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Abstract

This paper deals with the problem of detecting a collision

target in ground clutter, using a long integration time. A sin-

gle reception channel being available, classical space time

adaptive processing (STAP) cannot be used. After range

processing, ground clutter can be modeled as a known in-

terference subspace in the Doppler domain depending on

its radial and orthoradial speeds. We exploit this a priori

knowledge to perform an adpative detection of a collision

target supposed to lie in a known and different subspace. A

GLRT detector is first derived for known clutter covariance

matrix. Then, the unknown covariance matrix is adaptively

estimated from the projection of the data onto the modeled

clutter subspace, and is plugged in the GLRT to form a sub-

optimal detector. The proposed scheme can be viewed as

a synthetic STAP, for which the space domain is replaced

by a clutter orthoradial information and longer integration

time.

1 Introduction

Moving target indicator (MTI) are commonly used in air-

borne radars to detect and track moving targets. Due to the

platform motion, ground clutter returns spread over range

and Doppler. Thus the target detection is heavily degraded

in the clutter region. A well known solution to cope with

this problem is to combine the use of an antenna array and

STAP technique to reject clutter and detect the target [4],

which can be extremely costly. Consequently, this strat-

egy is limited to specific applications. In the radar liter-

ature, clutter returns are frequently modeled as Gaussian

disturbance [2]. More recently, SIRV clutter models [7]

have been proposed to take into account non-Gaussian clut-

ter disturbance: the clutter vector is then the product of

two components, a Gaussian vector (speckle) of known co-

variance matrix, and a random positive amplitude (texture)

of known prior distribution. Equivalently, when textures

are considered unknown deterministic parameters, locally

Gaussian models considered in this paper are invoked to

describe ground clutter. In practice, the clutter covariance

matrix may not be available, and must be estimated using

secondary data [4] to form an adaptive detector. In [3], a

long integration time has been used to separate a collision

point target from ground clutter for short and middle range

applications. For this, ground clutter has been structured

as a deterministic known interference subspace containing

quadratic Doppler phase exponentials, depending on both

clutter radial and orthoradial speeds. Conversely, the colli-

sion point target has been modeled as a deterministic signal

known to lie in a subspace of linear Doppler phase expo-

nentials. The optimal detector is then a subspace matched

detector [8]. We propose here to use a GLRT detector

designed for range and Doppler spread target in locally

Gaussian clutter whose covariance matrix is known a pri-

ori. The covariance matrix is then estimated from the pro-

jection of the data onto the modeled clutter subspace, and

inserted in the GLRT to form an adaptive suboptimal detec-

tion scheme. This paper is organized as follows. Section 2

formulates the problem and describes the clutter and signal

models investigated in this study. In section 3, the GLRT for

range and Doppler spread targets in locally Gaussian clutter

of known covariance matrix will be derived. The estimation

of the clutter covariance matrix is adressed using the mod-

eled clutter subspace in the Doppler domain. In section 4,

the theoretical performances of the proposed detector are

discussed. Simulation results based on real clutter data are

also presented. Section 5 draws conclusions and perspec-

tives.

2 Data Model and Assumptions

We consider an airborne radar embedded on an aircraft fly-

ing at constant speed va. A possible collision target at ini-

tial range R0 with constant velocity vt is heading toward

the aircraft up to an impact point, defined by the intersec-

tion of both aircraft and target directions. Ground clutter is

also present at range R0 and will compete with the target,

as shown in Fig.1. Due to long integration time Tint, we use

a second order Taylor expansion of the target-radar distance

[6]

R(t) = R0 + vrt+
1

2

(
ar +

v2⊥
R0

)
t2 (1)

where vr and ar are the relative, radial velocity and accel-

eration, and v⊥ is the orthoradial velocity. We assume a

constant radial velocity such that ar = 0.



Figure 1: Collision Target/Ground Scatterer Trajectories.

2.1 Data Model

After range processing, we assume that the target’s signal is

present in L adjacent cells and is in the Doppler clutter re-

gion, for instance due to Doppler aliasing [6]. The detection

problem can thus be formulated as follows:

H0 : zr = cr + nr

H1 : zr = xr + cr + nr

(2)

where zr is the observations vector at range cell r, xr is the

target signal described in section 2.2, cr is the clutter signal

described in section 2.3, and nr is the additive white Gaus-

sian noise of power σ2. The observations are supposed to

be independent from one range cell to another. Hypothe-

sis H0 corresponds to the case where only clutter is present

whereas hypothesis H1 corresponds to the case where clut-

ter and target are present.

2.2 Collision Target Subspace

We consider the target to be a so-called collision target, i.e.,

its relative speed to the radar vrel is only a radial velocity

[3]. In other words, with constant velocity assumptions,

its direction of arrival (DOA) and Doppler frequency are

constant over time. Moreover, due to long integration time

Tint and high Doppler resolution Δf = 1/Tint, the target’s

scatterers are present in p > 2 adjacent Doppler bins: the

target is thus Doppler spread. As a consequence, at range

cell r, the radar signal backscattered by the target can be

written in the following compact form

xr = HrAr (3)

where Ar is the unknown deterministic p× 1 target am-

plitudes vector. The N×p target steering matrix Hr

is supposed to be known and can be written as Hr =
[hr,1|hr,2| · · · |hr,p] with

hr,k(n) = exp(j2πfr,kn) = exp

(
j
4πvrel,k

λ
n

)
. (4)

Note that fr,k denotes the adjacent Doppler frequency of a

target scatterer, so that fr,k+1 = fr,k + Δf . More pre-

cisely, Hr is not range dependent for a collision target.

Note that this model can account for small and unknown

Doppler variations as well and is not restricted to collision

target only.

2.3 Locally Gaussian Clutter

Ground clutter is assumed to be a locally Gaussian process:

at range cell r, the clutter vector can be written as the prod-

uct of two components, a Gaussian vector (speckle) of co-

variance matrix Mr and a deterministic positive scale pa-

rameter (texture) τr [7]

cr =
√
τrsr,with sr ∼ CN (0,Mr). (5)

The multivariate distribution of the clutter vector is given

conditionally to the texture by:

p
(
cr|τr

)
=

1

(πτr)N |Mr| exp
(
−cHr M−1

r cr
τr

)
. (6)

The clutter covariance matrix Mr is supposed to be known

a priori in this paper.

3 Target Detection in Ground Clutter
We propose to use a GLRT detector derived for known clut-

ter covariance matrix. The unknown clutter covariance ma-

trix is then estimated adaptively from the data thanks to a

given structured clutter subspace, and inserted in the GLRT

to form the proposed suboptimal detection scheme.

3.1 GLRT Derivation

We suppose in this work that thermal noise can be neglected

with respect to ground clutter, and that the observations are

independent from one range cell to another. Following the

steps of [1], we derive the GLRT for the general model (2)

and report the main results here. We form the likelihood

ratio of the data under H0 and H1, and we replace, for each

range cell, the unknown deterministic parameters, namely

the textures τr under hypotheses H0 and H1, and the tar-

get amplitudes Ar, by their maximum likelihood (ML) es-

timates. As the target steering matrix and clutter covariance

are supposed to be known, the ML estimates for the target

amplitudes are given by:

Âr =
(
HH

r M−1
r Hr

)−1
HH

r M−1
r zr. (7)

The ML estimates of the texture under H0 and H1 are re-

spectively given by

τ̂r|H0
=

zHr M−1
r zr

N
, τ̂r|H1

=
zHr

(
M−1

r −Qr

)
zr

N
(8)

where the matrix Qr is the projection matrix:

Qr = M−1
r Hr

(
HH

r M−1
r Hr

)−1
HrM

−1
r . (9)

The generalized log-likelihood ratio is then given by the

sum of the individual log-likelihood ratio of each range cell:

ln ΛG = N
L∑

r=1

ln

[
zHr M−1

r zr

zHr
(
M−1

r −Qr

)
zr

]
. (10)

In practice, the matrices Mr may not be available and must

be estimated to form an adaptive detector [2]. To this end,

we now propose to model ground clutter returns similarly

to SAR processing by a sum of P local scatterers whose

quadratic Doppler phase shifts are known a priori.



3.2 A Structured Clutter Subspace

Ground clutter can be decomposed by a multitude of local

scatterers whose relative velocity to the aircraft only de-

pends on the aircraft velocity and aspect angle α:

vr = va cosα, v⊥ = va sinα.

Similarly to SAR processing [6], the radar response of

a ground scatterer at the aspect angle α, range R0, and

time instant n, consists of a complex amplitude Br,p and

a quadratic Doppler phase shift given by:

φ(n, α) =
−4πva cos(α)

λ
n+

2πva sin
2(α)

λR0
n2 (11)

with λ the radar wavelength, and fD(α) = −2va cos(α)
λ

and BD(α) = 2va sin2(α)
λR0

Tint are respectively the ground

scatterer initial Doppler frequency and Doppler bandwidth.

Equivalently, one can say that each ground scatterer mi-

grates linearly in Doppler with a known bandwidth de-

pending on the aircraft speed va and its initial Doppler

frequency. Moreover, we suppose that the minimum clut-

ter Doppler bandwidth is greater than the target Doppler

spread. One can then represent the clutter signal with the

following compact form

cr = SrBr (12)

where Sr is an N ×P matrix containing the exponential

of the quadratic Doppler phase φ(n, α) at range cell r and

Br is a P × 1 vector containing the complex amplitudes

of the clutter sources. Br can be modeled as a zero-mean

Gaussian vector and the disturbance covariance matrix is:

C = E
[
crc

H
r

]
= SrΛrS

H
r + σ2IN . (13)

where Λr = E
[
BrB

H
r

]
is a diagonal matrix of clutter

powers, and σ2IN accounts for the thermal noise. The in-

verse covariance matrix is written using the classic inver-

sion lemma

C−1 =
IN − Sr

(
σ2Λ−1

r + SH
r Sr

)−1
SH
r

σ2
. (14)

We assumed that the clutter is dominant against thermal

noise, so that the inverse covariance matrix can be approxi-

mated as follows

C−1 ≈ IN − Sr

(
SH
r Sr

)−1
SH
r

σ2
=

1

σ2
P⊥

Sr
(15)

where P⊥
Sr

is the matrix projection onto the subspace or-

thogonal to the columns of Sr. Besides, detectors defined

in (10) are independent of scale parameters [5], namely σ2.

The clutter covariance can thus be replaced by the orthog-

onal projection in the detector. In fact, this approximation

is equivalent to calculate the GLRT for deterministic and

known interferences:

ln ΛD = N
L∑

r=1

ln

[
1 +

z̃Hr PH̃r
z̃r

z̃Hr P⊥
H̃r

z̃r

]
(16)

where z̃r = P⊥
Sr
zr and H̃r = P⊥

Sr
Hr are the projected

data and steering matrix.

3.3 Covariance Matrix Estimation

In practice, the clutter Range/Doppler region can be pre-

dicted by knowing the aircraft velocity and the radar field

of view, or determined by forming the range/Doppler map

of the scene [6]. For each range cell r, we form an over-

sampled clutter matrix Sr in Doppler frequency/aspect an-

gle fD(α) dimension, and then perform its singular value

decomposition (SVD), Sr = UrOrV
H
r , to determine an

orthonormal basis Ur of the modeled clutter subspace. The

next step is to estimate the clutter powers associated with

the columns of Ur from the data following [3]. More pre-

cisely, an oblique projection is used to remove the target

B̂r =
(
UH

r P⊥
Hr

Ur

)−1
UH

r P⊥
Hr

zr (17)

As in reduced rank processing [4], only the K most signif-

icant clutter amplitudes and the corresponding columns of

Ur are selected to form the orthogonal projection

P⊥
Sr

≈ IN − ŨrŨ
H
r (18)

which is finally plugged in (16) to form the proposed de-

tector. This suboptimal procedure approximates the clut-

ter covariance matrix without resorting to secondary data,

thanks to the assumed structured clutter subspace. It can be

viewed as a synthetic STAP, for which the spatial domain

is replaced by the clutter orthoradial speed information via

longer integration time. Note that the detector (10) can be

used inserting Eq.(14-17) as well. For a single reception

channel, target and clutter belong to the same subspace and

cannot be separated in DOA. Only classical detectors based

on power contrast between range/Doppler cells and their

direct environment are available. However, these detectors

show poor performance in the clutter region [9]. Thanks to

long integration time, the target and ground clutter belong

to two different subspaces. Thus one can estimate the clut-

ter covariance matrix from the data and the modeled clutter

subspace.

4 Performances and Simulation Results
We study in this section the performances of the proposed

detector for synthetic signals. They depend on the rank p
of the target subspace and on the rank K of the clutter sub-

space. We then compare it to the detector of (10) for known

covariance matrix.

4.1 Performances

We define the detection probability of false alarm so that

the log-likelihood ratio is higher than a threshold η under

H0

Pfa = Pr{lnΛD|H0
> η}. (19)

The proposed detector (16) satisfies the Constant False

Alarm Rate (CFAR) property. Its performances are well

known for a single range cell [8]. Under hypothesis H0, the

following result is obtained:

z̃HPH̃z̃

z̃HP⊥
H̃
z̃
∼ χ2(2p)

χ2(2(Ñ − p))
∼ p

Ñ − p
F2p,2(Ñ−p) (20)



where F2p,2(Ñ−p) is the well-known F distribution, p is the

rank of the target subspace and Ñ = N −K the dimen-

sion of the subspace orthogonal to clutter subspace. The

detection performance depends on the separability between

clutter and target subspaces [8]. Intuitively, it is a function

of the ratio between the reduced-rank K and the dimension

of Ur. If the entire clutter subspace Ur is taken into ac-

count in the projection, the target will be suppressed from

the signal along with clutter. However if K is too small,

clutter returns won’t be reduced enough to exhibit the tar-

get signal. The choice of K is thus critical to maximize

the signal-to-clutter ratio (SCR) for detection. In the gen-

eral case of L > 1 range cells, there is no known closed-

form expressions for Pfa and for the detection probability

Pd. Therefore, we need to resort to Monte Carlo trials to

determine the (Pd-SCR) curves for fixed Pfa.

4.2 Simulation Results

We consider a synthetic target distributed over L = 4 range

cells, for a range resolution of 5m. The integration time is

2.8s, the aircraft speed is 65m/s and the observed ranges are

centered around 1880m. The radar is looking forward with

an aperture of 20◦. Migration is compensated for the main

lobe clutter. For each range cell, the target scatterers are lo-

cated in ground clutter region at the same p = 20 adjacent

Doppler frequencies. Real ground clutter data are projected

onto the modeled clutter subspace (17) to obtain the clut-

ter powers needed for the simulation. The rank K is fixed

to suppress clutter sources of power greater than the aver-

age clutter power. This approach is equivalent to selecting

approximately 45% of the clutter subspace columns, and

seems to be a good compromise between clutter suppres-

sion and signal restoration.

Figure 2: (Pd-SCR) curves for L = 4, p = 20, Pfa = 10−3

We now compare the performances of the adaptive multi-

range/multi-Doppler (MRMD) detector and its single-range

(SRMD) version defined in (16) with the detector defined

in (10) for a known covariance matrix and a cell-averaging

point-target detector. Figure 2 shows the (Pd-SCR) curves

of the 4 detectors for Pfa =10−3. Accordingly, the point-

target detector shows poor performances with SCR smaller

than 13dB. The adaptive MRMD detector is equivalent to

summing incoherently the L = 4 single-range detectors,

with a gain of 1.3dB at Pd = 0.9. Note that the processing

loss for adaptation is less than 2dB.

5 Conclusion
We proposed in this paper an adaptive detector for detect-

ing a collision target against ground clutter, using a long

integration time. The detecotr results from a GLRT for

range/Doppler spread target in locally Gaussian clutter de-

rived for known clutter covariance. The unknown covari-

ance matrix is then estimated and replaced in the GLRT to

form the adaptive detector. To this end, the ground clut-

ter is modeled as a known interference subspace in Doppler

domain related to clutter radial and orthoradial velocities.

Data are projected onto the clutter subspace. The principal

components are selected to approximate the clutter covari-

ance matrix. The proposed scheme can be viewed as a syn-

thetic STAP, for which the space domain is replaced by clut-

ter orthoradial information and longer integration time. Per-

spectives include the study of the influence of the reduced-

rank K on SCR.
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