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Abstract—Leveraging carrier phase observations within Global
Navigation Satellite Systems receivers allows centimeter-level
positioning accuracy. However, carrier phase observations are
significantly affected by additive noise, which is assumed to
follow a von Mises distribution, thereby degrading the perfor-
mance of phase-based positioning estimators. To improve the
modeling of carrier phase observations, we propose a novel
approach that constrains the parameters of the von Mises distri-
bution—specifically, the angular location modeling the phase and
its dispersion parameter κ modeling the noise—to evolve within
the Lie group space SO(2)×R+. To estimate these parameters,
we employ a Lie group maximum likelihood estimator, solved
through a Newton algorithm on Lie groups. This approach
demonstrates advantages in terms of robustness and precision,
especially when dealing with a small number of observations,
compared to traditional Euclidean-based methods.

Index Terms—GNSS, Lie group, phase, von Mises distribution,
concentration parameter, estimation.

I. INTRODUCTION

Intelligent transportation systems and safety-critical applica-
tions are gaining prominence in today’s society. They require
precise and reliable positioning services to function effectively
in complex environments. Global Navigation Satellite Systems
(GNSS) is the technology of choice when it comes to high
precision navigation, enabling centimeter-level positioning ac-
curacy. This requires the use of carrier phase measurement
(see [1]) and in particular to solve for the integer carrier phase
ambiguities [2], an operation sensitive to low Signal-to-Noise
Ratio (SNR), which can significantly affect the precision of
receiver position estimates. Although it can be tedious, the
process of ambiguity fixing opened the door for the Real-Time
Kinematic (RTK) and the Precise Point Positioning (PPP)
techniques for high-precision positioning [3]. As opposed to
the RTK technique, the PPP one is powerful because it does
not require for the user to rely on a dense station network
and to stay in the vicinity of a reference station to reach
a high positioning accuracy. Hence it has been widely used
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from several decades up to recent applications, either public
or commercial [4], [5], [6], [7], [8].

In this study, we investigate the modeling of the carrier
phase within the tracking loop of a GNSS receiver using a
statistical approach designed to be resilient to noise. This
approach represents an initial step towards achieving robust
and accurate position estimation in challenging environments,
as well as enabling high-precision positioning and navigation.

Conventional GNSS tracking loops implement a phase lock
loop (PLL) to estimate both the carrier phase and the Doppler
frequency variations over time. The tracking stage can be seen
as a recursive estimation problem, and the PLL architecture
can be reformulated as a Kalman-like filter [9]. Traditional
sequential estimation filters, which rely on Gaussian assump-
tions, fail to account for the periodicity of circular data and
thus produce biased results [10], [11], since they are not
defined in a circular domain within the interval ] − π, π].
In [12], the authors have shown that the phase noise of
a GNSS signal follows a von Mises distribution (VMD),
[3], [13], and such a modelisation was extensively used for
angle modeling within different contexts [14], [15], [16]. It
is characterized by two unknown parameters which are the
concentration parameter, κ, and the location parameter, ϕ
corresponding to the phase effectively to track in the PLL.
In an operational context, the phase variance of a signal is not
well-known due to the lack of precise information about the
Signal-to-Noise Ratio (SNR). In the GNSS context, the quality
of the signal is commonly assessed by estimating the Carrier-
to-Noise Ratio (C/N0), which provides critical information
about the health of the satellite signal [17]. Additionally, the
concentration parameter κ, which quantifies the dispersion of
phase measurements, is directly related to phase noise. This
relationship links κ to the quality of the signal, as C/N0 and
κ are inherently connected [18], [15]. Consequently, in this
work, we aim to model phase measurements using a VMD to
estimate not only the phase angle ϕ but also the concentration
parameter κ, which provides valuable insights into the signal
quality.

Deriving an estimator for κ is challenging since it does not
admit analytical expressions. In the state-of-the art, different



approaches exist. Iterative robust algorithms for κ and ϕ
adapted from the Maximum Likelihood Estimator (MLE) were
proposed in [19]. In [20], a maximum likelihood (ML) ap-
proach for estimating the concentration parameter is proposed,
but it results in a highly biased performance dependent on
the number of measurements. In contrast, other estimators
discussed in [21] reduce the bias but lack of precision for
small κ values.

To overcome these defaults, we propose to model the VMD
with its parameters constrained to live on their natural space
]−π, π] and R+. This can be naturally accomplished by apply-
ing their Lie group structure. A Lie group is a differentiable
manifold equipped with a structure of group, in which an Eu-
clidean motion can be described as a rotation in the Lie group
space. They are classically used in other fields such as machine
learning and signal processing, to model physical quantities
as rotation matrices SO(n) and affine transformations SE(n)
[22]. Then, ϕ is associated to a rotation matrix R in SO(2)
and κ lies on the Lie group R+. Knowing the latter, we derive
a ML estimator of (R, κ) on Lie group for VMD, resolved by
a Newton algorithm on the Lie group SO(2)×R+. In this way,
we ensure that, at each iteration of the algorithm, ϕ and κ are
both estimated on ] − π, π] and R+, naturally and without
additional constraints. Compared to conventional methods,
this approach demonstrates robustness in adverse scenarios
characterized by small values of κ (indicating high variance)
and a limited number of measurements, which are common in
GNSS receivers. This paper is organized in the following way:
section II details the conventional approach to estimate the
VMD parameters. Section III briefly provides the background
on Lie groups and introduce the proposed approach. Then,
numerical simulations are presented in section IV. Finally, the
conclusion and future perspectives are discussed in section V.

II. CLASSICAL EUCLIDEAN APPROACH

In this section, we provide the necessary background to
characterize the VMD. First, we introduce its definition and
explain its relation with the GNSS application. Second, we
detail the classical technique to estimate its parameters, i.e.
the location parameter, ϕ, and the concentration parameter, κ.

A. Definition
The VMD is classically encountered in signal processing

to characterize angle or phase measurements, and it has the
advantage to have a support on ] − π, π] [11]. Therefore,
considering the phase measurement as a random variable
following a VMD ψ ∼ VM (ϕ, κ), its probability density
function is given by:

f(ψ|ϕ, κ) = 1

2πI0(κ)
exp {κ cos(ψ − ϕ)} , (1)

where I0(.) is the 0 order modified Bessel function.

B. Von Mises distribution in GNSS signal model
In the context of GNSS, the received signal, z, at each

discrete instant i, can be modeled by:

zi = αejϕi + ni, (2)

where α is the signal amplitude, ni a white complex Gaus-
sian noise with variance σ2

n defined as ni ∼ CN
(
0, σ2

n

)
,

and ϕ the true signal phase. The phase measure ψ in
the typical GNSS measurement context can be defined as
ψi = arctan(Im{zi},Re{zi}) ∈] − π, π]. According to
this modeling, it can be demonstrated that the signal phase
measurements ψi follows a VMD with location parameter ϕ
and concentration parameter κ = 2α/σ2

n [15].

C. Conventional VMD parameter estimation
Within the tracking loops of a GNSS receiver, the problem

of estimating and denoising the phase information, ϕ, from
N independent von Mises observations {ψi}Ni=1, and subse-
quently computing its variance, is fundamental. A conventional
approach to this problem consists in identifying the pair of
parameters, such as x = [ϕ, κ]⊤, that maximize the VM
likelihood, as follows:

x̂ = argmax
ϕ,κ

N∏
i=1

1

2πI0(κ)
exp {κ cos(ψi − ϕ)} . (3)

Equation (3) can be reformulated in order to minimize the
negative logarithm, thereby defining the estimation problem
as the following optimization problem as follows:

x̂ = argmin
ϕ,κ

h(ϕ, κ) (4)

where:

h(ϕ, κ) =

N∑
i=1

[log (2πI0(κ))− κ cos(ψi − ϕ)] . (5)

This problem does not admit any analytical solution due to the
presence of the cosine function. Indeed, the latter has cyclic
local minima. In order to solve this optimization problem, a
numerical solution has to be adopted. While gradient descent
and other fixed-point algorithms have been applied in previous
work [16], the Newton algorithm is also classically used for
its low complexity and its fast convergence properties [23].
The recursion is basically given, at each iteration l, by the
optimization of the criteria in equation (5) as follows:

x̂l+1 = x̂l −
Å
∂2

∂2x
h(x̂l)

ã−1
∂

∂x
h(x̂l). (6)

Note that the resulting estimator of κ is highly biased and that
there exists various methods to compensate for it [21], [24].

D. Limitations of conventional approach
Equation (6) shows that the subtraction operator in the

Newton algorithm can cause the estimated parameters to fall
outside their natural ranges at any given instant. To address
this issue, one solution would be to constrain the estimate
of κ to lie within R+ by using its absolute value. As for
ϕ, applying the modulus operation to its estimated value will
ensure it remains within its specified range. However, these
empirical solutions are theoretically inadequate and are not
mathematically rigorous from a statistical perspective since
this type of adjustment modifies the uncertainty of the model,
adding new challenges for future work based on recursive
filtering where the uncertainty of the model must be defined.



III. PROPOSED STRATEGY ON LIE GROUPS

Due to the previously mentioned problem, we propose an
approach to estimate the VMD parameters within the Lie
group (LG) framework. By using rotation matrices on SO(2)
we can dispense with the modulo constraint associated with
phase angles. Then, we reformulate the VMD as a function of
a rotation matrix lying on SO(2). By using the LG structure
of the concentration parameter on R+, we deduce a LG
estimation problem that we propose to resolve with a Newton
algorithm on LG, requiring the computations of gradient and
hessian on LGs.

A. Lie group (LG): definition and examples

1) Definition: A matrix Lie group (G ⊂ Rn×n,⊛) is a set
of n × n matrices that form a smooth manifold and a group
under the operation ⊛. The tangent space at the identity matrix,
called the Lie algebra g, is a vector space that can be seen as a
local approximation of G. Elements of the g are linked to the
LG through exponential and logarithm maps ExpG : g → G
and LogG : G → g. If g is with dimension m, we can use
bijections and its reciprocal [.]∧ : Rm → g and [.]∨ : g → Rm

to move between g and Rm. This structure is advantageous
because it allows to deal with Euclidean vectors rather than
with matrices which is more suitable in a numerical point of
view [25], [23], [26]. In Fig. 1 a schematic with the relation
between the Lie group, Lie algebra and Euclidean space is
shown.

Lie algebra Euclidean space Rm

0m×1 a

a = [a]∧G a = [a]∨G

0n×n

Lie group G ⊂ Rn×n

In×n

ExpG(a) a

LogG(X)X

Fig. 1: Relation between Lie group, Lie algebra and Euclidean
space.

2) Case of SO(n): SO(n) represents the set of the ro-
tation matrices verifying the following property SO(n) =¶
R ∈ Rn×n,RRT = I

©
. In the case where n = 2, R is

parameterized with respect to ϕ such as:

R =

ï
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

ò
,∀ϕ ∈ R, (7)

its Lie algebra is given by the set of anti-symmetric matrices:

T =

ï
0 −ϕ
ϕ 0

ò
,∀ϕ ∈ R, (8)

and the exponential map of SO(2) is given by matrix expo-
nential as

Exp∧
SO(2)(ϕ) = exp {T} . (9)

Regarding the logarithm application, it is naturally given by
the matrix logarithm

LogSO(2)(R) =

ï
0 −ϕ
ϕ 0

ò
,

we observe that the associated Euclidean space is with dimen-
sion 1 generated by ϕ then Log∨SO(2)(R) = ϕ.

3) Case of R+: The space R+ forms a commutative LG
under the operation of classical multiplication, with the neutral
element being 1. The logarithm and exponential maps for
this group are given by the natural logarithm log(.) and the
exponential function exp(.), respectively, both defined on R+

and R.

B. VMD estimation problem

In this subsection, we propose a new modeling of the VMD.
As evoked previously, an angle ϕ can be parameterized by
a rotation matrix on SO(2). Then, the angular parameter ϕ
of the VMD defined by equation (1) can be written as ϕ =
Log∨

SO(2)(R) with R ∈ SO(2), and we obtain:

f(ψi|R, κ) =
1

2πI0(κ)
exp
¶
κ cos[ψi − Log∨

SO(2)(R)]
©
.

(10)
Furthermore, it is worth noting that, κ being positive, it
belongs to the LG of the positive value. Consequently, the
set of the unknown parameters belongs to the LG product
SO(2)×R+ and is written bellow in equation (11). To estimate
them, we propose to find the following ML estimator on LGs:

X =

ï
R 02×1

01×2 κ

ò
, (11)

X̂ = argmax
R,κ

N∏
i=1

1

2πI0(κ)
exp
¶
κ cos(ψi − Log∨

SO(2)(R))
©
.

(12)
By taking the opposite logarithm of the criterion to maximize
in (12), we yield:

X̂ = argmin
R,κ

h(R, κ), (13)

where:

h(R, κ) =

N∑
i=1

î
log (2πI0(κ))− κ cos(ψi − Log∨

SO(2)(R))
ó
.

(14)

C. Resolution of the estimation problem: Newton algorithms
on LGs

Similarly to the Euclidean case, the estimation problem in
equation (14) is not resolvable analytically but rather by a
numerical approach based on a Newton algorithm on LGs.
It has been intensively used in the literature to find a local
minima of a non-convex quadratic problem on LGs [23], [26].



More precisely, X̂ can be approached by generating a set of
{Xl}Ll=1 converging towards X:

Xl+1 = XlExp∧
SO(2)×R+ [δ

l], ∀ l ∈ J1 : LK,

with Exp∧
SO(2)×R+ [δ

l] =

ï
Exp∧

SO(2)(δ
l
R) 0

0 exp(δlκ)

ò
,

(15)

and δl = [δlR, δ
l
κ]

⊤ (with δlR and δlκ ∈ R) is:ï
δlR
δlκ

ò
= −H(Rl, κl)−1∇h(Rl, κl), (16)

where H(R, κ) ∈ R2×2 and ∇h(R, κ) ∈ R2 are the
Hessian matrix and gradient of h(R, κ) respectively. Since
both operations are defined in SO(2)× R+ space, hence the
LG Hessian and gradient are defined as follows [27]:

H(R, κ) =

ï
H11 H12

H21 H22

ò
, (17)

where the components of H belong to R and are defined as:

H11 =
∂h(RExp∧

SO(2)(ϵ
′
R)Exp∧

SO(2)(ϵ
′′
R), κ)

∂ϵ′R∂ϵ
′′
R

∣∣∣∣∣
ϵH=0

,

H12 =
∂h(RExp∧

SO(2)(ϵR), κ exp(ϵκ))

∂ϵR∂ϵκ

∣∣∣∣∣
ϵH=0

,

H21 =
∂h(RExp∧

SO(2)(ϵR), κ exp(ϵκ))

∂ϵκ∂ϵR

∣∣∣∣∣
ϵH=0

,

H22 =
∂h(R, κ exp(ϵ′κ) exp(ϵ

′′
κ))

∂ϵ′κ∂ϵ
′′
κ

∣∣∣∣∣
ϵH=0

.

The gradient is given by:

∇h(R, κ) =

[
∂h(RExp∧SO(2)(ϵR),κ)

∂ϵR
∂h(R,κ exp(ϵκ))

∂ϵκ

] ∣∣∣∣∣
ϵh=0

, (18)

where ϵH = [ϵκ, ϵ
′
κ, ϵ

′′
κ, ϵR, ϵ

′
R, ϵ

′′
R]⊤ and ϵh = [ϵR, ϵκ]

⊤. By
using (14), and knowing that

∂

∂ϵ
Log∨

SO(2)(RExp∧
SO(2)(ϵ))

∣∣∣∣∣
ϵ=0

= 1,

and ∂
∂ϵκ

κ exp(ϵκ)

∣∣∣∣∣
ϵκ=0

= κ, we can demonstrate that

∇h(R, κ) =

 −
N∑
i=1

κ sin(ψi − Log∨
SO(2)(R))

N
Ä
κ I1(κ)
I0(κ)

ä
−

N∑
i=1

κ cos(ψi − Log∨
SO(2)(R))

 ,
(19)

H11 =

N∑
i=1

κ cos(ψi − Log∨
SO(2)(R)), (20)

H21 = −
N∑
i=1

κ sin(ψi − Log∨SO(2)(R)), (21)

H12 = H21 (22)

H22 = −
N∑
i=1

κ cos(ψi − Log∨
SO(2)(R))

+N

ï
κ2

I0(κ)

ï
I0(κ) + I2(κ)

2

ò
− κ2

I1(κ)
2

I0(κ)2
+ κ

I1(κ)

I0(κ)

ò
, (23)

where I0(κ), I1(κ) and I2(κ) are the modified Bessel function
of zero, first and second order respectively, with respect to κ.

IV. NUMERICAL SIMULATION

In this section, we propose to assess numerically the pro-
posed LG modeling by implementing the Newton algorithm
estimating R and κ. To achieve this, we generate N synthetic
von Mises phase measurements at different GNSS acquisition
times, based on a true phase assumed to be constant over
the acquisition interval. The performance of the ϕ estimators
is shown in sub-section IV-A for different angles, and for
κ estimators in sub-section IV-B. To assess the performance
of the estimators, we ran the algorithm on Nr = 10000
realizations until convergence. Then, we compute the intrinsic
MSE of ϕ and κ by using the difference operation in LG [25]
given by:

MSEϕ =
1

Nr

Nr∑
m=1

î
Log∨

SO(2)(R
−1R̂m)

ó2
,

MSEκ =
1

Nr

Nr∑
m=1

[
log(κ−1κ̂m)

]2
,

(24)

where R̂m, κ̂m denote the estimator for the m-th run, and R
is the rotation matrix associated to the phase angle to estimate
given in equation (7). The advantage of these two metrics,
besides calculating the error intrinsically, is that it allows for
a more accurate evaluation of the local error variation.

A. Scenario 1 : estimation of ϕ

First, we consider a scenario where κ is known and focus
solely on estimating ϕ. In Fig. 2, we plot the MSEϕ obtained
from R at the last iteration of the Newton algorithm for
different number of observations, where ϕ̂EU refers to the
Euclidean MLE obtained from equation (6) and ϕ̂LG the esti-
mator obtained from equation (15). It is superimposed on the
MSEϕ obtained with the conventional Newton algorithm. We
can observe that both methods provide the same performance
and validate the proposed LG modeling. It is also important
to mention that as ϕ is close to the value π, the quantity
of measurement to reach convergence will increase since the
mean of the distribution is shifted to the boundaries of the
domain of ]− π, π], thus losing its symmetrical appearance.

B. Scenario 2 : estimation of κ

To observe the benefits of LG modeling, we focus on
estimating the parameter κ while knowing ϕ. The κ parameter
gives information about the dispersion of the measurements in
the von Mises distribution (the higher the κ, the less dispersed
they will be and the closer to a Gaussian distribution), which
is directly related to the variance of the measurements, and



in turn to the C/N0 as it was mentioned before [18], [15]. In
addition to using the metrics defined in (24) and the Euclidean
MSE to evaluate performance, we define κ̂LG as the proposed
LG estimator derived from equation (12), and κ̂EU as the
Euclidean estimator given in equation (6), to then compare
them with state-of-the-art estimators detailed in [20] and [21],
which are defined as follows:

• κ̂V 1: bias mitigation estimator applied on κ̂EU and given
by:

κ̂V 1 =

®
max{κ̂EU − 2

Nκ̂EU
, 0} for κ̂EU < 2

(N−1)3

N3+N κ̂EU for κ̂EU ≥ 2
. (25)

• κ̂V 2: another bias mitigation estimator applied to κ̂EU

and given by:

κ̂V 2 = max

{
Nκ̂EU − κ̂EU − 1

N

N∑
n=1

κ̂EU,n−1, 0

}
,

(26)
where κ̂EU,n−1 is the estimator (6). constructed using all
measurements except the (n− 1)th.

• κ̂MED: estimator based on a median computation as
follows:

κ̂MED =
0.67724

median
(
{2 (1− cos(ψi − ϕ))}Ni=1

) , (27)

where median defines the empirical median of a set of
data.

In Figs. 3-6, the intrinsic MSE of each estimator is shown,
based on the number of considered measurements in the
simulations and for different values of κ. We can mainly
denote that κ̂LG outperforms the Euclidean estimators for all
κ values estimated. Particularly, we observe a much better
performance for a small number of measurement (1 ≤ N ≤ 4)
in comparison to the other estimators, however κ̂V 1 and κ̂EU

reach to converge to κ̂LG after certain number of measure-
ments. This behavior is particularly relevant in the context
of GNSS, where only a single phase measurement may be
available at a time.

Regarding Euclidean estimators κ̂MED presents a lower
error for a number of measurements N ≤ 2 and small κ values
(0.01 to 1), even though it is highly biased, therefore its overall
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Fig. 2: Intrinsic MSE of ϕ̂ at a known κ = 1 for different
values of ϕ.

performance is far from reaching the κ̂LG. The estimator
κ̂V 1 shows a more stable behavior than the aforementioned,
converging to the LG error as the number of measurements
increases (see Figs. 3, 4 and 6), even though it is not defined
for N = 1, therefore, κ̂LG presents an operational advantage.

The κ̂EU estimator is the estimator with the most stable
behavior of all the Euclidean estimators, which, globally, is
able to converge the results of κ̂LG after several measure-
ments, even though its performance for a limited number of
measurements (1 ≤ N ≤ 4) is inferior to that of κ̂LG. Finally
κ̂V 2 was the estimator with the highest error and far from the
expected performance because the method used eliminates one
available measurement in an estimator highly sensitive to the
number of available measurements, this can be observed in
the high error values for the Euclidean estimators for a low
number of measurements compared to κ̂LG.

Another interesting behavior is that the larger the κ to
estimate, the lower the MSE of each estimator will be, and
a large number of measurements are needed to converge. This
behavior can be explained by a strong contribution of the bias
on the MSE, when the value of κ is high, which consequently
becomes more challenging to mitigate. Regarding κ̂LG, this
behavior is not observable, indicating that its bias value (LG-
bias) is much lower. For κ = 1, κ̂LG and κ̂EU took 79 and
62 seconds respectively, indicating that the LG method is not
particularly computationally expensive.Finally, κ̂LG appears to
be a better estimator than the others tested for a small number
of measurements and high κ values, as it is highly impacted
by biases when κ decreases.

2 4 6 8 10 12 14 16 18 20

10

15

20

25

30

35

40

Fig. 3: Intrinsic MSE of each estimator for κ = 0.01
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Fig. 4: Intrinsic MSE of each estimator for κ = 0.1
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Fig. 6: Intrisic MSE of each estimator for κ = 10

V. CONCLUSIONS AND PERSPECTIVES

In this communication, we introduce a novel approach for
estimating the location parameter ϕ and the concentration
parameter κ of the von Mises distribution. This method
reformulates the estimation problem within a LG framework,
providing a mathematically rigorous alternative to Euclidean
techniques. The derived estimation algorithm on LGs has
been validated through numerical simulations, comparing it
with different methods from literature, and outperforms the
Euclidean estimation algorithms for the estimation of the
concentration parameter in harsh scenarios characterized by
high variance (related with the C/N0) and a small number
of measurements. This last scenario description is desirable in
the GNSS context since the receiver uses only one phase mea-
surement at a time. With this approach, it could be possible to
avoid time-correlation between two successive measurements
created by phase lock loops. Then, it could improve tracking
robustness within the GNSS receiver. On the other hand, such
modeling could be applied in other fields, such as robotics or
thermal noise characterization [24] [25].

Future work will focus on the analysis of dynamic cases
where both the phase ϕ and the concentration parameter κ
vary over time. This will involve the design of a Bayesian
filter approach on Lie groups.
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