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ABSTRACT

Error correcting schemes are fundamental in the new generation of data navigation signals. Thanks to those, the
system has the capability to correct possible data navigation errors, which potentially induces delays in first fix of the
receiver. In the GNSS receivers, those error correcting schemes use the Log Likelihood Ratio (LLR) as the input of
the decoding algorithm. Until now, the LLR was always computed under the Gaussian assumption and considering
perfect Complete State Information (CSI), which does not hold in most of the real scenarios. Then; in this paper we
proposed several methods to compute the LLR, considering a set of realitic scenarios and considering that perfect
CSI is not available at the receiver. We test the proposed LLRs for several new generation GNSS signals.

I INTRODUCTION

One of the most challenging issues in designing the new GNSS signals (i.e., GPS L1C and Galileo E1-B) was to
introduce the capability to correct the data navigation message errors. An error in the data navigation message
involves that the frame information data is not reliable, which potentially induces a delay in the time to acquire or
track a position’s device. In order to introduce the capability to correct errors, additional redundant data, generated
by a channel coding mechanism is included within the data navigation message. Moreover, an error correcting
implementation at the receiver chain must be addressed [5].

The main motivation of this work is to analyze data decoding of the next generation of GNSS signals. Those
signals seek to improve various figures of merit on the different phases of navigation solution. Indeed, those signals
(i.e, GPS L1C, Galileo E1-B, as well as several proposal of the new Galileo acquisition signal) propose the addition of
a channel coding scheme in order to enhance the robustness of the data decoding process. Thank to that, a reduction
of the Time To First Fix (TTFF) is achieved, especially in challenging or hostiles GNSS environments.

In modern channel coding theory, the Log Likelihood Ratio (LLR) is computed as the input to the error correcting
algorithm. The LLR is a statistical test to compare the goodness of fit between the probabilities of receiving a positive
or a negative logic bit. In the GNSS receiver the LLR is typically used under the Gaussian channel assumption [14],
resulting in

LLR =
2yn
σ2
n

(1)

where yn is the normalized sample after the match filter and σ2
n is the instantaneous noise variance, which is considered

known. However, the assumption does not hold in real situations, where the channel variance has to be estimated
from a carrier-to-noise-density ratio (C/N0) estimates [6]. Moreover, in some scenarios such as the urban or the
intentional interference environment, the Gaussian distribution does not model well the received data distribution
[3]. For those reasons, in this paper we reformulate the problem of computing the LLR under more realistic channel
assumptions and we provide simulation result for several GNSS signals.

This paper is organized as follow: Section II presents the channel coding schemes of several GNSS signals. Section
III presents a more realistic subset of scenarios along with solution to compute the LLRs considering perfect Complete
State Information (CSI) [14]. Section IV present the proposed solution to compute the LLRs considering that no
perfect CSI is available at the receiver. Section V presents and compares the error correcting performance in terms
of Clock and Ephemerides Data error rate of the channel coding schemes presented in Section II, between the LLRs
solution presented in section III (considering perfect CSI) and the LLRs solution presented in section IV (when no
CSI is available at the receiver) Conclusion are finally drawn in Section VI.

II NAVIGATION SIGNALS

In this section, we present the channel coding schemes which protect the CED of several GNSS signals, of interest
in this work due to their channel coding schemes:

2



Figure 1: GPS L1C Message Structure

• GPS L1C navigation message [1]: The message modulated onto the GPS L1C signal consists of a set of
consecutive frames, where the complete data message set is broadcasted to users. This signal is emitted in
the new generation of GPS III satellites. A frame is divided into three subframes of various lengths. The
first subframe consists of 9 bits of Time of Interval (TOI) data. The subframe 2 is composed of 600 bits
of non-variable clock and ephemeris data with Cyclic Redundancy Check (CRC). The content of subframe 3
nominally varies from one frame to the next and is identified by a page number; the size of the block is 250 bits.
Considering this navigation message, we are interested on the GPS L1C subframe 2, where it is allocated the
CED. Thus, the subframe 2 is encoded by two encoders in serial form. The outer code is a cyclic code called
CRC-24Q which provided the integrity of the data message. The inner encoder is an irregular LDPC code of
rate 1/2 which provides error correction. Moreover, The 9-bit TOI data of subframe 1 are encoded with a BCH
code and Subframe 3 data are encoded using a 24-bit CRC code and an irregular Low Density Parity Check
(LDPC) Forward Error Correction (FEC) code with a parity check matrix of size 274 × 548. Encoded data
from subframe 2 and 3 are then block-interleaved (48-36) in order to struggle the burst errors. The resulting
1800 symbols represent one message frame, which are then broadcast at rate 100 symbols per second. Figure
1 gives the structure of the described GPS L1C message.

At the receiver, the computed LLR is used a the input of the LDPC decoder. After the LDPC decoding process,
the CRC-24Q decoder is computed in order to verify the received solution.

• Galileo E1-OS navigation message [2]: The Galileo E1-OS navigation message is stored inside the I-NAV
message. The structure of the I/NAV message is presented in [2]. It is composed by 15 nominal pages, each one
with a duration of 2 seconds, represents the 30 seconds duration of the I/NAV subframe structure illustrated
in Figure 2. Within the subframe structure, pages 1, 2, 11 and 12 are used to store the 4 CED information
words. Therefore, every 30 seconds, 4 CED information words are provided by the I/NAV message. Each
nominal page is subdivided in 2 subpages. Each subpage has 120 bits, which are encoded by a rate one-half
convolutional code with polynomial generators in octal representation given by (171, 133) [2]. At the output of
the convolutional encoder, 240 data symbols are interleaved by a 30 × 8 block-interleaver. Finally, 10 bits of
synchronization are added at the beginning of the data frame to achieve synchronisation to the page boundary.
At the receiver, each page is decoded independently. First, the synchronisation pattern allows the receiver to
achieve synchronisation to the page boundary. Each page is then de-interleaved by a 8 × 30 block-interleaver
and decoded by a Viterbi algorithm [7]. Finally, the CRC is computed and compared with the CRC field. In
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order to retrieve the CED, pages 1, 2, 11 and 12 must be CRC validated.

• Evolution Galileo E1-OS navigation message [15] [12]: Thanks to the flexibility of the Galileo navigation
message structure, an Evolution of the I/NAV message was proposed. This optimization seeks to reduce the
TTD and improving the CED robustness under the precondition to keep the backward compatibility with the
current I/NAV message structure. Thus, pages 8 and 9 (refers to Figure 2) were selected to store the redundant
data generated by the extra Reed Solomon (RS) outer coding channel method, considered as Forward Error
Correction 2 (FEC2). With these considerations in mind, a general outer channel coding (n, k) = (6, 4)
structure can be defined in order to generate those extra redundant bits, where n is equivalent to the total
number of available bits (redundant + information bits) and k is the number of information bits. In order to
keep backward compatibility, systematic information bits are stored in pages 1, 2, 11 and 12 while redundant
bits are stored in pages 8 and 9. Remark that the RS codes are characterizes by the MDS property, then CED
can be decoded when a number k = 4 of pages are retrieved.

• Galileo E1D with Protograph Root LDPC code [11]: The Galileo E1D signal is an hypothetical future
Galileo signal which is designed to improve the performance of several point of the Galileo system. The CED
is encoded by two encoders in serial form. The outer code is a cyclic code called CRC-24Q which provided
the integrity of the data message. The inner encoder is a Protograph Root LDPC code of rate 1/2 which
provides error correction. The Protograph Root LDPC code are an optimized version of the Root LDPC
codes [4] through the Protograph EXIT chart optimization algorithm [9]. Those codes are characterized by
the Maximum Distance Separable (MDS) full diversity properties over the block fading channel and under the
Belief Propagation (BP) decoding algorithm [4]. Those properties are essential in order to retrieved the CED
faster and thus reduce the TTFF. At the receiver, the computed LLR is used a the input of the LDPC decoder.
After the LDPC decoding process, the CRC-24Q decoder is computed in order to verify the received solution.

• Galileo E1D with Rate Compatible Root LDPC codes [10]: It is a second proposal for the E1D signal.
The CED is encoded by two encoders in serial form. The outer code is a cyclic code called CRC-24Q which
provided the integrity of the data message. The inner encoder is a Rate compatible Root LDPC code of rate
1/3 which provides error correction. Those codes are an extension of the Root LDPC code proposed in [4] and
are characterized by the Maximum Distance Separable (MDS) full diversity properties over the block fading
channel and under the Belief Propagation (BP) decoding algorithm [4]. Moreover, those codes have the rate
compatible property, which allows to improve the error correction capability by combining several retrieved
blocks at the receiver. At the receiver, the computed LLR is used a the input of the LDPC decoder. After the
LDPC decoding process, the CRC-24Q decoder is computed in order to verify the received solution.

III SYSTEM MODEL AND LLR COMPUTATION WITH PERFECT CSI

• 1st channel: Let’s consider the following channel model. We represent the transmitted message as a binary
vector u = [u1, . . . , uK ]> of K bits. This message is encoded into a codeword c = [c1, . . . , cN ]> of length
N > K and mapped to BPSK symbols xn = µ(cn) ∈ {−1, 1}, where n represents each symbol index and we
impose µ(0) = 1 and µ(1) = −1. Then the symbol is spread by a pseudo-random noise (PRN) sequence that
can be expressed in vector form as pn ∈ RL. L corresponds to the number of chips of the PRN sequence. Then,
the transmitted symbol per coded bit is given by

xn = xn · pn ∈ RL, n = {1, . . . , N} (2)

with the convention that we define column vectors.
The transmission channel is modeled as a binary-input AWGN noise channel with zero-mean and variance σ2

n.
Then, the received symbol sequence is modeled as

yn = xn +wn ∈ RL, n = {1, . . . , N} (3)

where wn ∼ N (0, σ2
nI). That is, the noise power remains constant to the entire codeword.

Thus, LLR associated to the n-th symbol is defined as [8]

Ln = ln

(
P (cn = 0|yn)
P (cn = 1|yn)

)
= ln

(
P (xn = 1|yn)
P (xn = −1|yn)

)
. (4)
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Figure 2: I/NAV E1-OS Nominal Subframe Structure
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Obtained LLRs are then used to feed the input of the soft input channel decoder. When perfect CSI is assumed,
the LLR can be trivially computed as

Ln =
2

σ2
n

yTnpn , (5)

which explicitly assumes that the noise variance is perfectly known at the receiver. In practice, this assumption
does not hold and σ2

n has to be estimated. Then, having access to a point estimator as the C/N0 estimator,
the mismatched LLR is

Ln =
2

σ̂2
n

yTnpn , (6)

where σ̂2
n is the noise variance estimate at the n-th symbol through the C/N0 estimator. Remark that variance

can be computed through:
σ2
n = 10−(Es/N0)n/10 (7)

and
Es/N0 = C/N0 − 10 log10(

1

A2
data

Ts) (8)

where A2
data is the power of the data component and Ts is the symbol period.

• 2nd channel: The transmission channel can be modeled as Gaussian noise (Jamming interference) with is
integrated along with the Gaussian thermal noise at the receiver input. We represent the transmitted message
as a binary vector u = [u1, · · · , uK ] of K bits. This message is encoded into a codeword c = [c1, · · · , cN ] of
length N > K and mapped to BPSK symbols xn = µ(cn) ∈ {−1, 1}, where n represents each symbol and we
impose µ(0) = 1 and µ(1) = −1. Modeling the transmission channel with additional real-valued a AWGN with
noise variance σ2 and a AWGN jamming with affect to the entire codeword with a noise variance σ2

I , then the
received symbol sequence is:

yn = xn + wn + wI,n ∈ R, n = {1, . . . , N}, (9)

where wn ∼ N (0, σ2) and wI,n ∼ N (0, σ2
I ) are the statistical models for the noise and the jamming. Let’s

denote wn+I = wn + wI,n, then wn+I ∼ N (0, σ2 + σ2
I )

Thus, LLR associated to the n-th symbol is defined in equation 4. Obtained LLR are used to feed the input of
the decoder. Considering perfect CSI, the LLR expression simplifies to:

Ln =
2

σ2 + σ2
I

· yn , (10)

which explicitly implies that the variance σ2 and σ2
I are known. In practice, this assumption does not hold and

even if σ2 is known, σ2
I remains unknown and must be estimated. Considering now the GNSS system, because

of the low data rate [? ], the variance can be throug a point estimator such as the C/(N0+ I) estimator. Thus,
denoting σ2

T+I = σ2 + σ2
I , σ

2
T+I can be computed symbol by symbol through

σ2
(T+I)n

= 10−(Es/(N0+I))n/10 (11)

where (Es/(N0+I))n is in decibels (dB) scale and (N0+I) represents the noise and interference density. Then,
the computed LLRs simplify to

Ln =
2

σ2
(T+I)n

· yn , (12)

which explicitly implies that variance σ2
(T+I)n

is known symbol a symbol. Considering a real scenario, where no
perfect CSI is available at the receiver, point estimators can lead to a symbol-wise noise variance estimation.
Then, the computed LLRs yields to

Ln =
2

σ̂2
(T+I)n

· yn , (13)

where σ̂2
(T+I)n

represents the σ2
(T+I)n

estimation.
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• 3rd channel: The transmission channel model a jammer device which broadcasts a Gaussian interference
which disrupts some percentage of the codeword symbols. We represent the transmitted message as a binary
vector u = [u1, · · · , uK ] of K bits. This message is encoded into a codeword c = [c1, · · · , cN ] of length N > K
and mapped to BPSK symbols xn = µ(cn) ∈ {−1, 1}, where n represents each symbol and we impose µ(0) = 1
and µ(1) = −1. Modeling some percentage P ∈ [0, 1] the transmission channel with additional real-valued
AWGN with instantaneous noise variance σ2 and a AWGN jamming with instantaneous noise variance σ2

I ,
then the received symbol sequence is:

yn =

{
xn + wn ∈ R, n ∈ Q,
xn + wn + wI ∈ R, n ∈ S, , (14)

where wn ∼ N (0, σ2) and wI ∼ N (0, σ2
I ) are the statistical models for the noise and jamming. Q is the set

of bits not affected by the jamming noise and S is the set of bits harmed with the jamming. Remark that
|S|

|Q|+|S| = P

Considering perfect CSI, for each n-th symbol of the codeword the LLR expression simplified to:

Ln =

{ 2
σ2 · yn , n ∈ Q,

2
σ2+σ2

I
· yn , n ∈ S (15)

which explicitly implies that the variance σ2 and σ2
I are known. In real scenarios, σ2 and σ2

I are unknown then
must be estimated, yielding equation (15) to:

Ln =

{ 2
σ̂2 · yn , n ∈ Q,

2
σ̂2+σ̂2

I
· yn , n ∈ S (16)

Remark that estimate simultaneously σ2 and σ2
I is an extremely complex work.

• 4th channel: An urban fading channel (in this paper we consider a 2-state Prieto channel [13], where the
PLL is capable to perfectly track the phase of the signal) is presented. Then, we assume the transmission of
a binary message vector u = [u1, · · · , uK ] of K bits. Using a binary error correcting code of rate R = K/N ,
this message is then encoded into a binary codeword c = [c1, · · · , cN ] of length N > K and mapped to binary
phase shift keying (BPSK) symbols xn = µ(cn) = 1− 2.cn ∈ {−1, 1}, ∀n = 1 · · ·N . Modeling the transmission
channel as an uncorrelated fading channel with additional real-valued additive white Gaussian noise (AWGN)
with noise variance σ2, the received symbol sequence is then given by

yn = hn · xn + wn ∈ R, n = {1, . . . , N}, (17)

where both wn and hn are identically and independently distributed (i.i.d.) random variables such that wn ∼
N (0, σ2) and hn ∼ p(h) respectively.
By definition, the expression of the LLR for the n-th symbol is given for the case of perfect CSI (hn is perfectly
known) as [14]:

Ln = ln

(
P (cn = 0|yn, hn)
P (cn = 1|yn, hn)

)
= ln

(
P (xn = 1|yn, hn)
P (xn = −1|yn, hn)

)
. (18)

Assuming that ,∀n = 1 · · ·N, cn are i.i.d., Equation (18) can also be written as

Ln = ln

(
P (yn|xn = 1, hn)

P (yn|xn = −1, hn)

)
, (19)

considering perfect CSI, the LLR simplifies to

Ln =
2

σ2
hn · yn, (20)

which explicitly implies that the variance σ2 and the fading gain hn are known. In real environments, that
does not hold on and both parameters must be estimated.
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IV CLOSE FORM LLR APPROXIMATION WITH NO PERFECT CSI

• Solution to the 1st channel: Considering no perfect CSI, the variance is unknown, it should be modeled as a
random variable characterized by a Probability Density Function (PDF). Then, identifying that our knowledge
on the variance is due to an estimate of (Es/N0)n (refers to equation 7) that was assumed to be Gaussian, the
variance is characterized by a Log-Normal PDF whose mean and variance are estimated by the Narrowband
Wideband Power Ratio (NWPR) algorithm [6]. Then, based on the bayesian inference, we reformulate the
problem of obtaining the LLR values by first computing the joint PDF of symbols and variance, which is then
marginalized in order to compute the desired LLR. In order to compute the marginalized distribution, we
impose a conjugate prior formulation in order to obtain an analytic closed form solution that can be computed
as a function of the receiver correlator output. Thus, the LLR approximation expression yields to:

Ln = −(an +
1

2
)

[
ln

(
1

bn
+

(yn − 1)
2

2

)
− ln

(
1

bn
+

(yn + 1)
2

2

)]
(21)

where â and b̂ can be approximated by the close form values:

â ≈ 1/σλ b̂ ≈ σ2
λe
µλ+

σ2λ
2 , (22)

with the details to compute µλ and σλ based on the mean µEs/N0
and variance σ2

Es/N0
estimated by the NWPR

algorithm.
µλ =

(
µEs/(N0) loge(10)

)
/10 (23)

σλ =
(
σEs/(N0)/10

)
loge(10) (24)

• Solution to the 2nd channel: Considering no perfect CSI, the variance joint variance between σ2 and σ2
I ,

denoted as σ2
T+I is unknown and it can be modeled as a random variable characterized by a PDF. Then,

identifying that our knowledge on the variance is due to an estimate of (Es/(N0 + I))n (refers to equation
10) that was assumed to be Gaussian, the variance is characterized by a Log-Normal PDF whose mean and
variance are estimated by the NWPR algorithm. As it was already proposed for the first scenario, based on
the Bayesian theory, we reformulate the problem obtaining the LLR values by first computing the joint PDF of
symbols and variance, which is then marginalized in order to compute the desired LLR. In order to compute the
marginalized distribution, we impose a conjugate prior formulation in order to obtain an analytic closed form
solution that can be computed as function of the receiver correlator output. Thus, the LLR approximation
expression yields to:

Ln = −(an +
1

2
)

[
ln

(
1

bn
+

(yn − 1)
2

2

)
− ln

(
1

bn
+

(yn + 1)
2

2

)]
(25)

where â and b̂ can be approximated by the close form values:

â ≈ 1/σλ b̂ ≈ σ2
λe
µλ+

σ2λ
2 , (26)

with the details to compute µλ and σλ based on the mean µEs/(N0+I) and variance σ2
Es/(N0+I)

estimated by
the NWPR algorithm.

µλ =
(
µEs/((N0+I)) loge(10)

)
/10 (27)

σλ =
(
σEs/((N0+I))/10

)
loge(10) (28)

• Solution to the 3rd channel: Considering the pulsed jamming channel, in this paper we propose a solution
when powerful Gaussian interference disrupts a few symbols in the codeword (P ≈ 0.05 − 0.4). In that case,
heavy tails appears in the observation distribution and the Gaussian model does not fit properly anymore.
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Then, the LLR approximation proposed to approximate the observable distribution by an equivalent Laplacian
model. Thus, modeling the transmission channel with additional real-valued additive Laplacian noise:

yn = xn + wL (29)

where wL ∼ L(0, 2 · c2) and c2 is the variance of the approximate Laplacian model. Considering no perfect CSI,
c is unknown and can be modeled as a random variable. Then, identifying that our knowledge on the variance
is due to the C/N0 estimator that was assumed to be Gaussian, the random variable variance is characterized
by a Log-Normal PDF whose mean and variance are estimated by the NWPR algorithm. Remark that c can
be directly computed symbol per symbol from Es/(N0).

c =
1√
2
10−(Es/(N0))/20 (30)

Thus, based on the Bayesian inference , we compute the LLR values by first computing the joint PDF of
symbols and variance, which is then marginalized in order to compute the desired LLR. In order to compute
the marginalized distribution, we impose a conjugate prior formulation in order to obtain an analytic closed form
solution that can be computed as a function of the receiver correlator output. Thus, the LLR approximation
expression yields to:

Ln = −(a+ 1)

[
ln

(
1

b
+ |yn − 1|

)
− ln

(
1

b
+ |yn + 1|

)]
(31)

where â and b̂ can be approximated by the close form values:

â ≈ 1/σρ b̂ ≈ σ2
ρe
µρ+

σ2ρ
2 , (32)

with the details to compute µρ and σρ based on the mean µEs/(N0+I) and variance σ2
Es/(N0+I)

estimated by
the NWPR algorithm.

µρ =
(
µEs/(N0+I) loge(10)

)
/20 (33)

σρ =
(
σEs/(N0+I)/20

)
loge(10) (34)

• Solution to the 4th channel: In the last channel model, we provide a solution based on the statistical
knowledgde of the CSI. Then, considering perfect knowledge of σ2 and the mean µh and variance σ2

h of the
PDF of the fading gain p(h), that is assumed to follow a Gaussian variable. We reformulate the problem
of obtaining the LLR values by first computing the joint PDF of symbols and fading gain, which is then
marginalized in order to compute the desired LLR. In order to compute the marginalized distribution, we
impose a conjugate prior formulation in order to obtain an analytic linear closed form solution that can be
computed as a linear function of the receiver correlator output. Remark that in real scenarios, p(h) will follow
Rayleigh or Rice distributions [14], then computed mean and variance of the Gaussian distribution are those
which minimize the difference between distributions.

Thus, the LLR approximation expression yields to a linear close form expression:

Ln = −µ2
h

(
1− yn

µh

)2
2 (σ2 + σ2

h)
+ µ2

h

(
−1− yn

µh

)2
2 (σ2 + σ2

h)
=

2ynµh
(σ2 + σ2

h)
. (35)
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V RESULTS

In order to verify the potential solutions, we simulate the aforementioned channels environments, compute the
proposed LLR values for each of the channels and run the error correcting algorithm implemented at the receiver
chain. The results are then compared with the LLR values computed under perfect CSI assumption.

In figure 3, it is illustrated the CED error rate as a function of the C/N0 considering the navigation signals: the
GPS L1C navigation message; the E1-OS navigation message; the Evolution E1-OS navigation message; the E1D
with Protograph Root LDPC code and the E1D with rate compatible Root LDPC code over the 1st channel and
considering that the LLR values are computed: under perfect CSI (black curves / equation 5); with instantaneous
estimation of the variance through the NWPR algorithm (black curves/ equation 6) and with the proposed analytic
solution (blue curves/ equation 21). Simulations curves show that the proposed method to compute the LLR provides
the same solution as that provide by the perfect CSI assumption, improving the results with respect the instantaneous
estimation of the variance. Moreover, the provided solution seems to be independent of the order of the NWPR filter,
as it is illustrated in figure 4. However, the order of the filter has an effect on the solution where the LLR are computed
considering the instantaneous estimation of the variance.

In figure 5, it is illustrated the CED error rate as a function of the C/(N0 + I) over a Gaussian jamming channel
where the jammer device is broadcasting an interference of power J = 2dB. We consider the navigation signals: the
GPS L1C navigation message; the E1-OS navigation message; the Evolution E1-OS navigation message; the E1D
with Protograph Root LDPC code and the E1D with rate compatible Root LDPC code over the 1st channel and
considering that the LLR values are computed: under perfect CSI (black curves / equation 10); with instantaneous
estimation of the variance through the NWPR algorithm (red curves/ equation 13) and with the proposed analytic
solution (blue curves/ equation 25). Simulations curves show that the proposed method to compute the LLR provides
the same solution as that provide by the perfect CSI assumption, improving the performance with respect to the
LLR solution provide by the instantaneous estimation of the variance.

In figure 6, it is illustrated the CED error rate as a function of the C/(N0) over a pulsed jamming channel where
the jammer device is broadcasting an interference over 10% of the symbols with a power Peq

Peq = 10 log10

(
10

PG_Jam
10
P

)
dB (36)

where PG_Jam is the equivalent power broadcasts by a jammer device which disrupts the entire codeword with a
Gaussian interference and P it is the percentage of disrupted symbols. This scenario is modelled with PG_Jam = 2dB
and P = 0.1. We consider the navigation signals: the GPS L1C navigation message; the E1-OS navigation message;
the Evolution E1-OS navigation message; the E1D with Protograph Root LDPC code and the E1D with rate
compatible Root LDPC code over the 3rd channel and considering that the LLR values are computed: under perfect
CSI (black curves / equation 15); with instantaneous estimation of the variance (equation 30) through the NWPR
algorithm (red curves/ equation 13) and with the proposed analytic solution (blue curves/ equation 31). Moreover,
we compute also CED error rate considering the AWGN with perfect CSI scenario. The effect of the pulsed jamming
is illustrated by comparing the AWGN with perfect CSI scenario (green curves) with the Pulsed Jamming with
perfect CSI scenario (black curves). A loss in error correction performances around 0.5-0.7 dB it is shown for the
different navigation signals. Simulations curves also illustrate the error correction loss when no CSI is available at
the receiver. Considering the LLR solution based on the instantaneous estimation of the variance: 4dB for an error
probability of 10−1 are loss with the GPS L1C navigation message; 5 dB for an error probability of 10−1 are loss with
the E1-OS navigation message; 3.5 dB for an error probability of 10−1 are loss with the Evolution E1-OS navigation
message and 3 dB for an error probability of 10−1 are loss with the E1D with rate compatible Root LDPC code.
Considering the LLR proposed solution, an enhance of the error correcting performance with respect the previous
solution is reached: 3 dB for an error probability of 10−1 are improve with the GPS L1C navigation message; 3
dB for an error probability of 10−1 are improve with the E1-OS navigation message; 3 dB for an error probability
of 10−1 are improve with the Evolution E1-OS navigation message and 2 dB for an error probability of 10−1 are
improve with the E1D with rate compatible Root LDPC code.

In figure 7, it is illustrated the CED error rate as a function of the C/(N0) over an urban environment modeled
through a 2-state prieto model for a vehicle speed of 40 km/h and an elevation angle of 40 degrees, where the PLL
track perfectly the phase of the signal. We consider: the navigation signals: the GPS L1C navigation message; the
E1-OS navigation message; the Evolution E1-OS navigation message and the E1D with rate compatible Root LDPC

10



code over the 1st channel and considering that the LLR values are computed: under perfect CSI (black curves /
equation 20) and with the proposed analytic solution (blue curves/ equation 35). Simulation curves show that the
proposed solution to compute the LLR almost converge to the solution is computed considering CSI at the receiver.
Considering the GPS L1C navigation message, the E1-OS navigation and the Evolution E1-OS navigation message,
only a gap of 0.5 dB is found. This gap is reduced to 0.4 dB for the E1D with rate compatible Root LDPC code.

CONCLUSIONS

In this article, several error correcting schemes corresponding to new GNSS signals are presented. Those schemes
are simulated under different scenarios with new proposed method to compute LLR. Simulations results show an
enhancement in error probability performances for each of schemes under the different realistic scenarios of interest.
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Figure 3: CED error rate over AWGN channel considering: the GPS L1C navigation message and LLR computed
with CSI (black/solid curve); the GPS L1C navigation message and LLR computed with instantaneous estimation
of σ2

n (red/solid curve); the GPS L1C navigation message and LLR computed with the proposed solution (blue/solid
curve); the E1-OS navigation message and LLR computed with CSI (black/dash curve); the E1-OS navigation
message and LLR computed with instantaneous estimation of σ2

n (red/dash curve); the E1-OS navigation message
and LLR computed with the proposed solution (blue/dash curve); the Evolution E1-OS navigation message and
LLR computed with CSI (black/solid-circle curve); the Evolution E1-OS navigation message and LLR computed
with instantaneous estimation of σ2

n (red/solid-circle curve); the Evolution E1-OS navigation message and LLR
computed with the proposed solution (blue/solid-circle curve); the E1D with Protograph Root LDPC code and LLR
computed with CSI (black/dash-cross-point curve); the E1D with Protograph Root LDPC code and LLR computed
with instantaneous estimation of σ2

n (red/dash-cross-point curve); the E1D with Protograph Root LDPC code and
LLR computed with the proposed solution (blue/dash-cross-point curve); the E1D with rate compatible Root LDPC
code and LLR computed with CSI (black/dash-diamond-point curve); the E1D with rate compatible Root LDPC
code and LLR computed with instantaneous estimation of σ2

n (red/dash-diamond-point curve) and the E1D with
rate compatible Root LDPC code and LLR computed with the proposed solution (blue/dash-diamond-point curve)
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Figure 4: CED error rate over of the GPS L1C navigation message over AWGN channel considering: LLR computed
with CSI (black/solid curve); LLR computed with CSI with instantaneous estimation of σ2

n and order of the filter 50
(red/dash curve); LLR computed with the proposed solution and order of the filter 50 (blue/solid-circle curve); LLR
computed with CSI with instantaneous estimation of σ2

n and order of the filter 20 (magenta/solid-diamond curve);
LLR computed with the proposed solution and order of the filter 20 (black/solid-cross curve);
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Figure 5: CED error rate over a Gaussian jamming channel where the jammer device is broadcasting an interference
of power J = 2dB. We consider: the GPS L1C navigation message and LLR computed with CSI (black/solid
curve); the GPS L1C navigation message and LLR computed with instantaneous estimation of σ2

T+I (red/solid
curve); the GPS L1C navigation message and LLR computed with the proposed solution (blue/solid curve); the
E1-OS navigation message and LLR computed with CSI (black/dash curve); the E1-OS navigation message and
LLR computed with instantaneous estimation of σ2

T+I (red/dash curve); the E1-OS navigation message and LLR
computed with the proposed solution (blue/dash curve); the Evolution E1-OS navigation message and LLR computed
with CSI (black/solid-circle curve); the Evolution E1-OS navigation message and LLR computed with instantaneous
estimation of σ2

T+I (red/solid-circle curve); the Evolution E1-OS navigation message and LLR computed with the
proposed solution (blue/solid-circle curve); the E1D with Protograph Root LDPC code and LLR computed with CSI
(black/dash-cross-point curve); the E1D with Protograph Root LDPC code and LLR computed with instantaneous
estimation of σ2

T+I (red/dash-cross-point curve); the E1D with Protograph Root LDPC code and LLR computed
with the proposed solution (blue/dash-cross-point curve); the E1D with rate compatible Root LDPC code and LLR
computed with CSI (black/dash-diamond-point curve); the E1D with rate compatible Root LDPC code and LLR
computed with instantaneous estimation of σ2

T+I (red/dash-diamond-point curve) and the E1D with rate compatible
Root LDPC code and LLR computed with the proposed solution (blue/dash-diamond-point curve)
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Figure 6: CED error rate over a pulsed jamming channel where the jammer device broadcast a Gaussian interfence
which disrupt 10% of the symbols with an equivalent power PG_Jam = 2dB. We consider: the GPS L1C navigation
message and LLR computed with CSI (black/solid curve); the GPS L1C navigation message and LLR computed
with instantaneous estimation of the variance (red/solid curve); the GPS L1C navigation message and LLR com-
puted with the proposed solution (blue/solid curve); the E1-OS navigation message and LLR computed with CSI
(black/dash curve); the E1-OS navigation message and LLR computed with instantaneous estimation of the variance
(red/dash curve); the E1-OS navigation message and LLR computed with the proposed solution (blue/dash curve);
the Evolution E1-OS navigation message and LLR computed with CSI (black/solid-circle curve); the Evolution E1-
OS navigation message and LLR computed with instantaneous estimation of the variance (red/solid-circle curve);
the Evolution E1-OS navigation message and LLR computed with the proposed solution (blue/solid-circle curve);
the E1D with rate compatible Root LDPC code and LLR computed with CSI (black/dash-diamond-point curve);
the E1D with rate compatible Root LDPC code and LLR computed with instantaneous estimation of the variance
(red/dash-diamond-point curve) and the E1D with rate compatible Root LDPC code and LLR computed with the
proposed solution (blue/dash-diamond-point curve). Moreover, it is computed CED error rate over an AWGN chan-
nel with perfect CSI at the receiver considering the GPS L1C navigation message (green /solid curve); the E1-OS
navigation message (green/dash curve);the Evolution E1-OS navigation message(green/solid-circle curve) and the
E1D with rate compatible Root LDPC code (green/dash-diamond-point curve).

15



24 26 28 30 32 34 36 38 40 42 44

C/N
0
 [dB]

10
-2

10
-1

10
0

C
E

D
E

R

4th Channel

GPS L1C CSI

 GPS L1C Analytic Solution

E1-OS CSI

 E1-OS Analytic Solution

E1-OS Conv+RS CSI

E1-OS Conv+RS Analytic Solution

E1D Rate Compatible R=1/3 CSI

E1D Rate Compatible R=1/3 Analytic Solution

Figure 7: CED error rate over a urban fading channel modeled through the 2-state Prieto channel for a vehicle
speed of 40 km/h and an elevation angle of 40 degrees, where the PLL is capable to perfectly track the phase of the
signal and considering: the GPS L1C navigation message and LLR computed with CSI (black/solid curve); the GPS
L1C navigation message and LLR computed with the proposed solution (blue/solid curve); the E1-OS navigation
message and LLR computed with CSI (black/dash curve); the E1-OS navigation message and LLR computed with
the proposed solution (blue/dash curve); the Evolution E1-OS navigation message and LLR computed with CSI
(black/solid-circle curve); the Evolution E1-OS navigation message and LLR computed with the proposed solution
(blue/solid-circle curve); the E1D with rate compatible Root LDPC code and LLR computed with CSI (black/dash-
diamond-point curve) and the E1D with rate compatible Root LDPC code and LLR computed with the proposed
solution (blue/dash-diamond-point curve)
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