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Abstract—This letter studies a new expectation maximization
(EM) algorithm to solve the problem of circle, sphere and
more generally hypersphere fitting. This algorithm relies on the
introduction of random latent vectors having a priori indepen-
dent von Mises-Fisher distributions defined on the hypersphere.
This statistical model leads to a complete data likelihood whose
expected value, conditioned on the observed data, has a Von
Mises-Fisher distribution. As a result, the inference problem can
be solved with a simple EM algorithm. The performance of the
resulting hypersphere fitting algorithm is evaluated for circle and
sphere fitting.

Index Terms—Hypersphere Fitting, Maximum Likelihood Es-
timation, Expectation-Maximization Algorithm, von Mises-Fisher
distribution.

I. INTRODUCTION

ITTING a circle, a sphere or more generally an hyper-

sphere to a noisy point cloud is a recurrent problem in
many applications including object tracking [1]]-[3]], robotics
[4]-16] or image processing and pattern recognition [7|]-[9].
Popular methods available in the literature are based on least
squares [[10]-[14] or maximum likelihood (ML) estimation
[15], [16]]. In the 2D case (circle fitting), the introduction
of latent variables corresponding to the true location of the
measurements on the circle allows the ML estimator of the
center and radius of the circle to be approximated using a
simple iterative algorithm [[15]. In this paper, we extend this
strategy to hypersphere fitting and introduce latent vectors
defined as affine transformations of random vectors distributed
according to a von Mises-Fisher distribution. These latent
vectors allow the hypersphere fitting problem to be solved
using a new expectation-maximization (EM) algorithm, which
is the main contribution of this letter.

This letter is organized as follows. Section [[I] introduces the
ML formulation of the hypersphere fitting problem and the
corresponding new EM algorithm. Section evaluates the
performance of this EM algorithm for circle and sphere fitting
via a comparison with state-of-the-art methods on simulated
data. Conclusion and future works are reported in Section
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II. A NEW EM ALGORITHM FOR HYPERSPHERE FITTING
A. Problem Formulation

Consider n noisy measurements z; € R% i = 1,..,n
located around a hypersphere with radius  and center ¢ € R%.
We assume that the noise realizations corrupting the obser-
vations are mutually independent and distributed according
to the same isotropic multivariate Gaussian distribution. The
hypersphere fitting problem can then be formulated as an ML
estimation problem by introducing latent vectors z; € R%,i =
1,...,n corresponding to the true (and unknown) locations of
the n points on the sphere, corrupted by an additive white
Gaussian noise n;, i.e.,

zi = x; + 1y, (1

where n; ~ N'(04,021;), 04 is the zero vector of RY, 2 is

the unknown noise variance and I is the d x d identity matrix.
Since the vectors x; are assumed to lie on the hypersphere
of center ¢ and radius 7, they can be represented as affine
transformations of unit vectors u; € R¢ (i.e., located on the
hypersphere H4 of R? defined by |lu;||2 = 1) such that

x; = c+ ru;. 2)

These vectors u; are assigned a von Mises-Fisher prior distri-
bution denoted as u; ~ VMF (u;; , k) with density

fa(wis p, &) = Ca(k) exp (kp” wi) 1y (u,), 3)

where p € R? is the mean direction (with ||| = 1), K > 0
is the concentration parameter and Cy(x) is a normalization
constant. Note that this distribution reduces to the uniform
distribution on the hypersphere for x = 0. The hypersphere
fitting problem thus consists of estimating the radius r and
center ¢ of the hypersphere H,; (and possibly the noise
variance o2) from the measurements Z = {z1, ..., 2, }, given
that the latent vectors w;,7 = 1, ..., n are also unknown.

B. Likelihood and complete likelihood

The conditional distribution of z; given w; is a Gaussian
distribution with mean vector x; = ¢ + ru; and covariance
matrix 021, i.e.,

zi|wi, 0 ~ N(cH+ru;,o’l,), 4)
where & = (r,c¢”,0%)T contains the unknown parameters
of interest of the proposed statistical model. The (marginal)
likelihood of this model, which does not involve the latent

vectors u;, is

L£(0;2) =[] p(z:6) :H/H p(zi, ui|0)du;.  (5)
i=1 i=1 d



Straightforward computations allow p(z;,u;|@) to be com-
puted as follows

p(zi, uil0) = p(z;i|u;, 0)p(u;)
_d 1
o (2m0%) 7% exp <202 [llz: — €|l + 7’2]>

T 2 T
Tz —C)” U; K u;
XeXp< (l ) ;2+0 K 2>a

(6)

where o< means “proportional to”. This density can be inte-
grated with respect to w;, using fHd faluwi; piy ki)du; = 1,
where fq(w;; pi, k) is the density of the Von Mises-Fisher
distribution vMFg(u;; p;, k;) defined in () whose parameters
are defined as

1P d;

T ) i = 7
g S S @

with §; = r(z; — ¢) + o?kp. This leads to the following
likelihood

o2

c:2)=]] / p(zi|ws, 0)p(us ®)
i=17Ma
Sz —ell3 + 2]\ & Laj2—1(ki)
(02)%" P ( 202 H d/2-1 7
=1 [

where I,(.) denotes the modified Bessel function of first
kind of parameter v [17, Chap. 10.25]. The ML estimator
of the unknown parameter vector  maximizing cannot be
expressed in closed-form and cannot be computed easily using
a numerical optimization method. This letter derives a new EM
algorithm to solve more efficiently this estimation problem,
which instead relies on the so-called complete likelihood
defined as

L.(0;Z,U) = Hp(zi,ui|9), withU = {uy,...,un}. (9)

i=1

C. Proposed EM Algorithm

The EM algorithm alternates between two steps referred to
as expectation (E) and maximization (M) steps that are recalled
below for iteration (¢ + 1) [18]

1- The E-step consists of computing Q(6|6®)), the expected

value of the complete data log-likelihood given the observed
data and the current parameter estimate (1), defined as

Q(616") =Eyz,9 log L. (6;2,U)].  (10)
2- The M-step consists of estimating 8(*t1) by solving
Ot — argmeaxQ(0|9(t)). (11)

The complete data likelihood can be computed using (9) and
(6). Straightforward computations lead to

logL.(0;Z,U) =K — %dlog(UQ)

1 n
— 5z 2 [z —eli+r* = 267w, (12)
i=1

where K is a constant (independent of 8 and U). Using (12)
leads to

d
Q(616) = K — “-log(0?)
1 n
~ 5,2 Z {llz: — cll3 +r* = 28] By z 00 [wi]} . (13)
=1

The distribution of U|Z, 8 can then be determined using

n

p(U|2,69) o T ] p(zilui, 09)p(us).

=1

(14)

The marginal distribution of u;|Z, 8 is the von Mises-Fisher
distribution vMFy(u;; 4, k;), whose expectation is given by
[19, Chap. 9.3.2]

Ly {"‘%('t)}

(t)
——T (15)
Id/2—1 [nﬂ

IEU|z,9<t> (u;) =

where p,gt) and nl(-t) are computed from (7) using the current

values of 7, c and o2. After substituting this expectation into
(13), the maximization of the function Q(8|0)) with respect
to @ leads to the following updates for r, ¢ and o

Fm) MED

]=<H(”>‘1f“>,a<t+”= —— (0

o(t+1)

where

0 = [2?_1@%%] ,
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(17)
n (t) T
H(t) = n " (t) Zl:l(al ) y (18)
i1 nlq
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i=1

Note that the matrix H® is invertible. Introducing a() =
Z?:l al(.t), its inverse can be computed as follows [20]

1 n —aT
HOy1 - - .
( ) n2 _aTa —a nz_gTaId-l-%aaT
(20)

III. EXPERIMENTS

This section evaluates the performance of the proposed
EM algorithm for circle and sphere fitting, which allows a
comparison with the state-of-the-art. The different approaches
are applied on a simulated point cloud of n = 100 latent
vectors uniformly distributed on the circle or the sphere
(i.e., with a von-Mises Fisher distribution with concentration
parameter k = 0). These latent vectors are then corrupted
by a zero-mean Gaussian noise with covariance matrix o21,.
For each run, the coordinates of the true center and the
radius are chosen uniformly in the intervals [5, 10] and [1, 10].
The EM algorithm is iterative and requires to be initialized
properly. In all the experiments, the center has been initialized



by the mean of the noisy measurements denoted as cy,
the initial radius has been fixed to its MLE given cy, i.e.,
ro = 13" | ||lzi — o, and the noise variance by its MLE
: : 2 _ 1y C_enll2 — 12 Not
given (co,70), ie., 05 = 5> 4 [|zi — col| 470- Note
again that the MLE of 8 = (r,¢’,02)T does not admit a
closed-form expression for the proposed statistical model.

A. Circle Fitting with a uniform prior

The first experiments illustrate the convergence of the pro-
posed EM algorithm for circle fitting from noisy measurements
with a noise variance 02 = 0.1. Fig. 1| shows the global mean
square error (MSE) of 8 (computed by averaging the results
of 500 Monte Carlo run) with the corresponding error bars,
for the first 20 iterations of the EM algorithm. The proposed
method seems to converge close to the actual value of 8, even
if the EM algorithm is known to only converge to a local
maximum of the likelihood.
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Fig. 1. MSE of 6 = (#,&T,8)T for the first 20 iterations of the proposed
EM algorithm applied to circle fitting (n = 100 and 02 = 0.1).

The proposed EM algorithm is compared with three state-
of-the-art methods: 1) the Exact-Landau (E-Landau) algorithm
[11] (an extension of the iterative solution of [12]]), 2) the
modified least squares estimator [21]] (referred to as “Kasa”
hereafter) and 3) the iterative maximum likelihood (IML)
estimator [[15]. The two first methods compute closed-form
solutions obtained using least squares methods as defined in
[11] and [21]. The third approach solves the circle fitting
problem using a simple iterative algorithm computing an
approximate ML estimator. Fig. ] shows the global mean
square error (MSE) of 8 = (#,¢1)T versus the noise variance
o2. All the methods perform very similarly for small values
of o2. The advantage of the proposed EM algorithm can be
observed for high noise levels (62 > 0.3 here), where the
MSE of the estimated vector 6 is smaller with the proposed
method, showing more robustness to the presence of noise.
More simulation results including MSE comparisons for the
estimates of ¢, r and o2 are available in [20].

B. Sphere Fitting with a uniform prior

This section evaluates the performance of the proposed EM
algorithm for sphere fitting. The global mean square error
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Fig. 2. MSE of 8 = (7, é7)T for E-Landau, Kasa, IML and EM (proposed
method) versus noise power o2 (500 Monte Carlo runs).

(MSE) of 6 and the corresponding error bars are displayed
in Fig. B] for the first twenty iterations of the EM algorithm,
showing good convergence properties. Two state-of-the-art
approaches are then considered for comparison purposes: 1)
the fast geometric fit algorithm (FGFA) [22] and 2) the
Iterative least squares approach [14f], which are extensions
of the E-Landau [11] and IML [[15] algorithms for the 3D
case. The results of Fig. ] are similar to those obtained for
circle fitting, i.e., the algorithms perform similarly for small
noise variances and the proposed EM algorithm provide better
results for more noisy scenarios.
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Fig. 3. MSE of 0= (#,&T,8)T for the first 20 iterations of the proposed
EM algorithm applied to sphere fitting (n = 100 and o2 = 0.1).

C. Hypersphere fitting with a Von Mises-Fisher prior

In some applications including LIDAR-based 3D imaging
[23]], [24], the spheres present in the scene are not sampled
uniformy. More specifically, for long-range imaging appli-
cations where the field of view is particularly narrow, it
is possible to define an average beam direction, which can
be used as the mean direction g of the Von Mises-Fisher
prior, as opposed to a uniform prior. This section considers
2D and 3D experiments corresponding to von Mises-Fisher
priors with parameters g = [cos (7/4) ,sin (r/4)]" (2D) and
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Fig. 4. MSE of 8 = (7, é7)T for ILS, FGFA and EM (proposed method)
versus noise power o2 (results averaged over 500 Monte Carlo runs).

p = [sin(7/4) cos (w/3),sin (7 /4) sin (7/3) , cos (m/4)]"
(3D), and x = 2. The MSEs of 0 obtained using the different
estimation algorithms for these two scenarios are displayed in
Figs. 5| and [6] As one can see, the proposed method provides
competitive results compared to the state-of-the-art.
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Fig. 6. MSEs of 8 = (7, éT)T for FGFA, ILS and EM (proposed method)
versus noise power o2 (500 Monte Carlo runs) for a von Mises-Fisher prior
(u = [sin (7/4) cos (7/3) ,sin (7 /4) sin (7/3) , cos (r/4)]T and k = 2).

TABLE I
AVERAGED EXECUTION TIMES (IN MICROSECONDS) WITH THEIR
STANDARD DEVIATIONS FOR THE VARIOUS METHODS.

2D E-Landau Kasa ILS EM
Time 46 + 40 22 £40 950 £ 300 6400 £ 2000
3D FGFA IML EM
Time 16 =20 930 £ 200 6200 4 2000
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Fig. 5. MSEs of 6 = (7,é&7)T for E-Landau, Kasa, IML and EM (proposed
method) versus noise power o2 (500 Monte Carlo runs) for a von Mises-Fisher
prior (p = [cos (/4) ,sin (7/4)]T and k = 2).

D. Discussions

1) Computational complexity: This section first compares
the execution times of the different hypersphere fitting algo-
rithms, which are reported in Table [I] with the corresponding
standard deviations computed using 500 Monte-Carlo runs.
Note that the number of iterations has been fixed to 40 for
the iterative algorithms (proposed EM, ILS and IML) and that
the simulation scenario is the same as in Sections III A and
B. Even if the execution times of the proposed EM algorithm
are larger than those obtained with the other benchmarks, they
remain reasonable for practical applications.

2) Generalizations to hyper-ellipsoid fitting/colored noise:
In order to extend the proposed EM algorithm to hyper-
ellipsoid fitting, one can use the following parametrization of
the ellipsoid

z; = ¢+ Au; + n;,

where c is the ellipsoid center, A is a positive definite matrix
and u; is a latent vector located on the unit hypersphere. In this
case, the hyper-ellipsoid fitting problem reduces to estimating
the parameters o2, ¢ and the matrix A from the observed vec-
tors z;. The presence of the matrix A complicates the problem
significantly since the marginal distribution of u;|Z,0® is
no longer a von Mises-Fisher distribution. The same problem
occurs in the case of a non-isotropic Gaussian noise whose
covariance matrix is different from o21,. Generalizing the EM
algorithm to these situations is an interesting prospect, which
would be useful for object tracking applications [2].

IV. CONCLUSION

This paper proposed a new EM algorithm for hypersphere
fitting in any dimension based on maximum likelihood estima-
tion. The algorithm was derived after introducing latent vari-
ables corresponding to the true locations of the measurements
on the hypersphere and assuming that these variables have
a von Mises-Fisher distribution. The proposed algorithm was
evaluated for circle and sphere fitting allowing a comparison
with state-of-the-art methods. The results obtained on simu-
lated data are encouraging and show the competitiveness of
the proposed approach. Future work includes the development
of a robust version of the method to handle the presence
of potential outliers and the generalization of the method to
ellipsoid fitting or colored noise. Using the proposed algorithm
for the calibration of LIDARs or developing a sequential
version for object tracking are also interesting problems. Fi-
nally, estimating the hyperparameters of the von Mises-Fisher
distribution jointly with the parameters of the hypersphere is
a challenging issue, which would avoid the hyperparameters
of the latent vectors prior to be adjusted.
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