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• Serge Fabre - TéSA
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Context

A graph is a collection of objects/entities (nodes) that are all
interconnected (by edges).

In graph signal processing, signal processing tasks are generalized
to signals living on non-Euclidean domains.
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Context
Examples of Graphs

Social Network (TéSA)
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Context
Examples of Graphs

Global navigation satellite system (GNSS)
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Applications

→ Graphs provide a structural/relational representation of the data.

Clustering

Image Segmentation

Action Recognition
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Ship Trajectories
Automatic Identification System (AIS)

Source (modified) : [AIS guide]

▶ {x1, ...,xt, ...,xT }: AIS trajectory.
▶ xt = [lon, lat, cog, sog, time]⊤, xt ∈ Rd, where d is the number of
features.

https://actisense.com/news/ais/
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Project Goal
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Introduction to Graphs

A graph is represented as G = (V,E)

• V is the set of nodes (vertices)

• E is the set of edges (links, connections)

Graph Data

the edge weights can represent the degree of association/influence/similarity between

two nodes
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Type of Graphs

∗ Attributed graphs are the interest of the current work.
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Attributed Graph

Let G = (V,E,X) be an attributed
graph, where

• V : set of nodes, and |V | = N

• E: set of edges

• X ∈ RN×d: attributes, Xu ∈ Rd

• d: number of node features

→ Weighted Adjacency Matrix W ∈ RN×N

Wu,v =

exp

(
−∥Xu−Xv∥2

2σ2

)
, if (u, v) ∈ E

0, otherwise
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Attributed Graph

→ Degree matrix: Du,u =
∑N

v=1 Wu,v

→ Laplacian Matrix: L = D−W

→ The Laplacian matrix captures the local geometric structure of the graph.
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Anomaly Detection on Graphs
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From data to graphs: Similarity graph
Given a set of points x1, x2, ..., xN

▶ Set the nodes of the graph

▶ Compute a similarity distance dist(xi, xj) (e.g. euclidean)

▶ Set the edges using the distance and following either k-nn graph/ϵ-graph

k-nearest neighbor graph vs ϵ-graph
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State-of-the-art for Graph-based AD

▶ Spatial Patterns1,2

AIS data points (center of clusters) are defined as the nodes.

▶ Spatial Patterns + Semantic Knowledge3,4

Other information is added to build the graph: ship direction (COG),
speed over ground (SOG), angle.

(1)Pallotta et al. (2013). Vessel pattern knowledge discovery from AIS data: A framework for anomaly detection
and route prediction.. Entropy
(2)Shi et al. (2022). Abnormal ship behavior detection based on AIS data. MDPI Applied Sciences
(3)Yan et al. (2020). Exploring AIS data for intelligent maritime routes extraction, Applied Ocean Research.
(4)Singh et al. (2022). Leveraging graph and deep learning uncertainties to detect anomalous trajectories. IEEE
Transactions on Intelligent Transportation Systems.
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Graph on Trajectories

▶ Vessels: Let V = {v1, .., vN} be a set of N the vessels.

▶ AIS data: Each vessel vi can have d features xi ∈ Rd.

▶ Graph: G = (V,E,X) is composed of:

• Nodes V = {v1, ..., vN} represent vessels.

• Node Attributes X ∈ RN×d are the AIS data.

• Edges E are set via the similarity/distance between nodes.
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Towards the Regularization-based Approach
Sparse Coding

Sparse Coding Goal: to find the sparse coefficient vector v that
represents x in the basis U via

min
v

1

2
∥x−Uv∥2 + λ ∥v∥1 . (1)
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Towards the Regularization-based Approach
Matrix Decomposition
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Graph Laplacian Restriction

The operator is written as (L = D−W):

R =
∑
i,j∈E

Wi,j∥vi − vj∥2 = V⊤LV (2)

∗Hu, W. et al. (2021). Graph signal processing for geometric data and beyond: Theory and applications. IEEE
Transactions on Multimedia, 24, 3961-3977.
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Graph-based Regularization Optimization

The regularization problem considering the sparsity and the graph
connectivity is expressed as:

min
V

1

2
∥X−UV∥2F︸ ︷︷ ︸
fidelity term

+λs

N∑
i=1

∥vi∥1︸ ︷︷ ︸
sparsity term

+
λg

2
Tr(VLVT )︸ ︷︷ ︸
graph term

(3)

where

• λs: regularization for the sparsity term

• λg: regularization for the graph term

• X ∈ RM×N : the data features

• U ∈ RM×K is a (known) dictionary

• V ∈ RK×N coefficient matrix
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Proposed Method
Objective function. The problem can be divided and solved for each
sample xi as:

min
vi

1

2
∥xi −Uvi∥2 + λs ∥vi∥1 +

λg

2

N∑
j=1

∥vi − vj∥2 Wi,j , (4)

→ The dictionary is built from a set of segments of the data

→ The problem (4) can be efficiently solved via the alternating direction
method of multipliers (ADMM) method!
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ADMM Recipe

Algorithm ADMM: For i = 1, ..., N :

1. Set z = vi (segment coefficient vector).

2. Update z:

z(t+1) =
(
UTU+

(
µ+λg

N∑
j=1

wi,j

)
IR

)−1(
UTxi+µq(t)−m(t)+λg

N∑
j=1

wi,jvj

)
(5)

3. Update q (for the sparsity constraint):

q(t+1) = soft
(
z(t+1) +

m(t)

µ
,
λs

µ

)
(6)

4. Update m (dual multiplier):

m(t+1) = m(t) + µ
(
z(t+1) − q(t+1)). (7)
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Anomaly detection using reconstruction scores

The reconstruction error is computed as

errori =

∥∥∥∥∥xi −
K∑
k=1

ukv̂i,k

∥∥∥∥∥
2

(8)

where v̂i is the obtained coefficient vector in the optimization.

→ Remark: High reconstruction scores indicate not smooth repre-
sentations in the graph, then, potential anomalies
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Numerical Experiments
AIS Dataset (Baltic sea at Winter)

◦ Set 61 trajectories.

◦ Segments: 1446 sub-trajectories by a sliding window of 20 AIS points.
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Setup
→ The dataset is split into two subsets: 80% for training and 20% for
testing.



26/31

Setup
Test data
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AD Results
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Comparison AD Results

→ Anomaly detection results using the reconstructions methods.
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To take away

• Signals/images can be embedded into graphs to exploit their
correlations.

• The graph structure imposed as a regularization term promotes
the reconstruction of signals given the chosen structure of the
graph, making it a versatile tool for modeling different problems.
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Thanks for your attention!

Contact Information:
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Atoms in the dictionary
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