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Abstract

This paper presents an unsupervised Bayesian algorithm for hyperspectral image unmixing account-

ing for endmember variability. The pixels are modeled by a linear combination of endmembers weighted

by their corresponding abundances. However, the endmembers are assumed random to take into account

their variability in the image. An additive noise is also considered in the proposed model generalizing

the normal compositional model. The proposed algorithm exploits the whole image to benefit from

both spectral and spatial information. It estimates both the mean and the covariance matrix of each

endmember in the image. This allows the behavior of each material to be analyzed and its variability to

be quantified in the scene. A spatial segmentation is also obtained based on the estimated abundances.

In order to estimate the parameters associated with the proposed Bayesian model, we propose to use a

Hamiltonian Monte Carlo algorithm. The performance of the resulting unmixing strategy is evaluated

via simulations conducted on both synthetic and real data.

Index Terms

Hyperspectral imagery, endmember variability, image classification, spectral unmixing, Bayesian

algorithm, Hamiltonian Monte-Carlo, MCMC methods.



2

I. INTRODUCTION

Hyperspectral imaging is a remote sensing technology that collects three dimensional data

cubes composed of 2D spatial images acquired in numerous contiguous spectra bands. Due to the

limited spatial resolution of the observed image, each pixel generally consists of several physical

elements that are linearly [1], [2] or nonlinearly [3]–[5] mixed. Spectral unmixing (SU) consists

of decomposing the pixel spectrum to recover these materials, known as endmembers, and

estimating the corresponding proportions or abundances [6]. The linear mixture model (LMM)

has received great interest in the literature and has been used intensively for SU. The unmixing is

generally performed using two distinct steps: (i) identifying the endmembers using an endmember

extraction algorithm (EEA) such as vertex component analysis (VCA) [7], pixel purity index

(PPI) [8] and N-FINDR [9], (ii) estimating the abundances under physical non-negativity and

sum-to-one constraints using algorithms such as the fully constrained least squares [2]. Some

algorithms also tackle the SU problem in an unsupervised manner, i.e., by jointly estimating the

endmembers and the abundances. This is generally achieved under a statistical framework using

optimization techniques [10] or Markov chain Monte Carlo (MCMC) simulation methods [6],

[11]. The unsupervised algorithms generally provide more sophisticated results and appear to be

less sensitive to the absence of pure pixels [3].

The previous described algorithms provide one endmember spectrum for each physical com-

ponent present in the image (see Fig. 1(a)). This appears as a clear simplification since in many

cases, the endmember spectra vary along the image causing what is known as spectral variability.

Spectral variability has been identified as one of the most profound sources of error in abundance

estimation and is knowing growing interest in the hyperspectral community [12], [13]. Many

algorithms have been proposed in the literature to describe this variability. A detailed discussion

about these algorithms, their advantages and challenges is available in [12], [13]. Most of these

methods can be gathered into two main classes. The first approaches consider each physical

material as a set or bundle of spectra (see Fig. 1(b)). One can distinguish between algorithms

assuming a known spectral library [14], [15] and those estimating it from the data [16], [17]. SU

resulting from these approaches is generally sensitive to the quality of the available or extracted

endmember libraries. The second class of methods relies on a statistical representation of the

endmembers that are assumed to be random vectors with given probability distributions (see
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Fig. 1(c)). These approaches provide a flexible way to incorporate some uncertainties regarding

the endmembers [18], [19] and, within a unsupervised context, this choice makes the SU more

robust in absence of pure pixels [20]. Two main statistical models of the endmembers have

been considered in the literature. The Beta compositional model [21] exploits the physically

realistic range of the endmember reflectances by assigning them a Beta distribution. Earlier, the

normal compositional model (NCM) was proposed to describe the endmember variability by a

Gaussian distribution (see Appendix E for an empirical justification of the Gaussian choice) [18],

[20]. An alternative of these parametric models was introduced in [22] for the specific issue of

estimating the vegetation fractions in urban environments. In this work, empirical learning of the

endmember distributions is conducted from a set of pixels identified as belonging to vegetation

and non-vegetation areas. In that sense, it consists of an hybrid method between the two main

classes of approaches introduced above, based on a statistical description of the endmember

variabilities derived from bundles of spectra.

(a) (b) (c)

Fig. 1. Simplex representation for (a) endmembers without variability, (b) endmembers as a finite set (or bundle) and (c)

endmembers as a distribution.

Adopting a Bayesian perspective, our paper introduces a generalization of this NCM by also

considering Gaussian variability for the endmembers (as for the NCM) while incorporating an

additive Gaussian noise modeling fitting errors (which was not present in the NCM but in the

LMM). Moreover, the proposed model considers a different mean and covariance matrix for

each endmember to analyze each component separately. These parameters are both estimated to

generalize the works of [18] and [20] that estimated the endmembers means and covariances,

respectively. Moreover, the endmember fluctuation with respect to the spectral bands is quantified

by considering non-identically distributed endmember variances.
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Another important point concerning hyperspectral unmixing is the spatial correlation between

pixels. Indeed, even if many algorithms consider a pixel-by-pixel context, recent studies have

shown the interest of considering spatial information to improve the unmixing quality [23]–[25].

Within a Bayesian framework, this spatial correlation can be introduced using Markov random

fields (MRFs) as already shown in [23], [24], [26]. In this work, a Potts model is considered

since it has already shown good performance when processing hyperspectral images [23], [24].

The image is then segmented into regions sharing similar abundance characteristics. Note that

this segmentation was also achieved in [24] and [10] by considering Gaussian and Dirichlet

distributions for the abundances.

This paper proposes an unsupervised Bayesian algorithm to estimate the parameters associated

with endmembers and abundances. In addition to the abundance Dirichlet priors, it assumes

appropriate priors for the remaining parameters/hyperparameters to satisfy the known physical

constraints. The joint posterior distribution of the proposed Bayesian model is then derived.

However, the classical minimum mean square error (MMSE) and maximum a posteriori (MAP)

estimators cannot be easily computed from this joint posterior. A classical way of alleviating

this problem is to generate samples distributed according to the posterior using MCMC methods.

This goal is achieved in this paper using a Gibbs sampler coupled with a Hamiltonian Monte

Carlo (HMC) method. HMC is well adapted for large scale problems, i.e., with a large number

of parameters to be estimated [27]. Moreover, this method presents good mixing properties when

compared to the classical Metropolis-Hasting algorithm. This paper considers a constrained-HMC

(CHMC) that has been introduced in [27, Chap. 5] and successfully used for hyperspectral SU

in [11]. This CHMC accounts for inequality constraints which is required to satisfy the physical

constraints related to the proposed SU problem.

Main contributions

The main objective of the paper is to provide a spectral/spatial algorithm to analyze hyper-

spectral images accounting for endmember variability. The first contribution of the paper is

the generalization of the works [18], [20] by estimating both the mean and the variance of

the endmembers. This provides important information such as the sensitivity of each physical

material in each spectral wavelength. The second contribution is the generalization of the NCM

model by introducing an additive noise that accounts for mismodeling such as non-linearity



5

effects. These contributions provide a good spectral analysis of the image. In addition to that,

and to exploit the hyperspectral image spatial information, we consider an MRF that accounts for

spatial correlation between adjacent pixels. Again we consider the Potts model that has shown

its efficiency when analyzing hyperspectral images [24], [28]. Moreover, in each spatial class,

we consider a Dirichlet distribution as abundance prior which allows the abundance constraints

to be satisfied.

The paper is structured as follows. The unmixing problem considered in this study is formu-

lated in Section II. The different components of the proposed Bayesian model are studied in

Section III. Section IV introduces the Gibbs sampler and the CHMC method which will be used

to generate samples asymptotically distributed according to the joint posterior of the unknown

parameters and hyperparameters. Section V analyzes the performance of the proposed algorithm

when applied to synthetic images. Results on real hyperspectral images are presented in Section

VI whereas conclusions and future works are reported in Section VII.

II. PROBLEM FORMULATION

The variables used in this paper are described in Table I.

TABLE I

NOTATION TABLE.

N number of pixels

R number of endmembers

L number of spectral bands

K number of spatial classes

Y ∈ RL×N spectra of the pixels

A ∈ RR×N abundance matrix

M ∈ RL×R endmember means

Σ ∈ RR×L matrix containing the diagonal of endmember covariances

Ψ ∈ R1×N noise variances

z ∈ R1×N labels

C ∈ RR×K Dirichlet parameters
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A. Mixing model and endmember variability

This section introduces the proposed mixture model. The classical LMM assumes the pixel

spectrum yn, n ∈ {1, · · · , N}, where N is the number of pixels in the image, is a linear

combination of R deterministic endmembers sr, r ∈ {1, · · · , R}, corrupted by an additive noise

as follows

yn =
R∑
r=1

arnsr + en = San + en (1)

with

en ∼ N
(
0L, ψ

2
nIL
)

(2)

where ∼ means “is distributed according to”, R is the number of endmembers, yn is an (L× 1)

vector representing the nth observed pixel, L is the number of spectral bands, 0L is an (L× 1)

vector of 0, IL is the (L × L) identity matrix, an = [a1n, · · · , aRn]T is the (R × 1) abundance

vector of the nth pixel, S = [s1, · · · , sR] is an (L × R) matrix of endmembers and en is a

centered additive, independent and identically distributed Gaussian noise.

The endmembers are generally variable in the observed image due to environmental conditions

or inherent variability [12], [13]. The normal compositional model (NCM) has been widely

used in the literature to take into account this variability [18], [20], [29] by assuming random

endmembers distributed according to Gaussian distributions

yn =
R∑
r=1

arnsrn = Snan (3)

with

srn ∼ N
(
mr, diag

(
σ2
r

))
(4)

where Sn = [s1n, · · · , sRn], σ2
r = [σ2

r1, · · · , σ2
rL] is the variance vector of the rth endmember

and M = [m1, · · · ,mR] is the (L×R) matrix containing the endmember means of the image.

In this paper, we introduce a new model taking endmember variability into account. More

precisely, the proposed model can be seen as a generalization of the NCM model (GNCM) since

it introduces an additional residual Gaussian noise en as follows

yn =
R∑
r=1

arnsrn + en = Snan + en. (5)

This model can also be seen as a generalization of the LMM model used in [6], since the endmem-

ber matrix Sn depends on each observed pixel in order to introduce the spectral variability while
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it is fixed in the LMM. Thus, the GNCM reduces to the LMM for σ2
r` = 0, ∀`, ∀r. Considering

the GNCM, each physical element #r is represented in a given pixel by an endmember srn that

has its own Gaussian distribution whose variances σ2
r change from one band to another. This

allows the GNCM to capture the spectral variations of each physical element with respect to

each spectral band. The GNCM also includes an additional Gaussian noise en ∼ N (0L, ψ
2
nIL)

(that is independent from the variables s1n, · · · , sRn) whose goal is to make the proposed model

more robust with respect to mismodeling. Moreover, we consider that the endmember variability

is the main source of randomness in the observed pixel, which is ensured by assigning a prior

enforcing small values for the noise variance (see Eq. (17)). Note that the proposed GNCM model

reduces to the NCM for ψ2
n = 0, ∀n. Thus, it generalizes the model of [18] by considering

a non-isotropic covariance matrix for each endmember. Note finally that the abundance vector

an usually represents spatial coverage of the material in a given pixel. Therefore, it should

satisfy the physical positivity and sum-to-one (PSTO) constraints associated with both LMM

and GNCM

arn ≥ 0, ∀r ∈ {1, . . . , R} and
R∑
r=1

arn = 1. (6)

III. HIERARCHICAL BAYESIAN MODEL

This section introduces a hierarchical Bayesian model for GNCM-based unsupervised hyper-

spectral SU accounting for spectral variability. The Bayesian approach assigns prior distributions

to the unknown parameters summarizing the prior knowledge about these parameters. This

approach is interesting to alleviate the indeterminacy resulting from ill-posed problems and

have been successfully applied for HU [6], [30], [31]. More precisely, if f (θ) denotes the

prior distribution assigned to the parameter θ, the Bayesian approach computes the posterior

distribution of θ using the Bayes rule

f(θ|Y ) ∝ f(Y |θ)f(θ) (7)

where ∝ means “proportional to” and f(Y |θ) is the likelihood of the observation vector Y .

The vector θ is then estimated from this posterior distribution by computing its mean (MMSE

estimator) or its maximum (MAP estimator). The following paragraphs introduce the likelihood

and the considered prior distributions for θ. The unknown parameters of our model include the

(L×R) endmember mean matrix M , the (R×L) matrix Σ gathering the endmember variances
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(with Σr,l = σ2
rl), the (R ×N ) abundance matrix A (whose nth column is A:n = an), and the

(1×N ) vector Ψ = [ψ1, . . . , ψN ].

A. Likelihood

Using the observation model (5), the Gaussian properties of both the noise sequence en and

the endmembers, and exploiting independence between the observations in different spectral

bands, yield the following likelihood (see Appendix A)

f(yn|A,M ,Σ,Ψ) ∝

(
L∏
`=1

Λ`n

) 1
2

exp

{
−1

2
ΛT

:n [(yn −Man)� (yn −Man)]

}
(8)

where Λ is an (L × N ) matrix whose elements are given by Λ`n =
(∑R

r=1 a
2
rnσ

2
r` + ψ2

n

)−1
,

A = [a1, · · · ,aN ] is an (R × N ) abundance matrix, and � denotes the Hadamard (termwise)

product. Moreover, contrary to the LMM, Eq. (8) shows that the elements1 of Λ depend on the

pixel abundances and thus on the pixel index #n. This property was also satisfied by the NCM

model as previously shown in [18], [20]. Note finally that the joint likelihood of the observation

matrix Y can be obtained by exploiting independence between the observed pixels

f(Y |A,M ,Σ,Ψ) ∝
N∏
n=1

f(yn|A,M ,Σ,Ψ). (9)

B. Parameter priors

This section introduces the prior distributions that we have chosen for the parameters of

interest.

1) Classification prior modeling: Many recent works related to hyperspectral imaging have

been considering spatial correlation between the image pixels to partition the image into homo-

geneous regions with similar abundances [10], [24]. In this paper, we propose to exploit this

correlation by dividing the observed image into K classes sharing the same abundance properties

[24]. Each pixel is assigned to a specific class by using a latent label variable zn that takes its

value into a finite set {1, · · · , K}. The whole set of random variables {zn}n=1,··· ,N forms a

random field. The correlation between neighboring pixels is then introduced by considering a

Markov random field prior for zn as follows

f
(
zn|z\n

)
= f

(
zn|zν(n)

)
(10)

1The matrix Λ depends on the noise and endmember variances.
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where ν(n) denotes the pixel neighborhood as in [24] (a four neighborhood structure will be

considered in the rest of the paper), zν(n) = {zi, i ∈ ν(n)} and z\n = {zi, i 6= n}. As in [23],

[24], [28], this paper considers a Potts-Markov model which is appropriate for hyperspectral

image segmentation. The prior of z is then obtained using the Hammersley-Clifford theorem

f (z) =
1

G(β)
exp

β N∑
n=1

∑
n′∈ν(n)

δ (zn − zn′)

 (11)

where β > 0 is the granularity coefficient, G(β) is a normalizing (or partition) constant and δ(.)

is the Dirac delta function. The parameter β controls the degree of homogeneity of each region

in the image. It is assumed known a priori in this paper. However, it could be also included

within the Bayesian model and estimated using the strategy described in [32].

2) Abundance matrix A: In order to satisfy the constraints (6), the abundance vector should

live in the following simplex S

S =

{
an
∣∣arn ≥ 0,∀r and

R∑
r=1

arn = 1

}
. (12)

Thus, a natural choice for the prior of an is a uniform distribution on S [5], [33]. However, we

want to define a prior enforcing stronger correlations for spatially close pixels. Therefore, we

propose to assign a Dirichlet prior to the abundances of the kth class of the image with Dirichlet

parameters ck = (c1k, · · · , cRk)T as follows

an|zn = k, ck ∼ Dir(ck), for n ∈ Ik (13)

where Dir(.) denotes the Dirichlet distribution, and n ∈ Ik means that yn belongs to the kth class

(which is also equivalent to zn = k). This prior allows the data to be located in several different

clusters inside the simplex [10]. Moreover, the Dirichlet prior is well suited for modeling the

abundances since it takes into account the abundance physical PSTO constraints.

3) Endmember means: The endmember mean matrix M contains reflectances that should

satisfy the following constraints [11]

0 <mrl < 1,∀r ∈ {1, · · · , R} ,∀l ∈ {1, · · · , L} . (14)

Moreover, it makes sense to assume that the reflectances are close to estimates identified by an

EEA. Therefore, we choose a truncated Gaussian prior for each endmember as follows [11],

[20]

mr ∼ N[0,1]L
(
m̃r, ε

2IL
)

(15)
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where m̃r denotes an estimated endmember (resulting from an EEA such as VCA2) and ε2 is a

variance term defining the confidence that we have on this estimated endmember m̃r.

4) Endmember variances: As in [18], [33], the endmember variances have been assigned the

following non informative prior

f (Σ:l) ∝
R∏
r=1

1

σ2
rl

1R+

(
σ2
rl

)
(16)

where we have assumed prior independence between the endmember variances. This distribution

introduces some prior knowledge such as the positivity of the endmember variances (the reader

is invited to consult [34] for motivations about this prior for scale parameters such as the noise

variances).

5) Noise variance prior: As stated in [12], endmember variability represents the main source

of error in spectral mixture analysis. Moreover, hyperspectral images are generally corrupted by

a reduced noise level. Therefore, we assume that the noise effect is smaller than the effect of

endmember variability3. This can be achieved by choosing an exponential prior

f
(
ψ2
n|λ
)

= λ exp
(
−λψ2

n

)
1R+

(
ψ2
n

)
(17)

where λ is a large coefficient imposing sparsity for ψ2
n (λ = 107 in our simulations). We

furthermore assume prior independence between the random variables ψ2
n,∀n ∈ {1, · · · , N}.

One interest of choosing this prior (17) is that it avoids identifiability problems between the

noise and endmember variances (see appendix D for the proof of the problem identifiability).

Note that the considered exponential prior includes positivity constraints to the Laplace prior

that has been widely used in Bayesian contexts to ensure sparsity [35], [36]. Note also that

the estimation of ψ2
n can be removed from the proposed Bayesian algorithm without changing

significantly the estimation performance (see Section V-D). In particular, the proposed model

is sufficiently general since the noise effect can be easily removed by setting to zero the noise

variances ψ2
n.

2We consider in this paper the VCA algorithm even if other algorithms such as N-FINDR [9] and pixel purity index (PPI)

[8] could also be investigated.
3This assumption is no longer satisfied in absence of endmember variability. However, even in this case, we show in Section

V that the proposed algorithm provides good results for both abundance and endmember estimates.
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C. Dirichlet parameters

The Dirichlet parameters ck are assigned the following conjugate prior [37]

f (ck|zn = k) =

Γ
(∑R

r=1 crk

)
∏R

r=1 Γ (crk)

γ exp

(
−α

R∑
r=1

crk +Rα

)
R∏
r=1

1R+ (crk) (18)

where α and γ are fixed constants that have been chosen to ensure a non-informative prior (flat

distribution).

D. Posterior distribution

The parameters of the proposed Bayesian model are included in the vector θ = {θp,θh}

where θp = {A,M ,Σ,Ψ} (parameters) and θh = {C, z} (hyperparameters). This Bayesian

model is summarized in the directed acyclic graph (DAG) displayed in Fig. 2.

The joint posterior distribution of the unknown parameter/hyperparameter vector θ can be

computed from the following hierarchical structure

f (θp,θh|Y ) ∝ f (Y |θp,θh) f (θp,θh) (19)

where f (Y |θp,θh) = f (Y |θp) has been defined in (9) and f (θp,θh) is the joint prior of the

unknown parameters. Assuming prior independence between the parameters yields

f (θp,θh) = f (θp|θh) f (θh)

= f (A|C, z) f (M ) f (Σ) f (Ψ) f (C|z) f (z) . (20)

The joint posterior distribution f (θp,θh|Y ) can be computed up to a multiplicative constant after

replacing (9) and (20) in (19). Unfortunately, it is difficult to obtain closed form expressions for

the standard Bayesian estimators associated with (19). In this paper, we propose to use MCMC

methods to generate samples asymptotically distributed according to (19) and to build estimators

of θ from these generated samples. Due to the large number of parameters to be sampled, we

use an HMC algorithm which improves the mixing properties of the sampler and reduces the

required number of iterations to approximate the target distribution [27]. The parameters are

finally estimated using the minimum mean square error (MMSE) estimator for {A,M ,Σ,Ψ,C}

and the maximum a posteriori (MAP) estimator for the labels z. The next section defines the

proposed sampling procedure based on a hybrid Gibbs sampler including a CHMC method.
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Y

AΣ Ψ

Cz λ

M

α γβ

ε2M̃

Fig. 2. DAG for the parameter and hyperparameter priors (the fixed parameters appear in boxes). Note that the dashed box

defines the statistical distribution of the endmember matrix S.

IV. HYBRID GIBBS ALGORITHM

The principle of the Gibbs sampler is to generate samples according to the conditional distri-

butions of the target distribution (here the posterior (19)) [38]. When a conditional distribution

cannot be sampled directly, sampling techniques such as the Metropolis-Hasting (MH) algorithm

can be applied. In this paper, we consider HMC as the proposal strategy since it provides better

mixing properties than independent or random walk MH moves especially for high-dimensional

problems. The next section describes the CHMC algorithm followed by the description of the

sampling procedure of the conditional distributions.

A. Constrained Hamiltonian Monte Carlo method

HMC is used to sample the high dimensional parameter vector of the proposed Bayesian

model. It exploits the gradient of the target distribution to improve the quality of the generated

samples. Denoting as f(q) (resp. q) the distribution (resp. d-dimensional variable) to be sampled

from, HMC defines the Hamiltonian function after introducing a Gaussian momentum variable

p (that is independent on q) as follows

H (p, q) = U(q) +K(p) (21)

where U(q) = − log [f(q)] is the potential energy related to the target distribution f(q) and

K(p) = 1
2
pTp is the momentum energy which results from an independent centered Gaussian

distribution for p [11]. The evolution of the (q,p) samples is determined using the partial

derivatives of the Hamiltonian referred to as Hamiltonian equations [27], [39]. For computer
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implementations, these equations should be discretized which can be done using the leapfrog

method that ensures volume preservation and reversibility of the chains [27], [40]. This leapfrog

discretization scheme moves the samples by an ε stepsize, i.e., from the nth state (qn,pn) to

the (n+ 1)th state
(
q(n+1),p(n+1)

)
using NL iteration steps defined by

p(i,n+1/2) = p(i,n) − ε

2

∂U

∂qT
[
q(i,n)

]
(22)

q(i,n+1) = q(i,n) + εp(i,n+1/2) (23)

p(i,n+1) = p(i,n+1/2) − ε

2

∂U

∂qT
[
q(i,n+1)

]
. (24)

The resulting samples are accepted with probability ρ given by

ρ = min
{

1, exp
[
H (qn,pn)−H

(
q(n+1),p(n+1)

)]}
. (25)

This procedure ensures the resulting samples to be asymptotically distributed according to the

target distribution.

In the presence of inequality constraints (q(i,nε) ∈ [ql, qu]), we adopt the procedure presented

in [11] and [27, Chap. 5]. This procedure replaces a sample that violates the constraints at each

leapfrog iteration by its symmetric to the bound (see [11] for more details). For example, the

candidate q(i,n) = qu + h with 0 < h < (qu − ql) will be replaced by q(i,n) = qu − h (and

similarly q(i,n) = ql − h will be replaced by q(i,n) = ql + h) when a constraint is not satisfied.

B. Sampling the parameters/hyperparameters

Sampling according to the joint posterior (19) is achieved by considering a Gibbs sampler that

iteratively generates samples distributed according to the conditional distributions. The obtained

hybrid Gibbs sampler consists of six steps that are summarized in Algo. 1, where the conditional

distributions associated with the parameters/hyperparameters are derived in Appendix B. Note

that Algo. 1 generates NMC samples for each parameter of interest. However, the MMSE or MAP

estimators are computed after removing the first Nbi samples belonging to the so-called burn-

in period (the length of the burn-in period has been determined using appropriate convergence

diagnoses [41]). To accelerate the convergence, the abundancesA(0) and endmember meansM (0)

have been initialized using the results of FCLS and VCA, respectively. The labels have been

assigned a random integer in the set {1, · · · , K}. The other parameters have been initialized as
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follows σ2
r` = 10−3, ψn = 10−6, crk = 1, ∀r,∀`, ∀n and ∀k. Note finally that the MCMC approach

is robust to local minima and that the results do not depend in the considered initialization. The

interested reader is invited to consult [27], [38], [41] for more details about Gibbs sampler and

HMC algorithm, including the proofs of convergence of these algorithms.

Algorithm 1 Hybrid Gibbs sampler

1: Initialization t=0

2: Initialize parameters A(0), M (0), Σ(0), Ψ(0), C(0), and z(0)

3: Iterations

4: for t = 1 : NMC do

5: Parameter update

6: Sample T (t) from the pdf (37) using a CHMC procedure

7: Sample M (t) from the pdf (41) using a CHMC procedure

8: Sample Σ(t) from the pdf (44) using a CHMC procedure

9: Sample Ψ(t) from the pdf (49) using a CHMC procedure

10: Hyperparameter update

11: Sample C(t) from the pdf (52) using a CHMC procedure

12: Sample z(t) from the pdf (48)

13: end for

V. SIMULATION RESULTS ON SYNTHETIC DATA

This section evaluates the performance of the proposed algorithm with synthetic data. It is

divided into four parts whose objectives are: 1) introducing the criteria used for the evaluation

of the unmixing quality, 2) presenting the different parameters that are estimated in the proposed

unmixing approach, 3) analyzing the behavior of the proposed algorithm as a function of the

number of endmembers and the size of the image, 4) comparing the proposed strategy with other

state-of-the-art algorithms from the literature.

A. Evaluation criteria

Abundances and endmembers are known for synthetic images. In this case, the quality of the

unmixing strategy can be measured by comparing the estimated and actual abundances by using
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the average root mean square error (aRMSE) defined by

aRMSE (A) =

√√√√ 1

N R

N∑
n=1

‖an − ân‖2 (26)

where || · || denotes the standard l2 norm such that ||x||2 = xTx. The mean of the rth estimated

endmember can be compared with the actual one by using RMSE(mr) or the spectral angle

mapper SAM (mr) defined as follows

RMSE (mr) =
1√
L
‖m̂r −mr‖ , SAM (mr) = arccos

(
m̂T

rmr

‖mr‖ ‖m̂r‖

)
(27)

where arccos(·) is the inverse cosine operator. Moreover, the global endmember error is evaluated

by the averaged RMSE (aRMSE) and averaged SAM (aSAM) given by

aRMSE (M) =

√√√√ 1

R

R∑
r=1

[RMSE (mr)]
2, aSAM (M ) =

1

R

R∑
r=1

SAM (mr) . (28)

Note that the RE and SAM criteria can also be evaluated for the #pth measured and estimated

pixel spectra yn, ŷn as follows

RE =

√√√√ 1

N L

N∑
n=1

‖ŷn − yn‖
2, SAM =

1

N

N∑
n=1

arccos

(
ŷTnyn

‖yn‖ ‖ŷn‖

)
. (29)

Finally, the Earth movers distance (EMD) criterion (based on the Euclidean distance) have also

been considered to simultaneously evaluate the estimated endmembers and abundances [42]. For

synthetic data, this criterion compares the estimated parameters to the true ones, while it provides

a mutual comparison of the different algorithms for real data (see [42] for more details about

EMD).

B. Performance of the proposed algorithm

This section considers a 50 × 50 synthetic image generated according to (5) with R = 3

physical elements (construction concrete, green grass and micaceous loam) corresponding to

spectral signatures available in the ENVI software library [43]. For each pixel, we generate R = 3

endmembers whose means are these ENVI-like spectral signatures and whose variances are band-

dependent and represented in Fig. 3 (dashed lines). This image is assumed to be partitioned into

K = 3 classes whose label maps have been generated using the Potts model (11) with β = 1.5

(see Fig. 4). The abundances corresponding to the pixels belonging to a common class share the
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Fig. 3. Actual endmember variances (dassed line) and estimated variances by the proposed UsGNCM (continuous line) for the

considered R = 3 endmembers.

same Dirichlet parameters (that are reported in Table II) leading to the observed pixels displayed

in Fig. 5. Note that the generated abundances have been truncated (ar < 0.9, ∀r) to avoid the

presence of pure pixels in the image, which makes the unmixing problem more challenging.

Finally, we have considered a noise variance equal to 10−7 for all pixels (note that the noise

variance has to be smaller than the endmember variances). The proposed unsupervised GNCM-

based algorithm, denoted by UsGNCM, has been run using Nbi = 11000 burn-in iterations

and NMC = 12000 iterations4. Fig. 4 (right) displays the estimated classification map obtained

TABLE II

ACTUAL AND ESTIMATED DIRICHLET PARAMETERS IN EACH SPATIAL CLASS.

Dirichlet parameters

c1k c2k c3k ĉ1k ĉ2k ĉ3k

k = 1 15 15 1 14.97 14.85 1.00

k = 2 1 8 8 1.05 8.24 8.19

k = 3 3 1 3 3.12 1.02 3.03

4NMC represents the total number of samples that have been generated. The MMSE or MAP estimators are computed after

removing the first Nbi burn-in iterations. The length of the burn-in period has been determined using appropriate convergence

diagnoses [41].
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with the proposed algorithm. This map is in a very good agreement with the ground truth

shown in Fig. 4 (left). Note that the Dirichlet parameters used in this simulation correspond to

three distinguishable classes that are well separated using the proposed algorithm. The obtained

classification results can also be observed with the data projected in the plane associated with

the two most discriminant principle components as shown in Fig. 5. The proposed algorithm

also allows the Dirichlet parameters to be estimated accurately as shown in Table II.

A significant advantage of the proposed algorithm is its ability to estimate the endmember

means and variances. Fig. 5 shows the estimated endmembers obtained using the VCA algorithm

(diamonds) [7], the Bayesian unsupervised LMM-based unmixing algorithm (UsLMM, circles)

[6] and the proposed UsGNCM approach (triangles). Contrary to the VCA algorithm that

provides bad endmember estimates because of the absence of pure pixels in the image, both

UsLMM and UsGNCM strategies yield good endmember estimations. As explained before, the

good performance of the UsGNCM algorithm can be explained by the fact that it is able to

mitigate the endmember variability. Fig. 6 displays the endmember means (continuous lines),

the endmember distributions (colored areas in Figs. 6(a), (b) and (c)) and the associated variability

intervals defined by mean ±3σ (Fig. 6 (d)). Fig. 3 displays the actual and estimated endmember

variances for the three endmembers that are clearly in good agreement. These results show the

good performance of the proposed approach that fully exploits the spatial (segmentation map,

abundances and noise variances) and spectral (endmember means and variances) correlations.

The next section studies the robustness of the proposed approach with respect to the number of

endmembers and pixels (i.e., image size).

Fig. 4. Actual (left) and estimated (right) classification maps of a synthetic image.
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Fig. 5. Classified projected pixels (colored crosses), actual endmembers (red stars), endmembers estimated by VCA (black

diamonds), endmembers estimated by UsLMM (cyan circle) and endmembers estimated by UsGNCM (blue triangles).

C. Performance as a function of the number of endmembers and the image size

The UsGNCM algorithm estimates many parameters which might require a lot of observations

in order to obtain acceptable performance. The first part of this section deals with this problem by

analyzing the proposed algorithm when varying the number of observed pixels. The considered

image has been generated using the three endmember means and variances considered in Section

V-B, the same noise variance, K = 1 spatial class and abundances uniformly distributed in the

truncated simplex S (i.e., the abundance are truncated with ai < 0.9, ∀i ∈ 1, · · · , R and the

Dirichlet parameters are crk = 1,∀r,∀k). Fig. 7 shows the obtained aRMSE(A), RE and SAM

when varying the size of the observed image. As expected, the unmixing performance improves

by increasing the number of observations. This figure also shows that the aRMSE(A) converges

to a constant value for
√
N > 50 while RE and SAM continue to improve when increasing

N . Note, however, that the obtained results are quite good for N ≥ 100. The second part

of this section analyzes the behavior of UsGNCM with respect to the number of endmembers.

Table III shows the obtained aRMSE(A), aRMSE(M ), aSAM(M ), aRMSE(Σ), aSAM(Σ) and

EMD criteria for R = {3, 4, 5, 6}. The considered endmember means are construction concrete,

green grass, micaceous loam, olive green paint, bare red brick, and galvanized steel metal. These

spectra have been extracted from the spectral libraries provided with the ENVI software [43].
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(a) (b)

(c) (d)

Fig. 6. Actual endmembers (crosses) and endmember means estimated by UsGNCM (continuous lines). The estimated

endmember distributions are represented in (a), (b), (c) by colored areas. The bottom-right figure (d) shows the endmembers

estimated by UsGNCM ±3σ (dashed lines).

As previously, the images associated with R = {3, 4, 5, 6} have been generated with K = 1

spatial class and abundances uniformly distributed in the truncated simplex S with ar < 0.9,∀r.

The endmember variances of the first three physical elements are represented in Fig. 3 and we

have considered (σ2
4,σ

2
5,σ

2
6) = (σ2

1,σ
2
2,σ

2
3) in this experiment. As expected, increasing the

number of endmembers (i.e., increasing R) reduces the estimation performance. However, the

obtained results are still acceptable confirming the robustness of UsGNCM with respect to the

number of endmembers R. Note finally that more simulations, when considering the presence

of pure pixels, have also been conducted and showed good performance of UsGNCM as shown

in Table IV. Moreover, table V shows the obtained results obtained without considering spatial

correlation which shows the benefit of this spatial correlation.
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Fig. 7. UsGNCM performance for different numbers of pixels.

TABLE III

USGNCM PERFORMANCE FOR DIFFERENT NUMBER OF ENDMEMBERS (TRUNCATED SIMPLEX).

aRMSE(A) aRMSE(M) aSAM(M) aRMSE(Σ) aSAM(Σ)
EMD

(×10−2) (×10−2) (×10−2) (×10−4) (×10−2)

R = 3 0.48 0.12 0.28 0.23 7.43 152.3

R = 4 0.54 0.21 0.51 0.22 9.16 165.1

R = 5 0.80 0.28 0.68 0.31 11.7 198.5

R = 6 1.40 0.84 1.65 0.52 14.2 478.8

D. Comparison with state-of-the-art algorithms

This section evaluates the performance of the proposed UsGNCM algorithm for different

images. All images have been constructed using R = 3 endmembers with truncated abundances

(with ai < 0.9, ∀i ∈ 1, · · · , R) to avoid the presence of pure pixels, which makes the unmixing

problem more challenging. The remaining parameters have been defined as follows

• the image I1 has been generated according to the GNCM model with K = 1 class and

abundances uniformly distributed in the simplex S. The endmember variances have been

adjusted as in Fig. 3. The noise variance is ψ2
n = 10−7.

• the image I2 is the GNCM image used in Section V-B.

• the image I3 has been generated according to the LMM model with K = 3 classes, the label

were generated using the Potts model with β = 1.5 (the same labels as I2) and the Dirichlet

parameters of Table II. The noise variances vary linearly with respect to the spectral bands
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TABLE IV

USGNCM PERFORMANCE FOR DIFFERENT NUMBER OF ENDMEMBERS (WITH PURE PIXELS AND SPATIAL CORRELATION).

aRMSE(A) aRMSE(M) aSAM(M) aRMSE(Σ) aSAM(Σ)

(×10−2) (×10−2) (×10−2) (×10−4) (×10−2)

R = 3 0.49 0.12 0.29 0.23 7.24

R = 4 0.51 0.15 0.36 0.23 8.83

R = 5 0.86 0.24 0.53 0.38 11.16

R = 6 1.00 0.52 1.30 0.43 13.7

TABLE V

USGNCM PERFORMANCE FOR DIFFERENT NUMBER OF ENDMEMBERS (WITH PURE PIXELS AND NO CORRELATION β = 0).

aRMSE(A) aRMSE(M) aSAM(M) aRMSE(Σ) aSAM(Σ)

(×10−2) (×10−2) (×10−2) (×10−4) (×10−2)

R = 3 0.48 0.14 0.29 0.23 7.44

R = 4 0.60 0.26 0.58 0.23 9.11

R = 5 0.73 0.27 0.63 0.31 11.44

R = 6 1.46 0.95 1.81 0.58 14.01

with

ψ2
l = 10−4

(
4

L− 1
l +

L+ 3

L− 1

)
, for l ∈ [1, · · · , L].

These images are processed using different unmixing strategies that are compared to the proposed

UsGNCM algorithm. More precisely, we have considered the following unmixing algorithms

• VCA+FCLS: the endmembers are extracted from the whole image using VCA and the

abundances are estimated using the FCLS algorithm [2].

• UsLMM: the unsupervised Bayesian algorithm of [6] is used to jointly estimate the end-

members and abundances.

• AEB: this is the automated endmember bundles algorithm proposed in [17]. We consider a

10% image subset and the VCA algorithm to extract the endmembers. For each pixel, the

3 endmembers that provide the smallest RE are selected.

• UsNCM: the proposed unmixing strategy with ψn = 0 (i.e., the additive noise en of (5) is

removed). Note that the resulting model reduces to the NCM and the corresponding unmix-
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ing algorithm can be considered as an unsupervised counterpart of the method introduced

in [18].

The first two algorithms provide one estimate for each endmember while the other algorithms

estimate endmember variability. Note that the UsNCM is introduced to study the effect of the

additive noise. Table VI reports the quality of the estimated abundances and endmembers by

unmixing the three images with the different algorithms. This table shows bad performance for

VCA+FCLS and AEB algorithms which is mainly due to the absence of pure pixels in the

considered images and to the variation of the endmember/noise variances with respect to the

spectral band. The UsLMM provides good results for the three images. However, it appears to

be sensitive to the variation of endmember/noise variances with respect to the spectral band and

to the spatial correlations between adjacent pixels. Indeed, the UsLMM did not consider spatial

correlation which leads to a performance reduction when processing the images I2 and I3. Note

also that the UsLMM algorithm provides one estimate for each endmember and does not take into

account the spatial variability of endmembers in the processed images. The best performance

is generally obtained by the proposed UsNCM and UsGNCM strategies that provide almost

similar results. However, the UsGNCM algorithm is more robust than UsNCM when processing

the LMM image I3. Note that when processing I3, both UsNCM and UsGNCM consider the

effect of the colored noise in the LMM to be due to endmember variability. In fact, this effect was

expected since the noise variance in (5) does not depend on spectral bands while the endmember

variances do. However, this effect does not affect the performance of UsGNCM that provides

the best results in terms of abundance and endmember estimation as highlighted by the criteria

aRMSE, aSAM and EMD. All these results confirm the superiority of the proposed approach

in presence of endmember variability, spatial correlation between pixels and in absence of pure

pixels in the observed scene.

VI. SIMULATION RESULTS ON REAL DATA

A. Description of the Hyperspectral Data

This section illustrates the performance of the proposed UsGNCM algorithm when applied

to a real hyperspectral data set. The real image used in this section was acquired in 2010 by

the Hyspex hyperspectral scanner over Villelongue, France (00 03’W and 4257’N). The dataset

contains L = 160 spectral bands recorded from the visible to near infrared (400 − 1000nm)
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TABLE VI

RESULTS ON SYNTHETIC DATA.

Criteria (×10−2)
EMD

aRMSE aRMSE aSAM aRMSE aSAM
(×103)

(A) (M) (M) (Σ) (Σ)

image I1

VCA+FCLS 4.78 2.20 4.53 - - 1.31

UsLMM 0.52 0.18 0.43 - - 0.15

(GNCM,
AEB 3.73 2.25 4.90 - - 1.46

K = 1)
UsNCM 0.48 0.14 0.31 0.23 7.4 0.17

UsGNCM 0.48 0.12 0.28 0.23 7.4 0.15

image I2

VCA+FCLS 3.71 2.68 6.74 - - 1.39

UsLMM 0.76 0.49 0.94 - - 0.27

(GNCM,
AEB 9.46 4.20 8.72 - - 2.54

K = 3)
UsNCM 0.56 0.19 0.43 0.27 10 0.16

UsGNCM 0.48 0.16 0.41 0.26 10 0.15

image I3

VCA+FCLS 9.51 4.42 8.51 - - 2.59

UsLMM 1.01 0.49 1.22 - - 0.36

(LMM,
AEB 9.30 5.13 10.92 - - 2.88

K = 3)
UsNCM 0.86 0.48 1.15 - - 0.30

UsGNCM 0.74 0.34 0.74 - - 0.26

with a spatial resolution of 0.5m [44]. It has already been studied in [11], [44] and is mainly

composed of forested and urban areas. The proposed unmixing algorithm has been applied to

two subimages: scene #1 of size 100 × 100 which is composed of R = 4 components: tree,

grass, soil and shadow (see Fig. 8 (right)), and scene #2 of size 31 × 31 which is composed

of R = 3 components: grass, road and ditch (see Fig. 8 (left)). In addition to the previous

studied algorithms, the UsGNCM has been also compared to the supervised spectral/spatial

BCM based algorithms proposed in [21] and that are denoted by BCM-MH and BCM-QP when

considering Metropolis-Hastings (MH) sampler and quadratic programming (QP), respectively.

For both BCM algorithms, we have selected the pure pixels manually resulting in a set of spectra

for each endmember, as suggested in [21].
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Fig. 8. Real Madonna image and the considered subimages shown in true colors. (Right) scene 1, (left) scene 2

B. Endmember and variability estimation

The proposed UsGNCM algorithm can estimate both the endmember means and variances.

Fig. 9 compares the endmember estimates of this algorithm with those obtained with VCA,

UsLMM and AEB when considering scene #1. The estimated endmembers are globally in

good agreement especially for UsGNCM and UsLMM. Note that VCA (resp. AEB) provides

a different shadow endmember because it extracts the endmember as the purest pixel in the

image (resp. each sub-image) while UsLMM and UsGNCM estimate both the abundances and
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endmembers resulting in a better shadow estimate (lower amplitude). Moreover, the proposed

algorithm provides endmember distributions (blue level areas in Fig. 9) which measure the

endmember variability in the considered image. The difference between the estimated UsGNCM

interval and the AEB spectra is mainly due to the fact that AEB selects its spectra from the

image pixels while the UsGNCM is not limited by this constraint. It can be seen from Fig.

9 that the higher relative variation is obtained for the shadow spectrum because of its low

amplitude. Moreover, the variation is more pronounced for high spectral bands (l > 80) which

is in agreement with the results presented in [11]. Fig. 10 shows the obtained endmembers when

considering scene #2. This figure presents similar results between UsGNCM and UsLMM,

especially for capturing spectral components having low amplitudes as for ditch.

Fig. 9. The R = 4 endmembers estimated by VCA (continuous red lines), UsLMM (continuous black lines), UsGNCM

(continuous blue lines) and the estimated endmember distribution (blue level areas) for scene #1 of the Madonna image.

C. Abundance Estimation and Image Classification

The fraction maps of scene #1 estimated by the studied methods are shown in Fig. 12. Note

that a white (black) pixel indicates a large (small) proportion of the corresponding materials.

These maps lead to the following conclusions
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Fig. 10. The R = 3 endmembers estimated by VCA (continuous red lines), UsLMM (continuous black lines), UsGNCM

(continuous blue lines) and the estimated endmember distribution (blue level areas) for scene #2 of the Madonna image.

• UsLMM and UsGNCM present similar abundance estimates with a smoother behavior for

the second algorithm (because of spatial correlation)

• The abundance maps of VCA-FLCS, AEB, BCM-QP and BCM-MH are higher than those

of statistical methods (UsLMM and UsGNCM) especially for the shadow and Tree. This is

due to the assumption of presence of pure pixel which is not always true as for the shadow

(the shadow pixels in the image are tree-shadowed pixels, thus, they can not be considered

as pure shadow pixels)

• AEB (resp. BCM-MH) is sensitive to the similarity between tree and grass spectra (resp.

soil and grass spectra) leading to bad grass maps.

Considering scene #2, the compared algorithms provide similar abundance maps with a lower

abundances for UsLMM and UsGNCM. These results are not presented here for brevity (see

[45]). The ground truth is not available for these real image, thus, we adopted the same procedure

as in [13], [21] to quantitatively compare the abundance results (this procedure can be seen as

a comparison tool that detects the similarity between the algorithm results). The abundance

RMSEs are evaluated when considering the median abundance of all algorithms as a reference.

Table VII shows the obtained results for the two images. These results show similar figures for

UsLMM and UsGNCM which quantitatively confirm the previous conclusions. The EMD can

also be considered to mutually compare the studied six algorithms. The obtained results are

shown in Fig. 11 where for each image, the element of the ith row and jth column represents

the comparison between the ith and jth algorithms. For example, the diagonal represents the

smallest distance (black color) since we compare each algorithm with itself, while a white color
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represents a high distance. These images confirm the previous conclusions and highlight the

similarity between the results of UsGNCM and UsLMM.

(a) Scene 1 (b) Scene 2

Fig. 11. Normalized EMD when comparing the studied six algorithms for (a) scene #1 of Madonna, (b) scene #2 of Madonna.

The algorithms order is: VCA+FCLS, UsLMM, AEB, UsGNCM, BCM-QP and BCM-MH.

In addition to unmixing, UsGNCM also provides a spatial segmentation of the considered

scenes as shown in Fig. 13(a) for scene #1 and Fig. 14(a) for scene #2. These classifications

clearly highlight the area of each physical element in the scene. Indeed, for scene #1 we have

5 classes that represent tree, soil, shadow, and grass (2 classes) zones while for scene #2 we

have 3 classes representing road, ditch and grass areas. Table VIII finally reports the estimated

Dirichlet parameters and the number of pixels for each spatial class when considering scene #1.

These parameters suggest a highly non uniform distribution over the simplex which promote the

use of the proposed approach.

D. Reconstruction errors

This section compares the proposed UsGNCM strategy to state-of-the-art algorithms by con-

sidering the reconstructed signal. Table VII shows the obtained RE and SAM for the studied

strategies5. As expected, the AEB algorithm, whose objective is to minimize the RE criteria,

shows better results when compared to the other approaches for scene #1. However, both

5The estimated endmember mean is considered for UsGNCM. The endmember mean of each set is considered for the BCM

approaches.
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Fig. 12. Abundance maps estimated by FCLS (first row), UsLMM (second row), AEB (third row), BCM-QP (fourth row),

BCM-MH (fifth row) and the proposed UsGNCM (sixth row) for the Madonna image.

UsLMM and UsGNCM present good results especially for scene #2 where they outperform

AEB. Indeed, UsLMM and UsGNCM are statistical algorithms which estimate endmember that

are not necessarily present in the image, which makes them more flexible.

E. Residual Components

The proposed algorithm also provides a measure of the noise variance for each observed pixel.

This parameter brings an information about pixels that are inaccurately described by a linear

formulation, i.e., allows modeling errors to be quantified. Fig. 13(b) shows the obtained noise

variances for the scene #1. This figure shows a higher error in the shadow area and around

trees, i.e., for regions where possible interactions between physical components might occur (e.g.,
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(a) Classification map. (b) Noise variances.

Fig. 13. Estimated maps with the UsGNCM algorithm for the scene #1 of Madonna image. (a) Classification map and (b)

noise variances.

(a) Classification map. (b) Noise variances.

Fig. 14. Estimated maps with the UsGNCM algorithm for the scene #2 of Madonna image. (a) Classification map and (b)

noise variances.

tree/soil) resulting in a more complex model than the proposed linear one. The noise variances

associated with the scene #2 are shown in Fig. 14(b). This figure shows a higher error near

the ditch area which might be due to the presence of nonlinearities as explained in [11]. Note

finally that both Fig. 13(b) and Fig. 14(b) highlight the presence of regular vertical patterns that

have also been observed in [46] and were associated with a sensor defect or other miscalibration

problems.
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TABLE VII

PERFORMANCE ON REAL IMAGE.

Scene 1 Scene 2

Methods
RMSE RE SAM RMSE RE SAM

(×10−2) (×10−3) (×10−2) (×10−2) (×10−3) (×10−2)

VCA+FCLS 11.3 16.9 5.6 3.3 11 3.4

UsLMM 15.7 6.3 2.7 20 8 2.9

AEB 17.9 6.1 2.6 3.5 9 3.0

UsGNCM 13.7 6.4 2.7 16 8 2.9

BCM-QP 19.7 12.4 3.5 2.9 13 3.3

BCM-MH 15.2 14.7 4.5 2.8 14 3.4

TABLE VIII

ESTIMATED DIRICHLET PARAMETERS FOR THE MADONNA IMAGE (SCENE 1).

Dirichlet parameters number of

ĉ1k ĉ2k ĉ3k ĉ4k pixels

k = 1 1.47 4.59 10.98 4.39 2144

k = 2 13.26 14.05 15.96 14.22 1064

k = 3 0.76 7.97 3.75 1.36 1502

k = 4 37.71 76.11 84.06 99.97 2483

k = 5 23.04 57.70 89.82 99.93 2807

VII. CONCLUSIONS

This paper introduced a Bayesian model for unsupervised unmixing of hyperspectral images

accounting for spectral variability. The proposed algorithm was based on a generalization of the

normal compositional model and includes an additive Gaussian noise for modeling errors. This

algorithm estimated the endmembers of the scene, their variabilities provided by their variances

and the corresponding abundances. The observed image was also spatially segmented into regions

sharing homogeneous abundance characteristics. The physical constraints of the abundances were

ensured by choosing a Dirichlet distribution for each spatial class of the image. Due to the

complexity of the resulting joint posterior distribution, a Markov chain Monte Carlo procedure

based on a Gibbs algorithm was used to sample the posterior of interest and to approximate the



31

Bayesian estimators of the unknown parameters using the generated samples. The sampling was

achieved using an Hamiltonian Monte Carlo method which is well suited for problems with a

large number of parameters. The proposed algorithm showed good performance when processing

data presenting endmember variability, spatial correlation between pixels and in absence of pure

pixels in the observed scene. UsGNCM fully exploits both the spatial dimension (segmentation,

abundance and noise estimation) and the spectral dimension (estimation of endmember means

and variances). Future work includes the study of endmember variability for nonlinear mixing

models. Considering spectral correlation jointly with endmember variability is also an interesting

issue which would deserve to be investigated.

APPENDIX A

LIKELIHOOD COMPUTATION

Considering (5), we obtain

y`n|an,m`, σ
2
r`, ψ

2
n ∼ N

(
R∑
r=1

arnm`r,
R∑
r=1

a2rnσ
2
rl + ψ2

n

)
. (30)

Assuming independence between the observations in different spectral bands, we obtain the

following likelihood for the vector yn

f(yn|A,M ,Σ,Ψ) ∝

 1∏L
`=1

(∑R
r=1 a

2
rnσ

2
r` + ψ2

n

)
 1

2

× exp

(yn −Man)T


1∑R

r=1 a
2
rnσ

2
r1+ψ

2
n

0

. . .

0 1∑R
r=1 a

2
rnσ

2
rL+ψ

2
n

 (yn −Man)

 . (31)

Using the property

yTdiag(σ2)y =
(
σ2
)T

(y � y) (32)

and denoting Λ`n =
(∑R

r=1 a
2
rnσ

2
r` + ψ2

n

)−1
, yield to (8).
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APPENDIX B

SAMPLING THE CONDITIONAL DISTRIBUTIONS

A. Sampling the parameter matrix A

1) Reparametrization: Sampling the abundance matrix A under the sum-to-one constraint

introduced in (12) and (13) is not easy. Therefore, we propose to transform the sum-to-one

constraint into an inequality constraint (which will be handled more easily in the algorithm as

shown below), by considering the following reparametrization

arn =


(1− trn) , if r = 1(∏r−1

k=1 tkn
)

(1− trn) , if 1 < r < R(∏r−1
k=1 tkn

)
, if r = R

. (33)

The transformation (33) has been introduced in [47] and has shown interesting properties for

hyperspectral unmixing in [11]. Its main advantage is to express the positivity and the sum-to-one

constraints for the abundances as follows

0 < trn < 1,∀r ∈ 1, · · · , R− 1. (34)

Note that assigning a Dirichlet prior for an corresponds to a beta distribution prior for the

coefficient trn as shown in [11], [47]

trn|zn = k,Cr:R,k ∼ Be

(
R∑

i=r+1

cik, crk

)
, for n ∈ Ik (35)

where C = [c1, · · · , cK ] is an (R × K) matrix containing the Dirichlet parameters. The prior

associated with the vector tn is finally obtained by assuming prior independence between its

elements leading to

f (tn|zn = k, ck) =
Γ
(∑R

i=1 cik

)
∏R

i=1 Γ (cik)
1[0,1]R−1 (tn)

R−1∏
r=1

t
∑R

i=r+1 cik−1
rn (1− trn)crk−1 (36)

for n ∈ Ik, where 1[0,1]R−1(.) is the indicator of the set [0, 1]R−1 and Γ denotes the gamma

function.
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2) Sampling the parameter matrix T : It can be shown that the N vectors tn, n ∈ {1, · · · , N}

are a posteriori independent leading to

f (T |Y ,M ,Σ,C) =
K∏
k=1

∏
n∈Ik

f (tn|zn = k,yn,M ,Σ, ck). (37)

Moreover, using the likelihood (8) and the prior (36) leads to the following conditional distri-

bution

f (tn|zn = k,yn,M ,Σ, ck) ∝

(
L∏
`=1

Λ`n

) 1
2

exp

{
−1

2
ΛT

:n [(yn −Man)� (yn −Man)]

}

× 1[0,1]R−1 (tn)
R−1∏
r=1

t
∑R

i=r+1 cik−1
rn (1− trn)crk−1 (38)

for n ∈ Ik and an(tn) has been denoted as an in (38) for brevity. The conditional distribution (38)

is not easy to sample. However, the CHMC framework is well suited for sampling the independent

vectors tn, n ∈ {1, · · · , N} in an effective parallel procedure that reduces the computational

cost. Moreover, the small size of these vectors (of size (R− 1)× 1) improves the convergence

of the sampler. Note that the CHMC requires the definition of the potential energy U (tn) =

− log [f (tn|zn = k,yn,M ,Σ, ck)] given by

U (tn) = U1 + U2 + U3 (39)

with

U1 =
1

2
ΛT

:n [(yn −Man)� (yn −Man)]

U2 = −
R∑
r=1

{(
R∑

i=r+1

cik − 1

)
log (trn) + (crk − 1) log (1− trn)

}

U3 = −1

2

L∑
`=1

log (Λ`n). (40)

Note finally that the derivatives of U with respect to the variable of interest tn (that are required

for the CHMC steps) are provided in the Appendix C.

B. Sampling the mean endmember matrix M

Straightforward computations using the posterior distribution (19) yield

f (M |Y ,T ,Σ) =
L∏
`=1

f (M `:|Y `:,T ,Σ:`) (41)
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where

f (M `:|Y `:,T ,Σ:`) ∝ exp

{
−1

2
[(Y `: −M `:A)� (Y `: −M `:A)] ΛT

`:

}
× exp

(
−||M `: − M̃ `:||2

2ε2

)
1[0,1]R (M `:) . (42)

Equation (41) results from the independence between the columns of the matrix M (vectors of

small size R× 1). This interesting property promotes the use of a parallel CHMC algorithm for

sampling T . The potential energy V associated with the conditional distribution of M `: is given

by

V (M `:) =
1

2
[(Y `: −M `:A)� (Y `: −M `:A)] ΛT

`: +
||M `: − M̃ `:||2

2ε2
. (43)

The derivatives of V with respect to M `: are provided in the appendix C.

C. Sampling the variance of the endmember matrix

Considering (19) yields the following conditional distribution for matrix Σ containing the

endmember variances

f (Σ|Y ,T ,M ) =
L∏
`=1

f (Σ:`|Y `:,T ,M `:) (44)

with

f (Σ:`|Y `:,T ,M `:) ∝

(
L∏
`=1

Λ`n

) 1
2

exp

{
−1

2
[(Y `: −M `:A)� (Y `: −M `:A)] ΛT

`:

}

×
R∏
r=1

1

σ2
r`

1R+

(
σ2
r`

)
. (45)

Sampling from (45) can again be performed using a CHMC algorithm (as in Sections B-A2 and

B-B). The potential energy associated with the vector Σ:` is

W (Σ:`) = W1 +W2 +W3 (46)

with

W1 =
1

2
[(Y `: −M `:A)� (Y `: −M `:A)] ΛT

`:

W2 =
R∑
r=1

log
(
σ2
r`

)
W3 = −1

2

N∑
n=1

log (Λ`n). (47)

The derivatives of W with respect to Σ:l are provided in the appendix C.
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D. Sampling the labels

The conditional distribution associated with the discrete random variable zn is given by

f (zn = k|tn, ck) ∝ f (tn|zn = k, ck) exp

2β
∑

n′∈ν(n)

δ (k − zn′)

 (48)

where f (tn|zn = k, ck) has been defined in (36). Sampling from this conditional distribution

is classically performed by drawing a discrete value in the finite set {1, · · · , K} with the

probabilities (48).

E. Sampling the noise variance Ψ

Considering (19) yields the following conditional distribution for the noise variance matrix Ψ

f (Ψ|z,T ,Y ,M ,Σ, c) =
N∏
n=1

f
(
ψ2
n|zn = k, tn,yn,M ,Σ, ck

)
(49)

with

f
(
ψ2
n|zn = k, tn,yn,M ,Σ:l, ck

)
∝

(
L∏
`=1

Λ`n

) 1
2

exp

{
−1

2
ΛT

:n [(yn −Man)� (yn −Man)]

}
× exp

(
−λψ2

n

)
1R+

(
ψ2
n

)
(50)

for n ∈ Ik. This distribution is sampled using a parallel CHMC procedure with the following

potential energy

H
(
ψ2
n

)
= U1 + U3 + λψ2

n. (51)

F. Sampling the Dirichlet coefficients

Using (19) and (20), it can be easily shown that the conditional distribution of ck|T , zn∈Ik is

given by

f (ck|T , zn∈Ik) ∝
∏
n∈Ik


Γ
(∑R

r=1 crk

)
∏R

r=1 Γ (crk)

γ+1

exp

(
−α

R∑
r=1

crk +Rα

)
R∏
r=1

acrk−1rn

 (52)

for k ∈ {1, · · · , K}. This distribution is also sampled using a CHMC procedure. The corre-

sponding potential energy is given by

P (ck) = P1 + P2 (53)
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with

P1 = (γ + 1)
∑
n∈Ik

[
−logΓ

(
R∑
r=1

crk

)
+

R∑
r=1

logΓ (crk)

]

P2 =
∑
n∈Ik

[
α

R∑
r=1

crk −Rα−
R∑
r=1

log
(
acrk−1rn

)]
. (54)

APPENDIX C

DERIVATIVES OF THE POTENTIAL FUNCTIONS

The derivative of U with respect to tn is given by
∂U

∂tn
=
∂U1

∂an

∂an
∂tn

+
∂U2

∂tn
+
∂U3

∂an

∂an
∂tn

(55)

with
∂U1

∂an
= − [Λ:n � (yn −Man)]T M +

1

2
[(yn −Man)� (yn −Man)]T

(
∂Λ:n

∂an

)T
(
∂Λ`n

∂an

)T
= −2Λ2

`n [diag(an)Σ:,l]

∂U3

∂an
= aTn � [ΣΛ:n]T

∂U2

∂trn
= −

∑R
i=r+1 cik − 1

trn
+
crk − 1

1− trn
, ∀r ∈ {1, · · · , R− 1}

(56)

and

∂arn
∂tin

=


0 if i > r

arn
tin−1 if i = r

arn
tin

if i < r

. (57)

The derivative of V with respect to M `: is given by
∂V

∂M `:

= − [Λ`: � (Y `: −M `:A)]AT +
1

ε2

(
M `: − M̃ `:

)
. (58)

The derivatives of W with respect to Σ:` are given by
∂W1

∂Σ:l

= −1

2
[(Y `: −M `:A)� (Y `: −M `:A)�Λ`: �Λ`:] (A�A)T

∂W2

∂Σ2
r`

=
∂W2

∂σ2
r`

=
1

σ2
r`

, ∀r ∈ {1, · · · , R}

∂W3

∂Σ:`

=
1

2

[
Λ`: (A�A)T

]
(59)
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The derivatives of H with respect to ψ2
n is given by

∂T

∂ψ2
n

=
∂U1

∂ψ2
n

+
∂U3

∂ψ2
n

+ λ (60)

with

∂U1

∂ψ2
n

= −1

2

L∑
`=1

[(yn −Man)� (yn −Man)�Λ:n �Λ:n]

∂U3

∂ψ2
n

= −1

2

L∑
`=1

Λ`n

(61)

The derivative of P with respect to crk is given by

∂P

∂crk
=
∂P1

∂crk
+
∂P2

∂crk
(62)

with

∂P1

∂crk
= (γ + 1)

∑
n∈Ik

[
−Υ

(
R∑

r′=1

cr′k

)
+ Υ (crk)

]
∂P2

∂crk
=

∑
n∈Ik

[α− log (arn)]

(63)

where Υ denotes the polygamma function, i.e., the derivative of the log-gamma function.

APPENDIX D

IDENTIFIABILITY PROBLEM

The noise corrupting hyperspectral images is generally of small variance which explains the

prior used for this parameter. This choice of prior ensures problem identifiability as described

in the following (we will adopt a similar approach as in [18]). Assume first that the endmember

mean M and the abundance A are fixed parameters and that the only unknown variables are

the noise variance ψn and the endmember covariance matrix Σ. The log-likelihood associated

with the nth pixel of the GNCM is given by

log f(yn|ψn,Σ) =
L∑
`=1

[
1

2
log (Λ`n)− p`nΛ`n

2

]
(64)
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with Λ`n =
(∑R

r=1 a
2
rnσ

2
r` + ψ2

n

)−1
and p`n =

(
y`n −

∑R
r=1 arnmr`

)2
. To maximize this log-

likelihood, we set its partial derivatives to zero. For the `th spectral band, the following equations

are obtained 

∂ log f(yn|ψn,Σ)

∂σ2
`1

= −a21nΛ`n

2
+

a21np`nΛ
2
`n

2
= 0

...
∂ log f(yn|ψn,Σ)

∂σ2
`R

= −a2RnΛ`n

2
+

a2Rnp`nΛ
2
`n

2
= 0

∂ log f(yn|ψn,Σ)
∂ψ2

n
= −Λ`n

2
+

p`nΛ
2
`n

2
= 0

(65)

which leads to

Λ−1`n =
R∑
r=1

a2rnσ
2
r` + ψ2

n = p`n. (66)

When considering only one pixel, condition (66) shows that the system (65) has several maxima

(with respect to Σ and ψn) located on a hyperplane. However, when considering N pixels, we

obtain the following linear system for the `th spectral band

Hv` = p` (67)

with

H =


a211 · · · a2R1 1 0 · · · 0

a212 · · · a2R2 0 1 · · · 0
... · · · ... 0 0

. . . 0

a21N · · · a2RN 0 0 · · · 1


, and v` =



σ2
1`

...

σ2
R`

ψ2
1

...

ψ2
N


. (68)

This system has R+N unknowns (contained in v`) and N independent equations (the rank of

H is obviously N ). Therefore, we have an infinite number of solutions and one has to add at

least R equations or constraints to obtain a unique solution. If we consider all spectral bands,

the system becomes

HV = P (69)

where V is an (R+N)×L matrix of unknows and P is an (N×L) matrix. In this case, one has

to include at least L×R equations or constraints to ensure identifiability. In this paper, we have

assumed that the noise variance ψ2
n is smaller than the endmember variance which introduces
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N additional constraints. So, provided that N > RL (which is a realistic assumption that is

generally satisfied), the obtained problem becomes identifiable since we have more independent

equations than unknowns. Note for example that when considering L = 224 bands and R = 4

endmembers, the image size should be at least equal to 896 pixels which is a small image. This

identifiability proof has been included in the technical report [45].

As shown above, the proposed unmixing problem is identifiable when considering N additional

constraints on the noise variance. In this paper, these constraints have been achieved by con-

sidering prior enforcing small values of the additive noise variance. The considered exponential

distribution is similar to the Laplace prior (with additional positivity constraint) that has been

widely used in the Bayesian context to enforce sparsity [35], [36]. Note that this prior enforces

an L1 norm constraint (as in LASSO problems [48]) for the noise variance.

APPENDIX E

JUSTIFICATION OF THE GAUSSIAN CHOICE

The endmember variability does not always follows a Gaussian distribution. However, the

Gaussian distribution is certainly a good candidate to approximate the endmember variability. In

this paper, we showed in Fig. 1 that the endmember variability was approximated using a non-

isotropic ellipse around the true endmember. This can also be understood as an `2 regularization

of endmember variability around the true endmember. In addition to these reasons, the Gaussian

distribution has been successfully used in hyperspectral imagery to approximate endmember

variability in [18], [20], [29]. Finally, to further justify our choice, we have performed some

experiments using similar spectra from the USGS library6 that present endmember variability.

These spectra are displayed below in Fig. 15 (top). We have also computed the means of the

spectra that have been subtracted from the observed spectra yielding spectral residuals. An

histogram of the spectral residuals is displayed in Fig. 15 (bottom). This histogram is clearly

close to a Gaussian distribution which justifies the Gaussian choice for endmember variability.

6[Online]. Available: http://www.lx.it.pt/~bioucas/code.htm
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Fig. 15. (top) 9 USGS spectra showing the effect of endmember variability. (bottom) Histogram computed from the 9 USGS

spectral residuals.
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