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ABSTRACT

In this paper, we propose an unsupervised statistical ap-
proach for near real-time monitoring of forest loss, leveraging
Bayesian inference. We address the identification of forest
loss as a change-point detection problem within non-filtered
Sentinel-1 single polarization time series data. Each new
observation contributes to the probability of deforestation
occurrence, utilizing prior knowledge and a data model. Our
method offers the advantage of detecting small-scale defor-
estation without resorting to spatial filtering techniques, thus
preserving the native spatial resolution of the Sentinel-1 mea-
surements. To assess its effectiveness, we conducted compar-
ative evaluations against existing operational deforestation
monitoring systems. The validation campaign revealed that
our method exhibits enhanced detection performance with
low false alarm rates with respect to existing systems across
diverse landscapes, including dense forest regions such as the
Brazilian Amazon, as well as seasonality-dependent areas like
the Cerrado, which is strongly under-monitored by existing
technology. This robustness stems from the sequential adap-
tive process inherent in our approach, which enables effective
monitoring even in the presence of backscatter variations.

Index Terms— Forest Loss, Change Detection, Bayesian
Inference, Sentinel-1, Time series

1. INTRODUCTION

Over recent decades, 17% of tropical forests vanished due to
deforestation [1], urging the need for efficient tools to monitor
and preserve them. Earth observation data offer a solution to
monitor forests, granting access to vast, previously inaccessi-
ble regions. Consequently, numerous Near Real-Time (NRT)
forest disturbance detection systems were developed in the re-
cent years. The forefront technology, the Global Land Analy-
sis and Discovery system (GLAD-L, [2]), is a system relying
on optical Landsat imagery that faces the challenge of cloud
coverage. Consequently, research has shifted in exploring
SAR products which are cloud-insensitive and ensure denser
time series. JAXA developed the pioneering JJ-FAST system,
utilizing L-Band ALOS/PALSAR-2 SAR time series [3]. Fur-
thermore, ESA’s Sentinel-1 mission led to the development of

several SAR-based systems with enhanced NRT capabilities.
For instance, INPE’s DETER-R in the Brazilian Amazon em-
ploys the adaptive linear threshold algorithm (ALT) to flag
low-backscatter pixels [4]. Another system, TropiSCO by
CESBIO and CNES, identifies deforestation events through
shadow detection at forest-deforested patch edges [5, 6].

Tropical forest ecosystems encompass rainforests, dry
forests, savannas, and grasslands. Deforestation within these
forests stems from diverse practices: small-scale agriculture,
large-scale agriculture, gold mining, and selective logging.
SAR backscatter time series over forests inherently consist of
seasonality (periodic variations due to climate), trend (grad-
ual changes from long-term environmental shifts), and abrupt
changes (e.g., deforestation, fires, etc.) [7]. Within this
framework, direct approaches applying thresholds to SAR
backscatter for deforestation monitoring [3, 5, 4], lack con-
sideration for the complex nature of the problem at hand. The
aforementioned NRT systems perform well only in dense
forest regions, seeking enhanced results via threshold adjust-
ments and spatial filtering to reduce speckle. Filtering notably
reduces the spatial resolution of the measurements leading to
potential inaccuracies such as overestimation of deforestation
and challenges in detecting small-scale practices.

To address uncertainty and enhance flexibility in defor-
estation detection, Bayesian approaches use probability to
assess belief in specific events based on available evidence.
The RAdar for Detecting Deforestation (RADD) alerts, de-
veloped by Wageningen University and Research (WUR)
[8], employ a Bayesian update theory-based algorithm. Like
other SAR-based NRT systems, RADD uses data stack pre-
processing with filtering for speckle suppression, implicitly
reducing spatial resolution. Furthermore, RADD divides
land cover in discrete categories (i.e., Forest and Non-forest)
and requires a multitude of training data to characterize the
class-specific distributions.

This study introduces a non-supervised Bayesian inference-
based deforestation monitoring technique with NRT capa-
bilities, adaptable to multiple data sources. Starting from
the Bayesian Online Change Point Detection algorithm [9],
we tailored it for use with Sentinel-1 SAR data through a
conjugate Bayesian analysis. Additionally, we extended its
functionality to consider spatial context when detecting defor-



estation events. The method’s ability to maintain the original
spatial resolution of Sentinel-1 data, enabled the detection
of small-scale deforested areas within the Brazilian Ama-
zon. Moreover, the sequential estimation employed in our
method, which ensures adaptation to changing conditions,
enabled the detection of deforestation even in the presence
of seasonal effects within the Cerrado savanna, significantly
under-monitored by the existing systems. The obtained re-
sults have been compared with the ones produced by other
operational systems for NRT deforestation monitoring.

2. DATASET AND STUDY AREA

This work utilizes Copernicus Sentinel-1 Interferometric
Wide Swath (IW), Radiometrically Terrain Corrected (RTC)
acquisitions, processed by the European Space Agency
(ESA). Any pre-processing, notably spatial filtering, has
been omitted to demonstrate the capabilities of the proposed
method to preserve the spatial resolution of the data and better
perform in the detection of small-scale deforestation.

The study areas selected for this research and depicted in
Figure 1 are the Brazilian Amazon rainforest, and the Cerrado
woodland savanna. The choice of the study area is motivated
by the availability of reliable reference data, as well as the
willingness to test our method in presence of various types
of vegetation, and implicitly, different signal behaviors. For
validation purposes, we made use of the MapBiomas Alerta
dataset [10] of year 2020, containing manually validated de-
forestation polygons over Brazil. For performance evaluation,
our algorithm has also been compared with the deforestation
alerts of year 2020 produced by two forest loss monitoring
systems: GLAD-L ([2], optical system operational over both
Amazonia and Cerrado), and RADD ([8], SAR systems oper-
ational only over Amazonia).

3. PROPOSED METHOD

The method developed in this work, and named BOCD in the
following, starts from the algorithm Bayesian Online Change
Point Detection [9]. The method is based on Bayesian infer-
ence which provides a posterior probability of an event as a
consequence of a prior probability, and a likelihood function
extrapolated from the data. Assuming the time series un-
der examination comprises a single-pixel, single-polarization
Sentinel-1 SAR backscatter (x1.;) time series segmented by
change points, the algorithm probabilistically partitions the
time series into segments, each representing a different state
of the forest. This segmentation is achieved by tracking
the posterior distribution over the most recent change point,
thereby inferring the current segment’s run length, ;.
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Fig. 1. Study area depicting the MapBiomas Alerta validation
polygons for Amazonia and the Cerrado. Optical background
image from Google Earth (©2023 Google).

We assume that the data in each segment are indepen-
dent identically distributed samples from py using a param-
eter prior, 6 ~ 7(6), and a data model, ;|0 ~ pg(x¢).
Additionally, considering that the probability of deforesta-
tion increases with proximity to previous deforestation, we
introduce a conditional prior on the run length, r¢|ri_1 ~
H(r¢|rs—1), designed to incorporate spatial coherence. This
prior influences the assessment of the run length posterior
probability which is tractable only if the joint distribution is
tractable:
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In this context, xgi"l represents a segment of length 7,

while p(mﬂxiif{) denotes the posterior predictive distribu-

tion:
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In equation (3), the integral is solvable only when there is
conjugacy between the data likelihood and the prior. This re-
sults in the Bayes posterior, 7r(9|x§rj%), having the same func-
tional form as the prior, allowing a straightforward derivation
of the posterior predictive distribution. Through a conjugate
Bayesian analysis we approximated the likelihood of the log-
scale Sentinel-1 backscatter data with a Normal distribution
(Normal-Gamma prior) and derived a Student’s ¢ posterior
predictive [11].

Ultimately, the BOCD algorithm outputs a triangular ma-
trix containing the run length posterior probabilities for each
observed acquisition. Significant drops in probability mass
within this matrix indicate deforestation events. Additional



details regarding the algorithm’s operational process are re-
ported in Figure 2.
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Fig. 2. BOCD working principle: r; represents the output
triangular matrix. The circles indicate probability values for
each possible run length, while the colors differentiate past
(gray), present (black), and future (white) acquisitions. A sig-
nificant drop in probability indicates a deforestation event.

4. RESULTS

This section discusses deforestation detection results ob-
tained using the BOCD algorithm in the 2020 monitoring
year across two Brazilian biomes, and compares them them
with the NRT monitoring systems GLAD-L (Amazonia and
Cerrado) and RADD (Amazonia). Results were evaluated
against the MapBiomas Alerta dataset used as reference.
The BOCD’s ability to detect small-scale deforestation was
validated focusing on reference polygons smaller than lha,
totaling 629 polygons in the Cerrado and 3590 in Amazonia.
Moreover, the choice of these two validation areas empha-
sizes the algorithm’s adaptability to changing conditions. The
Amazon, with its nearly piece-wise constant reflectivity, is
extensively monitored by existing NRT systems. Conversely,
the Cerrado, the world’s most biodiverse woodland savanna,
exhibits a backscatter influenced by seasonal effects and is
significantly under-monitored by the existing systems.

Considering that within the MapBiomas dataset defor-
estation flagging occurs in the hypothesis of previous forest,
a non-rigorous confusion matrix was constructed for perfor-
mance evaluation. Specifically, a true positive (TP) is a sub-
stantial portion of a polygon detected by the BOCD algorithm
that aligns with the MapBiomas dataset for the year 2020. A
false negative (FN) represents a significant portion of a poly-
gon missed by BOCD but present in MapBiomas 2020. A
false positive (FP) denotes a significant portion of a polygon
detected by BOCD in 2019, aligning with MapBiomas 2020.
Lastly, a true negative (TN) signifies a substantial portion of
a polygon correctly identified as non-deforested by BOCD
in 2019, aligning with MapBiomas 2020. The “evaluation
threshold” (Thr) indicates the variability in the percentage
of a detected polygon needed to consider the entire area as
deforested. The confusion matrices regarding Amazonia and
the Cerrado are shown respectively in Table 1, and Table 2.
We focus on reporting TP and FP, as FN and TN can be eas-
ily derived from the former, as well as the F1-score offering
a balance metric between precision (p) and sensitivity (s),

F1=(2-p-s)/(p+s)

Table 1. Confusion Matrix and Fl-score for Amazonia.
RADD alerts unavailable for year 2019.

True Positive [%] False Positive [ %] F1-Score [%]
Thr | BOCD GLAD-L RADD | BOCD GLAD-L | BOCD GLAD-L
75% | 53.34 49.16 37.60 0 0.58 69.57 65.66
50% | 74.82 68.11 64.93 0 1.34 85.60 80.39
30% | 84.62 79.22 77.49 0 3.45 91.67 86.73
10% | 87.24 86.21 85.79 1.09 10.03 92.65 87.86

Table 2. Confusion Matrix and F1-score for the Cerrado.

True Positive [%] False Positive [ %] F1-Score [%]
Thr | BOCD GLAD-L | BOCD GLAD-L | BOCD GLAD-L
75% 24.64 13.35 0 0 39.54 23.56
50% 56.28 31.64 0 0.48 72.02 47.89
30% 74.40 50.40 0 0.95 85.32 66.60
10% 85.21 61.69 0.48 4.29 91.78 74.33

Figure 3 presents a visual comparison between systems
in terms of normalized true positives versus normalized false
positives for various evaluation thresholds. The results ob-
tained for the Amazon biome showcase a slight enhance-
ment in BOCD’s detection capabilities compared to GLAD-L
and RADD, and a considerable reduction of false alarms
(FP). Moreover, the outcomes concerning the Cerrado biome
demonstrate a consistent improvement over GLAD-L’s lead-
ing results, both in detections and false alarm rates. Figure
4 shows some examples of detection of various MapBiomas
Alerta polygons. The first two examples point out the ten-
dency of existing systems to overestimate deforestation due
to the application of spatial filtering reducing measurement
resolution, and leading to less precise detections compared to
the BOCD method. The last example highlights the detection
superiority of BOCD against GLAD-L in the Cerrado.
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Fig. 3. Normalized true positives versus normalized false positives for different systems and varying evaluation thresholds.
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5. CONCLUSIONS

This paper introduces a non-supervised near real-time (NRT)
forest loss monitoring technique based on Bayesian inference.
This work makes several key contributions: (1) The devel-
opment of a method for NRT forest loss detection that sur-
passes existing systems in terms of detection accuracy and
false alarm reduction. (2) Application of the method in the
seasonality-sensitive biome of the Cerrado, demonstrating its
adaptability to patterns in the data. (3) A filtering-free ap-
proach that maintains spatial resolution and reduces the risk
of deforestation overestimation.
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