providing systematic tools for uncovering vulnerabilities that could compromise GNSS receiver functionality in real-world
scenarios.

• Enhancing the resilience and reliability of GNSS receivers, particularly in the face of evolving threats like advanced
spoofing techniques.

• Informing stakeholders—such as certification authorities, manufacturers, and researchers—about the potential and limi-
tations of fuzz testing in the GNSS domain.



The integration of fuzz testing within the GNSS receiver development process is expected to significantly improve the robustness
of these systems, ensuring they remain secure and reliable in the face of emerging threats.

IV. GNSS USE CASE EXAMPLE
This section describes an example of applying fuzz testing to a GNSS receiver using a black-box approach. In this method,
the system is tested by interacting with the hardware directly, without utilizing formal models to represent the system’s internal
behavior or structure. Grammar-based and mutation-based techniques were employed to generate input scenarios for testing the
receiver.

Equipment under test (system example)
Currently, the Collins GNSS Product Line is developing a dual frequency multi-constellation prototype including GPS and
Galileo dual frequency processing plus Satellite Based Augmentation Systems inherited from legacy GLU-2100 equipment
which is compliant with RTCA DO-229F MOPS.

Figure 1: GLU-2100

This new prototype is a new SBAS DFMC GNSS receiver compliant with a new EUROCAE/RTCA standard, the ED-259. The
GLU-2100 is an ARINC 755-4 compliant digital MMR that supports the following TSO functions:

• VOR receiver compliant to DO-196 and ED-22B

• MB receiver functionality compliant to DO-143 and 1/WG7

• ILS Localizer receiver functionality compliant to DO-195 and ED-46B

• ILS Glideslope receiver functionality compliant to DO-192 and ED-47B (up to CAT IIIb installation supported)

• GNSS:

– L1 GPS – used for navigation

– SBAS Navigation and Landing compliant to DO-229E – Satellite Based Augmentation System, wide area or regional
(EGNOS, GAGAN, MSAS, etc.) augmentation to the GPS navigation system enables higher precision and integrity
data to be used

– GBAS Navigation and Landing (CAT I) compliant to DO-253C – Ground Based Augmentation Systems that supports
local area augmentation from a ground station that enables very high precision and integrity data to be used

Test Bench
GLU-2100 tests are based on simulations using a GNSS signal simulator. The test bench is composed of:

• Spirent GSS-9000 simulator, configured with PosApp software v8.01, which allows precise control of signal generation
and scenario design. The simulator has its own RF controller and signal generator.

• Collins GLU-2100 receiver, integrating a DFMC-SBAS software prototype, capable of processing dual-frequency GNSS
signals and advanced SBAS corrections.

The Spirent simulator allows the user to record, in real-time, three different types of logs (also known as truth files) directly
from the simulation engine:

• SBAS L1/L5 message dumps, containing detailed SBAS correction and integrity information.

• GPS LNAV/CNAV navigation message dumps, providing raw broadcast data for GPS satellites.



• Galileo I-NAV/F-NAV navigation message dumps, capturing the primary and secondary navigation message structures
for Galileo satellites.

Figure 2: Schema of the Testbench

The information contained in these files is critical for fuzzing, as it provides a precise baseline of the data broadcasted by
the simulator and received by the GLU-2100. This allows for the identification and injection of targeted modifications during
testing.Fuzzing is performed using the Spirent simulator’s ”Data Modification” feature, which enables fine-grained control over
broadcast messages. This feature works by allowing users to send a series of modification requests to the Spirent simulation
engine, instructing it to transmit specific messages with altered content, timing, or format. Modifications can target various
message fields, such as:

• Pseudo-range corrections in SBAS messages.

• Ephemeris or almanac parameters in GPS/Galileo navigation messages.

• Timing and clock offset parameters critical for receiver positioning algorithms

The Spirent GSS-9000 has advanced capabilities enabling the creation of highly customized test scenarios, simulating edge
cases such as multipath effects, weak signals, or spoofing attempts, which are essential for evaluating receiver robustness under
diverse conditions. Additionally, the ability to generate and store truth files ensures complete traceability of all test cases and
their impacts, allowing for thorough post-analysis. Finally, the system’s scalability supports testing multiple satellites and signal
types simultaneously, making it particularly suited for multi-constellation, multi-frequency testing. A key strength lies in its
“Data Modification” feature, which enables the user to target and alter specific parts of navigation messages. This granular
control is particularly valuable for fuzzing, as it allows testers to inject precise modifications—such as altering ephemeris data,
pseudo-range corrections, or integrity bits—without disrupting the entire message structure. Such targeted fuzzing can uncover
vulnerabilities in how the GLU-2100 process specific message fields.

To implement our fuzzing framework, we leveraged a custom-built fuzzing tool tailored to the specific requirements of GNSS
receiver testing. This tool incorporates a combination of techniques, including mutation-based and grammar-based fuzzing, to
generate diverse and realistic input sequences. By employing a combination of these techniques, we were able to effectively
explore the input space and identify potential vulnerabilities in the GNSS receiver under test.

Then, the generated navigation data arewill be injected in a SW/HW signal generator which is here represented by the Spirent
box. The Spirent is a GNSS constellation simulator which generate RF signals.

Fuzzing GNSS messages
In this fuzzing approach, scenarios are used as inputs, which are sequences of valid signals representing real-world satellite
constellations (GPS, Galileo, SBAS, etc.). These scenarios are created without involving formal models but focus on simulating
the expected real-world conditions. This allows for testing how the receiver reacts to different sets of input data corresponding
to GNSS signals. On the right scheme, we propose to generate as inputs both scenarios and events. In the scenarios, we will



consider all the core constellations satellites signals (GPS and Galileo signals from medium Earth orbits) that are the first targets
of spoofers. The GEO satellites which are the SBAS satellites are also considered to provide corrections and integrity in covered
areas like in CONUS for the US WAAS or the ECAC for the European EGNOS augmentation systems.

Figure 3: Fuzzing Schema on Testbench

The scenarios include valid signals which refer to signals that are broadcast from the authentic satellites and with navigation
messages that embed satellites ephemeris, almanac, Universal Time Coordinate parameters, atmospheric ionospheric parameters
needed for satellites position determination and ranging satellites antenna to receiver antenna corrections to provide navigation
solutions.
Fuzzing technique is applied to messages generation in scenarios with a dedicated tool developed by Collins and illustrated
below:



Figure 4: Collins Aerospace Fuzzing Tool

Improved fuzzing model applied to GNSS messages scenarios
The fuzzing model used here is a mutation-based and grammar-based fuzzing approach. These techniques generate realistic,
varied inputs (scenarios) based on the actual message structures used in GNSS systems. By making random or targeted changes
to the messages (mutation) and following the structure of valid GNSS messages (grammar-based), this approach ensures that
the fuzzing inputs are both realistic and diverse. In this paper, we address the following SBAS message fuzzing example.In the
following table, the SBAS L1 messages main contents are recalled:

Table 2: SBAS L1 Signal Types and Contents

Type Contents
0 Do not use this SBAS L1 signal for safety appli-

cations
1 PRN Mask assignments, set up to 51 of 210 bits

2 to 5 Fast corrections
6 Integrity information
7 Fast correction degradation factor
8 Reserved for future messages
9 GEO navigation message (X, Y, Z, time, etc.)

10 Degradation Parameters
11 Reserved for future messages
12 SBAS Network parameters Time/UTC offset

Type Contents
13 to 16 Reserved for future messages

17 GEO satellite almanacs
18 Reserved for future messages
19 Reserved for future messages
20 Reserved for future messages
21 Reserved for future messages
22 Reserved for future messages
23 Reserved for future messages
24 Reserved for future messages
25 Reserved for future messages

The next figure presents the logic between SBAS L1 messages. MT 6 is related to integrity and contain IODF information.

Figure 5: Logic between SBAS L1 messages

MOPS ED-259A and DO-229F provide precise guidance on how to apply SBAS corrections and compute SBAS based horizontal
and vertical protection levels. MOPS specifies timeout periods beyond which SBAS messages should not be used. When a MT



6 message with an IODF=3 is received the GNSS software latches the UDREI for all the active slots that belong to the block
whose IODF is set to 3. It the next MT6 received after the latch event also has an IODF of 3 then the new MT6 will unlatch
the previous UDREI and latch new UDREI. These latching conditions can cause a GNSS receiver to use UDREI beyond the
timeout period.(DO2 (2020),EUR (2020))

Figure 6: SBAS IODF

Results and Analysis
As an example, the MT6 IODF (values from 0 to 3) was fuzzed as plotted below:

Figure 7: Fuzzed MT6 IODF (values from 0 to 3)



Figure 8: SBAS L1 MT6 IODF transition (fuzzing)

The GLU equipment behavior was analyzed and specific results are shared hereafter. The interest is not only to fuzz the data
contents but also the priorities of the messages as well as the intervals between to messages sending. The messages contents are
fuzzed according to a uniform law whereas the time intervals follow a Poisson law. Hereafter, the GEO PRN CNO estimation
was plotted considering some various priorities examples, indeed, the equipment acquires GEO signals and then demodulates
the data only if the PRN numbers are confirmed, so it tracks it only if confirmed and therefore, the C/N0 estimation is provided
during tracking only in case the correct acquisition is confirmed. Some C/N0 estimations were provided hereafter when fuzzing
the MT6 priorities, the expectation is that the GEO signal is tracked whatever the priority:

Figure 9: Reference Scenario - MT6 every
six second with priority 2

Figure 10: MT6 every second with priority
2

Figure 11: MT6 every second with priority
10

The Carrier-to-Noise ratio (C/No) was monitored across various SBAS message configurations as part of a fuzz testing campaign
to evaluate GNSS receiver performance. On the X-axis, the GPS weeks are represented in seconds, and on the Y-axis, the
Carrier-to-Noise Ratio (C/No) is displayed in decibels (dB). These tests aimed to explore the receiver’s behavior under diverse
and unexpected conditions, showcasing fuzz testing as a robust approach for identifying performance trends and potential
vulnerabilities.
The results indicate that, while minor fluctuations in C/No levels were observed, the overall signal strength remained consistently
high across all tested scenarios. This highlights the receiver’s resilience to increased message loads and varying IODF strategies
(random or 3-2 pattern), as uncovered by the fuzz tests. Fuzz testing revealed that increasing the frequency of MT6 messages
significantly improves the stability and continuity of the navigation state, demonstrating the receiver’s dependence on frequent
updates. Conversely, increasing message priority had a less pronounced effect on navigation stability. The specific IODF
configuration also showed minimal impact under stable signal conditions. These findings emphasize the receiver’s capacity to
handle diverse configurations, as effectively stress-tested through fuzzing. On the X-axis, the GPS weeks are represented in
seconds, and on the Y-axis, the Navigation State.



Figure 12: Reference Scenario - MT6 every
six second with priority 2

Figure 13: MT6 every second with priority
2

Figure 14: MT6 every second with priority
10

This study demonstrates the value of fuzz testing for systematically evaluating GNSS receiver performance. By simulating high-
frequency, priority-based, and randomized configurations, fuzz testing enabled a comprehensive analysis of receiver behavior.
To optimize receiver performance, rate limiting of MT6 messages, priority-based processing, and adaptive techniques should be
considered. Further fuzz testing under challenging environmental conditions, such as signal interference or multipath effects,
will be crucial to fully assess receiver robustness and identify potential bottlenecks.

In this study, we applied a black-box fuzz testing approach to evaluate a GNSS receiver. Initially, we employed a random
fuzzing technique, but we recognized its limitations, as it often generated a large number of irrelevant test cases. To address
this, we developed an improved fuzzing technique that combines elements of mutation-based and grammar-based fuzzing. This
approach allowed us to generate more targeted and effective test cases, leading to a significant improvement in vulnerability
detection efficiency.

While our current approach provided valuable insights into the receiver’s response to randomized inputs, we believe that
incorporating a model-based strategy could further enhance the effectiveness of fuzz testing. By modeling the system beforehand,
we could simulate a wider range of scenarios and potential vulnerabilities, allowing for a more comprehensive assessment of
the receiver’s robustness. This would not only improve the efficiency of fuzz testing but also uncover vulnerabilities that may be
missed in a purely black-box testing approach, ultimately providing a more thorough evaluation of the real receiver’s resilience
to threats like spoofing and jamming.

V. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK
This paper has presented a comprehensive framework for fuzz testing GNSS receiver involving a MBSE (Model based System
Engineering) approach and black-box testing for managing fuzzy testing. This approach has been applied for fuzz testing to
GNSS receivers, a critical component of modern infrastructure.

By systematically generating and injecting diverse, often malformed, inputs, fuzz testing has proven to be an effective technique
for uncovering vulnerabilities that may be missed by traditional testing methods.

The proposed framework, integrating both black-box and white-box techniques, offers a robust approach to assessing the security
and reliability of GNSS receivers. By leveraging state-of-the-art fuzzing methodologies and advanced analysis techniques,
researchers and industry practitioners can identify potential weaknesses and develop countermeasures to mitigate emerging
threats, such as spoofing and jamming attacks.

While this paper has made significant strides in advancing the application of fuzz testing to GNSS receivers, further research is
necessary to refine and extend these techniques. Areas for future exploration include:

• Enhanced Scenario Generation: Developing techniques to generate more realistic and complex scenarios, including
those that simulate real-world threats like spoofing and jamming attacks.

• Intelligent Fuzzing: Exploring the use of artificial intelligence and machine learning to optimize the fuzzing process,
focusing on high-risk areas and reducing the number of unnecessary test cases.

• Integration with GNSS Standards: Aligning fuzz testing methodologies with relevant GNSS standards to ensure
compliance and interoperability.

• Collaboration and Knowledge Sharing: Fostering collaboration between academia, industry, and regulatory bodies to
share knowledge, best practices, and standardized testing methodologies.

By addressing these research challenges, we can further strengthen the security and reliability of GNSS receivers, safeguarding
critical infrastructure and ensuring the accuracy of positioning, navigation, and timing services worldwide.



ACRONYMS

Table 3: List of Acronyms

Acronym Full Name
ARINC Aeronautical Radio Incorporated
CPU Central Processing Unit
GEO Geostationary Earth Orbit
GLU Global Landing System
GNSS Global Navigation Satellite System
GPS Global Positioning System
IODP Issue Of Data PRN mask
LNAV Lateral Navigation
MT Message Type
PRN Pseudorandom Noise
RTCA Radio Technical Commission for Aeronautics
SBAS Satellite-Based Augmentation System
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