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Context

A graph is a collection of objects/entities (nodes) that are all

interconnected (by edges).
Nodes Q
N

Ao @

In graph signal processing, signal processing tasks are generalized
to signals living on non-Euclidean domains.



Context
Examples of Graphs

Social Network (TéSA)




Context
Examples of Graphs

Global navigation satellite system (GNSS)
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Applications
— Graphs provide a structural/relational representation of the data.

Clustering

...00... Je0e®0e%0,
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Points k-means Spectral clustering
Image Segmentation
Original Segmented Action Recogn ition




Ship Trajectories

Automatic ldentification System (AIS)

Source (modified) : [AIS guide]

» {®1,...,x¢, ...,z }: AlS trajectory.

» x; = [lon, lat, cog, sog, time]

features.

, x; € R?, where d is the number of
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https://actisense.com/news/ais/
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Introduction to Graphs

-

Nodes/ /"
Vertices J

A graph is represented as G = (V, E)

e 1 is the set of nodes (vertices)

, S
X )
e F is the set of edges (links, connections) \f*\ Eq
‘ ge
Graph Data
Dataset Graph
° ® o
°
° o [ J [ ]
° ¢ e i
°
{Xq5 Xo, ... X} € R9 GV, E)

the edge weights can represent the degree of association/influence/similarity between
two nodes



Type of Graphs

Graph Type
PLAIN (static) Graph ATTRIBUTED Graph DYNAMIC Graph
G=V,E G=V,EX
(75D 150 G() = VD), E®, Xy (0), Xe (1))
X€eR
* the only information about it * nodes and/or edges have * Xy (t), X (t): node/Edge attributes
is its structure features associated with « graph structure and node attributes
them evolve at the time
Static graph Attributed graph Dynamic graph
. o |
A N -5 -Ege
o= o Time ¢ Time 1+ 1 Time 7'

x Attributed graphs are the interest of the current work.



Attributed Graph

Let G = (V, E,X) be an attributed
graph, where

o V: set of nodes, and |[V| =N
o FE: set of edges
o X € RVXd: attributes, X, € R4

o d: number of node features

— Weighted Adjacency Matrix W € RV*N

| T ;
W, = exp ( " >, if (u,v) €F
0, otherwise



Attributed Graph

— Degree matrix: D, ,, = Zszl Wy
— Laplacian Matrix:

G=(, E) [ Adjacency matrix (W) Degree matrix (D) ‘ Laplacian matrix (L = D-W)
1/4\‘:

w/— 0 wip wiz wia) fdi 0 0 0 di —wi2 w1z —wWig
(Tl @) | [ w21 0 w3 0 0 dy 0 0 || —wo1 do —wp3 0
S | wsi ws2 000 0 0ds 0| —wsy —wsp ds 0

2) ” Wy .1 0 0 0 0 0 0 d4 —Wy1 0 0 d1




Attributed Graph

— Degree matrix: D, ,, = Zszl Wy
— Laplacian Matrix:

G=(V,E) Adjacency matrix (W) Degree matrix (D) ‘ Laplacian matrix (L = D-W)
0 wip wiz wia) fdi 0 0 0 di —wi2 w1z —wWig
w9 1 0 w2 3 0 0 dQ 0 0 —Wa 1 dg —Ws3 0
wyy wizz 00 0 0ds 0| —ws1 —wsa ds 0

Wy 1 0 0 0 0 0 0 d4 —Wy41 0 0 d1

G=(, E)ﬁ Adjacency matrix (W) Degree matrix (D) Laplacian matrix (L = D-W)
a4 0221 5000 5 -2 -2 -1

P A 2020 0400 24 20

Q=3 2200 0040 2 -2 4 0
A, 1000 0001 ~10 0 1

— The Laplacian matrix captures the local geometric structure of the graph.




Anomaly Detection on Graphs

G=(VEX)  ~ 4 \.:D
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Abnormal node Abnormal Abnormal part of the
attribute connections network

each node and edge in a suspicious graph
might be normal, but when checking it as a
collection, it turns abnormal

GRAPH

The graph structure
deviates w.r.t the
initial structure



From data to graphs: Similarity graph
Given a set of points z1, %2, ..., TN
» Set the nodes of the graph
» Compute a similarity distance dist(z;, ;) (e.g. euclidean)

» Set the edges using the distance and following either k-nn graph/e-graph

k-nn graph (k=2) €-graph
) AN .2 I
T 1

k-nearest neighbor graph vs e-graph



State-of-the-art for Graph-based AD

» Spatial Patterns!-?

AIS data points (center of clusters) are defined as the nodes.

Possible turning
point

Possible turning
point

Anchored-off

Turning

[ees] Straight-sailing

» Spatial Patterns + Semantic Knowledge®*
Other information is added to build the graph: ship direction (COG),
speed over ground (SOG), angle.

(D pallotta et al. (2013). Vessel pattern knowledge discovery from AIS data: A framework for anomaly detection
and route prediction.. Entropy

(2)Shi et al. (2022). Abnormal ship behavior detection based on AIS data. MDPI Applied Sciences
(3)¥an et al. (2020). Exploring AlS data for intelligent maritime routes extraction, Applied Ocean Research.

(4)S\'ngh et al. (2022). Leveraging graph and deep learning uncertainties to detect anomalous trajectories. |EEE
Transactions on Intelligent Transportation Systems



Graph on Trajectories

» Vessels: Let V = {vy,..,un5} be a set of N the vessels.

» AIS data: Each vessel v; can have d features x; € R<.

» Graph: G = (V, E,X) is composed of:

e Nodes V = {v1,...,un} represent vessels.
e Node Attributes X € RY*? are the AIS data.

e Edges F are set via the similarity/distance between nodes.
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Towards the Regularization-based Approach
Sparse Coding

U v

X
M - M
K

K

Input Signal Basis Matrix

Sparse coefficient
vector

Sparse Coding Goal: to find the sparse coefficient vector v that
represents x in the basis U via

1
min 5 Ix = UV|[* + A vl - (1)



Towards the Regularization-based Approach

Matrix Decomposition

Original Matrix Basis Matrix Coefficient Matrix
X U \4
M ~ M ij N
i g N K

Matrix Decomposition



Graph Laplacian Restriction

G = (V,E,X) Origin%l Matrix Basis _[l_\]/latrix
X K
M ~ M
i N K
Graph Matrix Decomposition

Coefficient Matrix

VT
ij N

*Hu, W. et al. (2021). Graph signal processing for geometric data and beyond: Theory and applications. IEEE

Transactions on Multimedia, 24, 3961-3977.




Graph Laplacian Restriction

_ Original Matrix Basis Matrix Coefficient Matrix
G = (V,E,X) X U T
M ~ M ij N
] N K
Graph Matrix Decomposition
The operator is written as (L =D — W):
R=> Wijlvi—v;|P=V'LV (2)
- RV J -

i,jEE

*Hu, W. et al. (2021). Graph signal processing for geometric data and beyond: Theory and applications. IEEE
Transactions on Multimedia, 24, 3961-3977.



Graph-based Regularization Optimization

The regularization problem considering the sparsity and the graph
connectivity is expressed as:

N
1 ) A ,
min o |X —UV|7%+As El ||Vi\|1+?gTr(VLV ) (3)
1=
fidelity term - graph term
sparsity term

where

e A regularization for the sparsity term

o Ay regularization for the graph term Coefficient Matrix
-

o X € RMXN: the data features \

« U RM*K is 3 (known) dictionary e

o Ve REXN coefficient matrix

i g



Proposed Method

Objective function. The problem can be divided and solved for each
sample x; as:

.1 A
min g s = Uil 4 A vl + 3 2 v = vl W,
=




Proposed Method

Objective function. The problem can be divided and solved for each
sample x; as:

.1 A
min g s = Uil 4 A vl + 3 2 v = vl W,
=

— The dictionary is built from a set of segments of the data

U




Proposed Method

Objective function. The problem can be divided and solved for each
sample x; as:

1 ) A )
min 2 ;= Uvall® + A [villy + 52 3 ve = v Wagy | (4)
L 2

— The dictionary is built from a set of segments of the data

U

— The problem (4) can be efficiently solved via the alternating direction
method of multipliers (ADMM) method!



ADMM Recipe

Algorithm ADMM: For i =1,..., N:
1. Set z = v; (segment coefficient vector).
2. Update z:

N

3 N
zH) = (UTU+(,u+/\g Z’U_}LJ‘)IR) 1(Usz-Jr,uqmfm(t)Jr/\g Zwm-vj)

j=1
3. Update q (for the sparsity constraint):

(OIESY
a"t = soft (z(“’l) + 2 i)
T

4. Update m (dual multiplier):

mtD — m® 4 M(Z(tJrl) _ q(t+1))'

=1

(5)

(6)

(7)



Anomaly detection using reconstruction scores

The reconstruction error is computed as

K
Xi — § ui Vi g
k=1

where ¥, is the obtained coefficient vector in the optimization.

2

(8)

error; =

— Remark: High reconstruction scores indicate not smooth repre-
sentations in the graph, then, potential anomalies



Numerical Experiments
AIS Dataset (Baltic sea at Winter)

o Set 61 trajectories.
o Segments: 1446 sub-trajectories by a sliding window of 20 AIS points.



Setup

— The dataset is split into two subsets: 80% for training and 20% for
testing.

Data used to build the dictionary

64

14 15 16 17 18 19 20 21
LON



Setup

Test data

Test data
T T




AD Results

Local deviations/

anomalies AD-based proposed method
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Comparison AD Results

— Anomaly detection results using the reconstructions methods.

. Local deviations/
55 AD-based sparse coding anomalies AD-based proposed method
B e e e . g

-2

Local anomalies Global deviations



To take away

« Signals/images can be embedded into graphs to exploit their
correlations.

o The graph structure imposed as a regularization term promotes
the reconstruction of signals given the chosen structure of the
graph, making it a versatile tool for modeling different problems.

G=(V,E,X) Origin;u(I Matrix Basis Matrix Coefﬁcie‘;tT Matrix
M ~M i j N
ij N K

Graph Matrix Decomposition
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Atoms in the dictionary

Atoms of Leamed Dictionary
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