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Abstract
The popular Discrete Fourier Transform (DFT) is known to be a sub‐optimal frequency
estimation technique for a finite transform length. In order to approach the Cramer‐Rao
Lower Bound (CRLB), many refinement techniques have been considered, but little
considering both zero padding or tapering, also known as windowing or apodisation. In
this paper, a frequency estimator with closed‐form combination of three DFT samples is
generalized to zero padding and tapered data within the class of cosine windowing. Root
Mean Squared Error (RMSE) is shown to approach the CRLB in the case of a single tone
signal with additive white Gaussian noise. Compared to state‐of‐the‐art techniques, the
proposed algorithm improves the frequency RMSE up to 1 dB when using significant
zero‐padding lengths (K ≥ 2 N) and for small to moderate SNR, which is the most
challenging case for practical radar applications.
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1 | INTRODUCTION

Frequency estimation is at stake in services such as telecom-
munication or Global Navigation Satellite System (GNSS), to
cite a few. Most of the time, the Doppler frequency of a signal
needs to be estimated, so that the problem can be simplified to
a single tone estimation with unknown amplitude and fre-
quency, in additive noise. This noise is usually assumed to be
white and Gaussian. In such a situation, the Maximum Like-
lihood Estimator (MLE), which achieves asymptotically the
Cramer‐Rao Lower Bound (CRLB), consists in maximising the
so‐called periodogram [1]. Unfortunately, this maximisation
process hardly complies with computation resources in
embedded systems. Consequently, the Discrete Fourier
Transform (DFT) is regularly implemented and has adequate
accuracy in many applications. DFT simply consists in
computing the periodogram on a finite and uniform set of
frequencies. Nevertheless, this simple and widely used solution
is shown to have a mean square error convergence in the order
of O(N−2) [2], whereas the CRLB is in O(N−3) [3], where N
stands for the data length. When a more accurate frequency

estimation is required, zero padding may be considered to
interpolate the periodogram. However, especially when
considering embedded systems, both the computational re-
sources and the memory size may prevent from using DFT
with large zero padding.

Hence, many sub‐optimal but computationally efficient
algorithms have been proposed over the last 50 years.
Among this huge quantity of schemes, the class of the
displacement‐based techniques, also known as Amplitude
Estimation techniques [3–19], exhibits one of the best
precision‐to‐computational complexity ratios. Indeed, these
2‐step algorithms first consist in a coarse frequency esti-
mation based on the DFT followed by a fine frequency
estimation based on a few DFT samples (typically 3) around
the maximum frequency bin, where up to 85% of the tone
energy is concentrated [9]. The main advantage of these
kinds of algorithms relies on the closed‐form formulation of
the second step, so that the computational load is marginal
compared to the first step, namely the DFT. Some of the
most popular displacement‐based techniques are summarised
hereafter:

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the
original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2022 The Authors. IET Radar, Sonar & Navigation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Radar Sonar Navig. 2022;1–9. wileyonlinelibrary.com/journal/rsn2 - 1

https://doi.org/10.1049/rsn2.12246
https://orcid.org/0000-0001-5619-6848
https://orcid.org/0000-0002-7774-5428
https://orcid.org/0000-0002-7029-3019
mailto:benjamin.gigleux@spaceable.org
https://orcid.org/0000-0001-5619-6848
https://orcid.org/0000-0002-7774-5428
https://orcid.org/0000-0002-7029-3019
http://wileyonlinelibrary.com/journal/rsn2


� In [3], Rife and Boorstyn derive a secant interpolation
method.

� In [10], Brown III et al. use a quadratic interpolation of the
periodogram main peak to derive the interpolation
coefficients.

� In [11], Rife and Vincent determine the frequency from the
amplitude of three DFT samples. However, the algorithm
exhibits large Mean Squared Error (MSE) when the
normalized frequency is rational.

� In [13], Quinn modifies [11] to solve the above‐mentioned
rational frequency issue. The asymptotic MSE of this algo-
rithm is shown to vary between (1.6449 � CRLB) and
(1.0088 � CRLB), depending on the gap between the true
frequency and the DFT bins.

� In [15], Quinn extends the algorithm defined in [13] to
tapered data with Hanning or Hamming window.

� In [17], Duda proposes an algorithm for tapered data with
arbitrary windows.

� In [18], Jacobsen and Kootsookos improve a simple Early‐
Minus‐Late (EML) estimator, formerly defined from fitting
a parabola to three DFT samples, and then adjust the esti-
mator to tapered data.

� In [19], Yang and Wei derive an EML estimator for non‐
tapered data in the case where the zero padding is twice
the DFT length. The asymptotic MSE is shown to reach
between (1.1014 � CRLB) and (1.0147 � CRLB).

Nevertheless, none of the displacement‐based techniques,
cited above, fully covers the practical needs of radar applica-
tions, which possibly requires both zero padding and tapering.
More precisely, zero padding may be required either to reach a
DFT length that equals a power of 2, and therefore implement
DFT as split‐radix FFT algorithm [22], or to mitigate the
impact of spectral leakage, also known as scalloping losses, in
the radar link budget. Tapering may also be required to miti-
gate spectral leakage in the radar link budget [23] or to lower
the secondary lobes of targets for the purpose of unmasking a
small target [24].

To the best of the authors' knowledge, the only refinement
frequency estimation technique that manages both zero padding
and tapering is defined by Candan in [21]. Indeed, Candan first
derives an estimator in [20] that removes the bias from the
estimator proposed in [18]. Then, this estimator is extended to
zero padding and tapering in [21] and therefore complies with
practical needs of radar applications.

The goal of this paper is to propose a new frequency
estimation scheme, which also manages both zero
padding and tapering. To this end, the work of Yang and Wei
[19] is extended to the case of both zero‐padded and tapered
data.

The remaining of this paper is organised as follows. The
model at hand is introduced in Section 2. Then, based on Yang
and Wei's approach, the interpolation coefficients are derived
in Section 3 for zero padding and tapering. More precisely, the
popular and general class of cosine tapered windows is

considered in this paper. In addition, a performance evaluation
of the new scheme is conducted in Section 4. Finally, the
performance is compared with Quinn's estimators [13, 15] and
Candan's estimator [21] in Section 5 and concluding remarks
are given in Section 6.

2 | MODEL AND NOTATIONS

A complex single tone is considered. This signal is sampled at a
constant sampling rate, so that N samples are available:

y½n� ¼ x½n� þ ε½n� ¼ Aejωn þ ε½n�; n ∈ ⟦0; N − 1⟧ ð1Þ

where A and ω are, respectively, the complex amplitude and
the pulsation of the signal. Both parameters are assumed to be
constant and unknown. ϵ[n] are independent white Gaussian
noise samples with zero mean and variance σ2.

A zero‐padded version of the DFT of this signal is
considered. Hence, let K ≥ 2N be the DFT length of the
signal, so that (K − N ) be the length of zero padding. Then,
the DFT of y[n] is defined as follows:

Y ½k� ¼X½k� þ ɛ½k�

¼
PN−1

n¼0
x½n� þ ε½n�ð Þe−jωkn; k ∈ ⟦0; K − 1⟧

ð2Þ

where

ωk ¼ 2π
k
K

ð3Þ

As already explained in the introduction, a tapered version
of the DFT is considered in this paper to mitigate possible
sidelobes interference. To this end, the class of cosine windows
is recalled and can be expressed as the linear combination of
DFT of non‐tapered data as

~Y ½k� ¼
PM−1

m¼0

H ½m�
2
fY ½k −m� þ Y ½kþm�g

¼
PM−1

m¼0

PN−1

n¼0
H ½m�cos 2πm

n
N

� �
ðx½n� þ ε½n�Þe−jwkn

ð4Þ

where fH ½m�; m ∈ ⟦0; M − 1⟧g are the Fourier cosine co-
efficients of the window and are given in Table 1 for usual
windows [23].

3 | FREQUENCY ESTIMATION

Based on the model defined in Section 2, the proposed fre-
quency estimation is now based on a two‐step procedure,
similar to all displacement‐based estimation techniques.
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3.1 | Coarse estimation

The initial step is the standard coarse estimation using the
zero‐padded DFT maximisation, simply:

k0 ¼ argmax ~Y ½k�
�
�

�
�2; k ∈ ⟦0; K − 1⟧

n o
ð5Þ

3.2 | Fine estimation

The second step is based on a mean squared error mini-
misation. The criterion to be minimised is the difference be-
tween the measured DFT power and a DFT power model,
computed on the 3 samples near the main DFT peak, namely
k0. Let us introduce:

γ̂; α̂ð Þ ¼ argmin J γ; αð Þf g ð6Þ

J γ; αð Þ ¼
Xk0þ1

k¼k0−1

~Y ½k�
�
�

�
�2 − γ2~P ωk − ωk0 − α

� �� �2
ð7Þ

where γ is an estimate of the signal power (i.e. Aj j2) while
α¼ ω − ωk0 is the pulsation residual error with respect to the
first step estimation, namely ωk0 ¼ 2π k0=ð KÞ. Finally, ~P δð Þ is
the normalized power spectrum in a noiseless case (i.e.
Xj j2= Aj j2), where δ is the pulsation offset from the spectrum
peak power. ~P δð Þ is shown to be

~P δð Þ ¼
XM−1

m¼0

H ½m�
2

�
�
�
�
�

1 − ej δ−2πmKð ÞN

1 − ej δ−2πmKð Þ

 

þ
1 − ej δþ2πmKð ÞN

1 − ej δþ2πmKð Þ

!�
�
�
�
�

2

ð8Þ

In order to obtain a closed‐form formulation of α, and
given that α is small, a first order Taylor series expansion of ~P
is used

~P ωk − ωk0 − α
� �

¼~P ωk − ωk0
� �

þ α� ∂~PðδÞ
∂δ

�
�
�
δ¼ωk−ωk0

¼~P ωk − ωk0
� �

þ α� ~P0 ωk − ωk0
� �

ð9Þ

Then, introducing new and equivalent parameters

a¼ γ
b¼ γα

�

ð10Þ

The minimisation solution is shown to be

∂J
∂a
¼ 0

� �

⇒ â¼
Pk0þ1
k¼k0−1j

~Y ½k�j2~P ωk − ωk0
� �

Pk0þ1
k¼k0−1

~P ωk − ωk0
� �� �2

0

B
@

1

C
A

∂J
∂b
¼ 0

� �

⇒ b̂ ¼
Pk0þ1
k¼k0−1j

~Y ½k�j2~P0 ωk − ωk0
� �

Pk0þ1
k¼k0−1

~P0 ωk − ωk0
� �� �2

0

B
@

1

C
A

8
>>>>>>>>><

>>>>>>>>>:

ð11Þ

while the residual frequency error can be estimated as follows:

bα ¼
bb
ba

ð12Þ

Observing that function ~P δð Þ is even, and as a conse-
quence ~P0 δð Þ is odd, then Equation (12) can be simplified.
Therefore, the fine estimation bias of the frequency is shown
to be

α̂¼ −
~Y k0 − 1½ �
�
�

�
�2 − ~Y k0 þ 1½ �

�
�

�
�2

u ~Y k0 − 1½ �
�
�

�
�2 þ ~Y k0 þ 1½ �

�
�

�
�2

� �
þ v ~Y k0½ �
�
�

�
�2
ð13Þ

with

u ¼
2~P0

2π
K

� �

~P
2π
K

� �

~P 0ð Þ2 þ 2~P 2π
K

� �2

v ¼u
~P 0ð Þ

~P
2π
K

� �

8
>>>>>>>><

>>>>>>>>:

ð14Þ

Finally, the frequency estimator is given by

ω̂¼ 2π
k0
K
þ α̂ ð15Þ

This closed‐from and simple expression generalises the
frequency estimation proposed in [19] in the case of a zero
padding with an arbitrary length and for any kind of tapered
data within the class of cosine windows.

4 | PERFORMANCE EVALUATION

In order to evaluate the estimation performance of the pro-
posed scheme, U and V are introduced, corresponding to both
the numerator and the denominator of α̂ in Equation (13), in a
noiseless case, namely:

TABLE 1 :Coefficients of usual windows

Window H [0] H [1] H [2] H [3]

Rectangular +1 0 0 0

Hanning +25/46 −21/46 0 0

Hamming +0.5 −0.5 0 0

Blackman‐harris +0.35875 0.48829 +0.14128 −0.01168
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U ¼ ~X k0 − 1½ �
�
�

�
�2 − ~X k0 þ 1½ �

�
�

�
�2

V ¼ u ~X k0 − 1½ �
�
�

�
�2 þ ~X k0 þ 1½ �

�
�

�
�2

� �
þ v ~X k0½ �
�
�

�
�2

8
<

:

ð16Þ

The corresponding measurement errors δ̂U and δ̂V are
now defined, when considering the noisy data, and
assuming that the first step estimation (DFT maximisation) is
correct

U þ δ̂U ¼ ~Y k0 − 1½ �
�
�

�
�2 − ~Y k0 þ 1½ �

�
�

�
�2

V þ δ̂V ¼ u ~Y k0 − 1½ �
�
�

�
�2 þ ~Y k0 þ 1½ �

�
�

�
�2

� �
þ v ~Y k0½ �
�
�

�
�2

8
<

:

ð17Þ

so that the estimation error on α̂ can be expressed as

α̂ − α¼
U þ δ̂U
V þ δ̂V

−
U
V

ð18Þ

The latest can be approximated as follows, when both δ̂U
and δ̂V are small

α̂ − α ≃
δ̂U
V

−
U δ̂V
V 2 ð19Þ

As a consequence, the proposed estimator is asymptotically
unbiased, namely

E α̂ − α½ � ∼
Uð2uþ vÞ~Σ2

0

V 2 ∼ 0 ð20Þ

where ~Σ2
0 represents the noise variance whose expression is

given in Equation (26). The Mean Squared Error (MSE) of the
proposed estimator can be expressed as follows:

E α̂ − αð Þ
2� �

∼
1
V 2 E δ̂U

2
h i

−
2U
V 3 E δ̂U δ̂V

� �
þ
U2

V 4 E δ̂
2
V

h i

ð21Þ

Given that

j ~Y ½k�j2 ∼ ~X½k�
�
�

�
�2 þ 2R ~X½k�eɛ½k�

� �
ð22Þ

the variances and covariance of measurement errors δ̂U and δ̂V
can now be written

E δ̂
2
U

h i
∼ 2 ~X k0 − 1½ �

�
�

�
�2 þ ~X k0 þ 1½ �

�
�

�
�2

� �
~Σ2
0

− 4R ~X
H
k0 − 1½ �~X k0 þ 1½ �~Σ2

2

n o ð23Þ

E δ̂U δ̂V
� �

∼ 2u ~X k0 − 1½ �
�
�

�
�2 − ~X k0 þ 1½ �

�
�

�
�2

� �
~Σ2
0

þ 2vR ~X
H
k0 − 1½ �~X k0½ �

�n

− ~X k0 þ 1½ �~X
H
k0½ �
�

~Σ2
1

o

ð24Þ

E δ̂
2
V

h i
∼ 2 u2 ~X k0 − 1½ �

�
�

�
�2 þ v2 ~X k0½ �

�
�

�
�2

�

þ u2 ~X k0 þ 1½ �
�
�

�
�2
�

~Σ2
0

þ 4uvR ~X
H
k0 − 1½ �~X k0½ �

�n

− ~X k0 þ 1½ �~X
H
k0½ �
�

~Σ2
1

o

þ 4u2R ~X
H
k0 − 1½ �~X k0 þ 1½ �~Σ2

2

n o

ð25Þ

where ~Σk
2
; k ∈ 0; 1; 2f g

n o
is the noise covariance matrix

that is:

~Σ2
k ¼ E eɛ½l�eɛ

H
½l þ k�

h i

¼
σ2

4

XM−1

m1¼0

XM−1

m2¼0
H m1½ �H m2½ �

�
1 − e−j2π

k
Kþ

m1
N þ

m2
Nð ÞN

1 − e−j2π
k
Kþ

m1
N þ

m2
Nð Þ

(

þ
1 − e−j2π

k
Kþ

m1
N −m2

Nð ÞN

1 − e−j2π
k
Kþ

m1
N −m2

Nð Þ

þ
1 − e−j2π

k
K−m1

N −m2
Nð ÞN

1 − e−j2π
k
K−m1

N −m2
Nð Þ

þ
1 − e−j2π

k
K−m1

N þ
m2
Nð ÞN

1 − e−j2π
k
K−m1

N þ
m2
Nð Þ

)

ð26Þ

Observing Equation (21), one can notice that the un-
known initial phase of the signal, namely arg Af g, does not
impact the Root Mean Squared Error (RMSE) of the esti-
mator. This property is expected for any frequency estimator
whose MSE is close to the CRLB, since the CRLB for fre-
quency estimation of a single tone in additive white Gaussian
noise does not depend on the signal phase [3]. To the con-
trary, the RMSE depends on the coarse error, namely
ω − ωk0
�
�

�
�, which impacts the amplitude of the three DFT

samples.

4 - GIGLEUX ET AL.



5 | NUMERICAL ASSESSMENTS

In order to assess the validity of the proposed estimator
given by Equation (13), its RMSE is now evaluated using
Monte‐Carlo simulations (10, 000 runs). The RMSE is
compared with the analytical RMSE given in Equation (21).
For comparison purposes, both the RMSE and the associ-
ated analytical RMSE are normalized by the CRLB for fre-
quency estimation of a single tone in additive white Gaussian
noise [15]:

σ2
CRLB ¼

σ2

jAj2
�

6
N N2 − 1
� � ð27Þ

where Aj j2=σ2 is the Signal‐to‐Noise Ratio (SNR).
The results are also compared to the asymptotic standard

deviation for frequency estimation through the maximisation
of the periodogram of tapered data, with either Hamming or
Hanning windows [15]. The asymptotic standard deviation in
the case of Blackman‐Harris window is not available in the
literature, to the best of the author's knowledge. Besides, one
should note that Equation (27) also corresponds to the
asymptotic standard deviation in the case of rectangular win-
dow [15].

First of all, it is reminded that the case K = 2N with
rectangular window corresponds to the technique in [19].

Secondly, the well‐known MLE breakdown threshold [3,
9] can be observed in Figure 1 and Figure 2, where the
RMSE dramatically departs from the CRLB under a given
SNR. However, the simulated RMSE of the proposed
algorithms is very close to the analytical RMSE calculated in

Section 4, in the asymptotic region. The gap between the
RMSE and the CRLB of Equation (27) is somehow the price
to pay to mitigate sidelobes thanks to tapering, which enables
to lower ambiguities in a multiple targets scenario or to un-
mask a smaller target located in the sidelobes of a stronger
target. Nevertheless, for cosine windows, the simulated
RMSE remains very close to the specific asymptotic standard
deviation calculated for each specific window [15], as shown
on Figure 3.

Thirdly, one can observe a different behaviour depending
on the residual frequency error after the coarse estimation,
defined in Section 3.1. Indeed, unlike in Figure 1 where
ω − ωk0
�
�

�
� is close to 0, a progressive loss from the analytical

RMSE can be observed in Figure 2 when ω − ωk0
�
�

�
� is close

to 0.5. This behaviour originates from the quadratic error,
caused by the linearisation in Equation (9), that dominates
the error budget in extremely high SNR when ω − ωk0

�
�

�
� is

large. However, this loss of performances in such a case only
come up for large SNR where the performances are already
very good. One should note that the same observations apply
to other popular displacement‐based techniques, unless the
non‐linearity is compensated through bias removal as in
[15, 21].

Fourthly, the coarse estimation defined in Section 3.1 can
be erroneous, especially at low SNR, while the analytical RMSE
is given for a non‐erroneous coarse estimation in Equa-
tion (21). This explains the small but observable discrepancies
between the simulated RMSE and the analytical RMSE in
Figure 3, especially when ω − ωk0

�
�

�
� is close to 0.5 where

spectral leakage is maximal. The same observation applies in
Figures 4 and 5 where spectral leakage is higher at low zero
padding (i.e. low K/N) and degrades the SNR. Coarse esti-
mation also biases the overall estimation process at low SNR,

F I GURE 1 Performance of proposed estimator (N = 1024, K = 2N, ω − ωk0
�
�

�
�¼ 0)
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which explains why the RMSE can drop below the CRLB in
Figures 2 and 5.

Moreover, an analysis with respect to the zero‐padding
length is proposed in Figures 4 and 5. Once again, the simu-
lated RMSE is very close to the analytical RMSE and both
approach the asymptotic standard deviation as soon as K is
larger than 2 or 3 times the signal length, N.

To finish with, Figures 6–9 aim at comparing our pro-
posed scheme with both of the best literature's algorithms,
namely Quinn's [13, 15] and Candan's estimators [21].
Beyond the breakdown threshold (i.e. in the asymptotic

region), each marker represents the technique with the lowest
maximum RMSE for different SNR and zero padding, and
for different tapering windows. This comparison is conducted
with different residual frequency error, ω − ωk0

� �
, uniformly

sampled (101 points) within the interval −0:5; þ0:5½ �. For
each point, the RMSE is estimated using Monte‐Carlo
simulations (10, 000 runs). Then, each estimator is charac-
terised by its maximum RMSE over the variations of the
residual frequency error.

In addition, a background colour represents the improve-
ment of the proposed method compared to Quinn's or

F I GURE 3 Performance of Proposed Estimator (Signal‐to‐Noise Ratio = −10 dB, N = 1024, K = 2N)

F I GURE 2 Performance of proposed estimator (N = 1024, K = 2N, ω − ωk0
�
�

�
�¼ 0:5)
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Candan's estimators. More precisely, this colour indicates the
ratio between the RMSE of the proposed estimator and the
RMSE of the best of Quinn's or Candan's estimators. The ratio
is expressed in decibel.

Then, roughly speaking, one can conclude that the pro-
posed method exhibits improvement compared to Quinn's and
Candan's estimators when using significant zero‐padding
lengths (K ≥ 2N) and for small to moderate SNR, which is
the most challenging case.

6 | CONCLUSION

In this paper, the two‐step frequency estimator presented in
[19], limited to K = 2N and non‐tapered data, has been
extended to the case of zero‐padded and tapered data with the
class of cosine windows. This new estimator completes the
toolbox available for engineers as presented in Figures 6–9 and
allows to improve the estimation performance compared to
state‐of‐the‐art techniques when K ≥ 2N.

F I GURE 4 Performance of proposed estimator (Signal‐to‐Noise Ratio = −10 dB, N = 1024, ω − ωk0
�
�

�
�¼ 0)

F I GURE 5 Performance of proposed estimator (Signal‐to‐Noise Ratio = −10 dB, N = 1024, ω − ωk0
�
�

�
�¼ 0:5)
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F I GURE 6 Comparison of the proposed estimator with Quinn's and Candan's estimators (N = 1024, rectangular window)

F I GURE 7 Comparison of the proposed estimator with Quinn's and Candan's estimators (N = 1024, Hamming window)

F I GURE 8 Comparison of the proposed estimator with Quinn's and Candan's estimators (N = 1024, Hanning window)
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