Graph Laplacian-based Regularization Approach for Detecting Abnormal Ship Behavior on Trajectories

Kareth León ENSEEIHT/IRIT/INP-Toulouse

kareth.leon@irit.fr

TéSA Seminar Toulouse, France

November 4, 2024

Project Team

- Jean-Yves Tourneret ENSEEIHT/IRIT/INP-Toulouse/TéSA
- Serge Fabre TéSA
- Valerian Mangé TéSA
- Fabio Manzoni Hensoldt NEXEYA
- Laurent Mirambell Hensoldt NEXEYA

Outline

1 Context

2 Introduction to Graphs

3 From Data to Graphs

4 Graph-based Regularization

5 Simulations and Results

6 Conclusions

Context

A graph is a collection of objects/entities (nodes) that are all interconnected (by edges).

In graph signal processing, signal processing tasks are generalized to signals living on non-Euclidean domains.

Context Examples of Graphs

Context Examples of Graphs

Applications

 \rightarrow Graphs provide a structural/relational representation of the data.

Clustering

Image Segmentation

Ship Trajectories

Automatic Identification System (AIS)

- $\{x_1, ..., x_t, ..., x_T\}$: AIS trajectory.
- ▶ $x_t = [lon, lat, cog, sog, time]^\top$, $x_t \in \mathbb{R}^d$, where d is the number of features.

Project Goal

Introduction to Graphs

A graph is represented as G = (V, E)

- V is the set of nodes (vertices)
- E is the set of edges (links, connections)

Graph Data

the edge weights can represent the degree of association/influence/similarity between two nodes

Type of Graphs

* Attributed graphs are the interest of the current work.

Attributed Graph

Let $G = (V, E, \mathbf{X})$ be an attributed graph, where

- V: set of nodes, and |V| = N
- E: set of edges
- $\mathbf{X} \in \mathbb{R}^{N imes d}$: attributes, $\mathbf{X}_u \in \mathbb{R}^d$
- d: number of node features

$$\mathbf{W}_{u,v} = \begin{cases} \exp\left(\frac{-\|\mathbf{X}_u - \mathbf{X}_v\|^2}{2\sigma^2}\right), & \text{if } (u,v) \in E\\ 0, & \text{otherwise} \end{cases}$$

Attributed Graph

→ Degree matrix:
$$\mathbf{D}_{u,u} = \sum_{v=1}^{N} \mathbf{W}_{u,v}$$

→ Laplacian Matrix: $\mathbf{L} = \mathbf{D} - \mathbf{W}$

G = (V, E)	Adjacency matrix (W)	Degree matrix (D)	Laplacian matrix (L = D-W)
4 1 w ₁₃ 3 w ₁₂ 2 w ₂₃	$\begin{pmatrix} 0 & w_{1,2} & w_{1,3} & w_{1,4} \\ w_{2,1} & 0 & w_{2,3} & 0 \\ w_{3,1} & w_{3,2} & 0 & 0 \\ w_{4,1} & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} d_1 & 0 & 0 & 0 \\ 0 & d_2 & 0 & 0 \\ 0 & 0 & d_3 & 0 \\ 0 & 0 & 0 & d_4 \end{pmatrix}$	$\begin{pmatrix} d_1 & -w_{1,2} & -w_{1,3} & -w_{1,4} \\ -w_{2,1} & d_2 & -w_{2,3} & 0 \\ -w_{3,1} & -w_{3,2} & d_3 & 0 \\ -w_{4,1} & 0 & 0 & d_4 \end{pmatrix}$

Attributed Graph

→ Degree matrix:
$$\mathbf{D}_{u,u} = \sum_{v=1}^{N} \mathbf{W}_{u,v}$$

→ Laplacian Matrix: $\mathbf{L} = \mathbf{D} - \mathbf{W}$

G = (V, E)	Adjacency matrix (W)	Degree matrix (D)	Laplacian matrix (L = D-W)
4 w ₁₃ 1 w ₁₂ 2 w ₂₃	$\begin{pmatrix} 0 & w_{1,2} & w_{1,3} & w_{1,4} \\ w_{2,1} & 0 & w_{2,3} & 0 \\ w_{3,1} & w_{3,2} & 0 & 0 \\ w_{4,1} & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} d_1 & 0 & 0 & 0 \\ 0 & d_2 & 0 & 0 \\ 0 & 0 & d_3 & 0 \\ 0 & 0 & 0 & d_4 \end{pmatrix}$	$\begin{pmatrix} d_1 & -w_{1,2} & -w_{1,3} & -w_{1,4} \\ -w_{2,1} & d_2 & -w_{2,3} & 0 \\ -w_{3,1} & -w_{3,2} & d_3 & 0 \\ -w_{4,1} & 0 & 0 & d_4 \end{pmatrix}$

G = (V, E)	Adjacency matrix (W)	Degree matrix (D)	Laplacian matrix (L = D-W)
4 1 2 2 2 2	$\begin{pmatrix} 0 & 2 & 2 & 1 \\ 2 & 0 & 2 & 0 \\ 2 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$	$ \begin{pmatrix} 5 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} $	$ \begin{pmatrix} 5 & -2 & -2 & -1 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix} $

 \rightarrow The Laplacian matrix captures the local geometric structure of the graph.

Anomaly Detection on Graphs

From data to graphs: Similarity graph

Given a set of points $x_1, x_2, ..., x_N$

- Set the nodes of the graph
- Compute a similarity distance $dist(x_i, x_j)$ (e.g. euclidean)
- Set the edges using the distance and following either k-nn graph/ ϵ -graph

k-nearest neighbor graph vs $\epsilon\text{-graph}$

State-of-the-art for Graph-based AD

▶ Spatial Patterns^{1,2}

AIS data points (center of clusters) are defined as the nodes.

► Spatial Patterns + Semantic Knowledge^{3,4} Other information is added to build the graph: ship direction (COG), speed over ground (SOG), angle.

 $^{^{(1)}}$ Pallotta et al. (2013). Vessel pattern knowledge discovery from AIS data: A framework for anomaly detection and route prediction. Entropy

⁽²⁾Shi et al. (2022). Abnormal ship behavior detection based on AIS data. MDPI Applied Sciences

⁽³⁾Yan et al. (2020). Exploring AIS data for intelligent maritime routes extraction, Applied Ocean Research.

 $^{^{(4)}}$ Singh et al. (2022). Leveraging graph and deep learning uncertainties to detect anomalous trajectories. IEEE Transactions on Intelligent Transportation Systems.

Graph on Trajectories

- ▶ Vessels: Let $V = \{v_1, .., v_N\}$ be a set of N the vessels.
- ▶ AIS data: Each vessel v_i can have d features $\mathbf{x}_i \in \mathbb{R}^d$.
- Graph: $G = (V, E, \mathbf{X})$ is composed of:
 - Nodes $V = \{v_1, ..., v_N\}$ represent vessels.
 - Node Attributes $\mathbf{X} \in \mathbb{R}^{N \times d}$ are the AIS data.
 - Edges E are set via the similarity/distance between nodes.

Towards the Regularization-based Approach Sparse Coding

Sparse Coding Goal: to find the sparse coefficient vector ${\bf v}$ that represents ${\bf x}$ in the basis ${\bf U}$ via

$$\min_{\mathbf{v}} \frac{1}{2} \|\mathbf{x} - \mathbf{U}\mathbf{v}\|^2 + \lambda \|\mathbf{v}\|_1.$$
 (1)

Towards the Regularization-based Approach

Matrix Decomposition

Matrix Decomposition

Graph Laplacian Restriction

^{*}Hu, W. et al. (2021). Graph signal processing for geometric data and beyond: Theory and applications. IEEE Transactions on Multimedia, 24, 3961-3977.

Graph Laplacian Restriction

The operator is written as $(\mathbf{L} = \mathbf{D} - \mathbf{W})$:

$$\mathcal{R} = \sum_{i,j\in E} W_{i,j} \|\mathbf{v}_i - \mathbf{v}_j\|^2 = \mathbf{V}^\top \mathbf{L} \mathbf{V}$$
(2)

^{*}Hu, W. et al. (2021). Graph signal processing for geometric data and beyond: Theory and applications. IEEE Transactions on Multimedia, 24, 3961-3977.

Graph-based Regularization Optimization

The regularization problem considering the sparsity and the graph connectivity is expressed as:

$$\min_{\mathbf{V}} \underbrace{\frac{1}{2} \|\mathbf{X} - \mathbf{U}\mathbf{V}\|_{F}^{2}}_{\text{fidelity term}} + \underbrace{\lambda_{s} \sum_{i=1}^{N} \|\mathbf{v}_{i}\|_{1}}_{\text{sparsity term}} + \underbrace{\frac{\lambda_{g}}{2} \operatorname{Tr}(\mathbf{V}\mathbf{L}\mathbf{V}^{T})}_{\text{graph term}}$$
(3)

where

- λ_s : regularization for the sparsity term
- λ_g : regularization for the graph term
- $\mathbf{X} \in \mathbb{R}^{M \times N}$: the data features
- $\mathbf{U} \in \mathbb{R}^{M imes K}$ is a (known) dictionary
- $\mathbf{V} \in \mathbb{R}^{K \times N}$ coefficient matrix

Proposed Method

Objective function. The problem can be divided and solved for each sample \mathbf{x}_i as:

$$\min_{\mathbf{v}_{i}} \frac{1}{2} \|\mathbf{x}_{i} - \mathbf{U}\mathbf{v}_{i}\|^{2} + \lambda_{s} \|\mathbf{v}_{i}\|_{1} + \frac{\lambda_{g}}{2} \sum_{j=1}^{N} \|\mathbf{v}_{i} - \mathbf{v}_{j}\|^{2} W_{i,j},$$
(4)

Proposed Method

Objective function. The problem can be divided and solved for each sample x_i as:

$$\min_{\mathbf{v}_{i}} \frac{1}{2} \|\mathbf{x}_{i} - \mathbf{U}\mathbf{v}_{i}\|^{2} + \lambda_{s} \|\mathbf{v}_{i}\|_{1} + \frac{\lambda_{g}}{2} \sum_{j=1}^{N} \|\mathbf{v}_{i} - \mathbf{v}_{j}\|^{2} W_{i,j},$$
(4)

 \rightarrow The dictionary is built from a set of segments of the data

Proposed Method

Objective function. The problem can be divided and solved for each sample \mathbf{x}_i as:

$$\min_{\mathbf{v}_{i}} \frac{1}{2} \|\mathbf{x}_{i} - \mathbf{U}\mathbf{v}_{i}\|^{2} + \lambda_{s} \|\mathbf{v}_{i}\|_{1} + \frac{\lambda_{g}}{2} \sum_{j=1}^{N} \|\mathbf{v}_{i} - \mathbf{v}_{j}\|^{2} W_{i,j},$$
(4)

 \rightarrow The dictionary is built from a set of segments of the data

 \rightarrow The problem (4) can be efficiently solved via the alternating direction method of multipliers (ADMM) method!

ADMM Recipe

Algorithm ADMM: For i = 1, ..., N:

- 1. Set $\mathbf{z} = \mathbf{v}_i$ (segment coefficient vector).
- 2. Update \mathbf{z} :

$$\mathbf{z}^{(t+1)} = \left(\mathbf{U}^T \mathbf{U} + \left(\mu + \lambda_g \sum_{j=1}^N w_{i,j}\right) \mathbf{I}_R\right)^{-1} \left(\mathbf{U}^T \mathbf{x}_i + \mu \mathbf{q}^{(t)} - \mathbf{m}^{(t)} + \lambda_g \sum_{j=1}^N w_{i,j} \mathbf{v}_j\right)$$
(5)

3. Update \mathbf{q} (for the sparsity constraint):

$$\mathbf{q}^{(t+1)} = \operatorname{soft}\left(\mathbf{z}^{(t+1)} + \frac{\mathbf{m}^{(t)}}{\mu}, \frac{\lambda_s}{\mu}\right)$$
(6)

4. Update m (dual multiplier):

$$\mathbf{m}^{(t+1)} = \mathbf{m}^{(t)} + \mu \big(\mathbf{z}^{(t+1)} - \mathbf{q}^{(t+1)} \big).$$
(7)

Anomaly detection using reconstruction scores

The reconstruction error is computed as

$$error_i = \left\| \mathbf{x}_i - \sum_{k=1}^{K} \mathbf{u}_k \hat{\mathbf{v}}_{i,k} \right\|^2$$
 (8)

where $\hat{\mathbf{v}}_i$ is the obtained coefficient vector in the optimization.

 \rightarrow **Remark:** High reconstruction scores indicate not smooth representations in the graph, then, potential anomalies

Numerical Experiments

AIS Dataset (Baltic sea at Winter)

- $_{\circ}~$ Set 61 trajectories.
- $_{\circ}~$ Segments: 1446~sub-trajectories by a sliding window of 20 AIS points.

Setup

 \rightarrow The dataset is split into two subsets: 80% for training and 20% for testing.

Setup Test data

AD Results

Comparison AD Results

 \rightarrow Anomaly detection results using the reconstructions methods.

To take away

- Signals/images can be embedded into graphs to exploit their correlations.
- The **graph structure** imposed as a regularization term promotes the reconstruction of signals given the chosen structure of the graph, making it a versatile tool for modeling different problems.

Bibliography

► Graph signal processing.

- Perraudin, N., et al Global and local uncertainty principles for signals on graphs. APSIPA Transactions on Signal and Information Processing, 2018.
- Ortega, A., et al. Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE (2018).

► Anomaly detection on graphs.

• Gutiérrez-Gómez, L., et al. Multi-scale anomaly detection on attributed networks. Proceedings of the AAAI conference on artificial intelligence. (2020)

► Anomaly detection on trajectories.

• Laxhammar, R., et Falkman, G. Online learning and sequential anomaly detection in trajectories. IEEE transactions on pattern analysis and machine intelligence, 36(6), 1158-1173, 2013.

► Data source. Ville Hakola, February 28, 2020, Vessel tracking (AIS), vessel metadata and dirway datasets, IEEE Dataport, doi: https://dx.doi.org/10.21227/j3b5-es69.

Thanks for your attention!

Contact Information:

Atoms in the dictionary

