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◦ Summary 
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◦ Proposed approach 
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 Summary 



 Transmitters illuminate 

target(s). 

 Application example: MIMO 

radar 

 

 

 

 Source(s) emit their own 

signals 

 Application example: 

localization of mobile 

equipment in cellular networks 

Active Localization Passive Localization 





 Widely distributed transmitters and receivers 

 

 

 

 

 

 

 

 Transmitters access the medium using disjoint bandwidths of the 
spectrum. 

 

 

 

 

 CRLB on the target positions which depends on… 

◦ Transmitter’s power 

◦ Bandwidth of the signals 
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TOA-based 

localization, 

(multilateration) 



 Power and bandwidth allocation: 

◦ Power vector: 𝐩 = 𝑝1, … , 𝑝𝑀
𝑇 

◦ Bandwidth vector: 𝐛 = 𝑏1, … , 𝑏𝑀
𝑇 

 

 Similarly we can formulate optimization problems for… 

◦ Power allocation only 

◦ Bandwidth allocation only 

Assuming prior 
knowledge on the 
targets locations 

𝐩 𝑞 𝑞=1
𝑄

 

 

Minimize: CRLB on 
target positions 

Given constraints 
on power and/or 

bandwidth 

Optimization 
variables:  

transmitters powers 
and bandwidths 

min
𝐩,𝐛
: max

𝑞=1,…,𝑄
CRLB𝑞 𝐩, 𝐛

subject to: 1𝑇𝐩 ≤ 𝑃

1𝑇𝐛 ≤ 𝐵

 



 CRLB𝑞 𝐩, 𝐛  not convex  convex optimization methods 

 Sequential convex approximation 

1. Convex approximation of the problem 

2. Uses the solution for the next convex approximation 

3. Stops upon practical convergence 

Solve 

convexified 

problem 

Solution at iteration 𝑛 

𝐩 𝑛 , 𝐛 𝑛  

  

Initialization

𝐩 0 , 𝐛 0  

Stop at practical 

convergence 

𝐩 𝑛 , 𝐛 𝑛

= 𝐩 𝑛−1 , 𝐛 𝑛−1  

With 5 transmitters, 10%, 50% and 70% reduction in localization error 

in power, bandwidth and joint power-bandwidth allocating, respectively, 

compared to uniform allocation. 





 Goal: Localization (geolocation) of RF emitters in multipath 

environments 

 

 Challenges: 

◦ Line-of-sight (LOS) paths 

◦ Non-line-of-sight (NLOS) paths 

◦ Blocked LOS paths (e.g. indoor) 

 

 Applications: 

◦ Indoor positioning 

◦ Defense/first responders 

◦ Location based services  

◦ E911 



 “Most 911 calls are currently made 

from wireless phones, and most 

wireless calls are made from indoors. 

This increases the likelihood that 

wireless 911 calls will come from 

indoor environments where 

traditional location accuracy 

technologies, optimized for outdoor 

calling, may not work. To close this 

gap in performance, the Commission 

today updated its E911 rules to 

include requirements focused on 

indoor location accuracy.”  FCC 

News Release 1/29/2015 

50 meters 

 In two years: Reach a caller's indoor position within 50 

meters in 40% of cases. 

 In six years: Accurate to 50 meters in 80% of cases. 



 Relies on TOA’s 

 The eNodeB assists the UE so it 

can synchronize with the GNSS 

signals faster. 

 Not more accurate than GNSS 

 Challenged in dense urban and 

indoor situations 

 

 

 Relies on TOA/TDOA or signal 

strength 

 Does not require GPS 

 Requires synchronization among 

base stations. 

 Requires signals from at least 3 

eNodeB 

 Challenged in dense urban and 

indoor situations 

 

Assisted Global Navigation 

Satellite System (A-GNSS) 

Positioning 

Advanced Forward Link 

Trilateration (AFLT)/TDOA 

Satellite 

 

eNodeB 

 

Positioning signal 

 

Assisting information 



 Connection needed to only a 

signle eNodeB 

 Very coarse accuracy 

 

 Relies on TDOA’s 

 Uses uplink signals 

 Computation done in the 

eNodeB’s instead of the UE. 

 Requires synchronization among 

eNodeB’s 

 Challenged in dense urban and 

indoor situations 

Cell-ID-based Positioning Uplink TDOA (RAN) 

Cell 

 

eNodeB 

 

Positioning signal 



 Methods designed for open outdoor spaces do not work well in 

congested urban areas and indoors.  

Source: Nextnav 2012 



 Emerging technology of Cloud Radio Access Network (Cloud-RAN or C-

RAN) shifts processing and complexity to the cloud thus simplifying the 

design of sensors.  

 Concept of relatively simple sensors linked to the cloud may be ported to 

applications other than cellular, for example first responders.  

 

Optic fiber 

Cloud computing 

Localization over multipath channels still an open problem!  



Goal 

 Estimate sources’ locations 

 

Assumptions 

 Network of distributed sensors with fixed, known locations 

 Sensors have ideal communication with fusion center 

 Emitters’ waveforms and their timing are known 

 Synchronization 

◦ Time synchronization between sensors and emitters  

◦ No phase synchronization 

 Observation time << channel coherence time 

Time-invariant multipath channel 

 No prior information on multipath channel 

 

Fusion  

center 



Signal at the 𝑙-th sensor: 

𝑦𝑙 𝑛 =  𝛼𝑙𝑞𝑠𝑞 𝑛 − 𝜏𝑙 𝐩𝑞

𝑄

𝑞=1

+  𝛼𝑙𝑞
(𝑚)
𝑠𝑞 𝑛 − 𝜏𝑙𝑞

(𝑚)

𝑀𝑙𝑞

𝑚=1

𝑄

𝑞=1

+ 𝑛𝑙(𝑡) 

 
 𝑄 emitters and 𝐿 sensors 

 𝑠𝑞(𝑡): the signal of the 𝑞-th emitter 

 LOS parameters: 

 𝛼𝑙𝑞: complex amplitude of the LOS path between emitter q and 
sensor 𝑙 

 𝜏𝑙 𝐩𝑞 : propagation time from location 𝐩𝑞 to sensor 𝑙 

 NLOS parameters 

 𝛼𝑙𝑞
(𝑚)
: complex amplitude of the 𝑚-th NLOS path between emitter 

q and sensor 𝑙 

 𝜏𝑙𝑞
(𝑚)

: propagation time of 𝑚-th NLOS path from between emitter q 

and sensor 𝑙 
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Sensor 3 

Indirect localization 

Direct Positioning Determination (DPD) [Weiss’05] 

Downconverted 

baseband  

signals 

Estimate TOA’s 



 Direct positioning determination 

(DPD) is asymptotically optimal in the 

maximum likelihood sense for ideal 

LOS channels 

 

 DPD performs better than 

multilateration at low SNR  

 

 DPD does not address localization in 

multipath:  

◦ Non-line-of-sight (NLOS) paths 

◦ Blocked LOS paths 

 

 



 Various metrics were 

suggested 

 

 

 

 

 

 

 

 NLOS signals bounce 

only once 

 Known number of 

reflectors 

 Joint estimation of 

reflectors and emitters 

locations. 

 Works only for discrete 

MP contributions 

 If LOS is blocked 

 error 

 

time 

Mitigate/reject 

contribution from 

sensors with strong 

NLOS [Chen’99] 

Measure TOA of 1st 

arrival [Lee’02] 

Single-bounce 

geometric model 

[Liberti,Rappaport’96] 



ML estimation in white Gaussian noise 

◦ Measurements 

◦ Unknown parameters related to LOS paths 

◦ Unknown parameters related to NLOS paths 

 

min
𝐩1,…,𝐩𝑄
𝛼11,…,𝛼𝐿𝑄
𝑀11,…,𝑀𝐿𝑄

𝜏11
(1)
,…,𝜏𝐿𝑄
(𝑀𝐿𝑄)

𝑏11
1 ,…,𝑏𝐿𝑄

𝑀𝐿𝑄

  𝑦𝑙 𝑛 − 𝛼𝑙𝑞𝑠𝑞 𝑛 − 𝜏𝑙 𝐩𝑞

𝑄

𝑞=1

−  𝛼𝑙𝑞
(𝑚)
𝑠𝑞 𝑛 − 𝜏𝑙𝑞

(𝑚)

𝑀𝑙𝑞

𝑚=1

𝑄

𝑞=1

2
𝑁

𝑛=1

𝐿

𝑙=1

  

 

 Large unknown parameters pool 

 Infeasible complexity 

 Overfitted solution even if problem could be solved 



Procedure 

Key info 

Goal 

Deconvolution 

Multipath mitigation 

 LOS path is first arrival 

 MP paths are sparse 

 

 

 Estimate TOA’s : 
𝜏 1 < 𝜏 2… < 𝜏 𝑇 

      and their amplitudes 

𝑎 1, 𝑎 2, … , 𝑎 𝑇 

      at each sensor. 

 Exploit sparsity 

 Remove 2nd and later 

estimated arrivals from 

signals 

𝑟 𝑙 𝑡 = 𝑟𝑙 𝑡 − 𝑎 𝑖𝑠(𝑡 − 𝜏 𝑖)
𝑇

𝑖=1
 

Localization 

Estimate sources locations 

 Sources are sparse 

 LOS paths originate from 

common location 

 Multipath is local 

 

 Direct approach relies 

directly on observations 

 Cloud-based 

 Formulate and solve a 

convex optimization 

problem 

 Least number of sources 

and NLOS that describe 

the measured signals 



 MP mitigation 

(1)  Sparse number of arrivals 

(2) At each sensor, estimate propagation delays of MP paths 

(3)  Subtract out from data  

 

 For sensor 𝑙, propagation delays are solution to problem 

min
𝐱
… 𝐲𝑙 − 𝐀𝐱

2
+ 𝜆 𝐱 1 

Here, the 𝑁 × 𝐷𝑄 matrix 𝐀 is a dictionary of the received signals for 

all possible delay discrete MP delays and waveforms: 

𝐀 = 𝐬1(0) ⋯ 𝐬1 𝐷 − 1 𝜏𝑟𝑒𝑠

.
…
.
𝐬𝑄(0) ⋯ 𝐬𝑄 𝐷 − 1 𝜏𝑟𝑒𝑠  

 

 Lasso optimization problem 

◦ Solved by convex optimization methods. 

◦ Yields sparsest solution. 
≈ × 



 All measurements are contained in a single matrix of size 𝑁 × 𝐿: 

 

 

 𝐑 =
𝑦1(0) … 𝑦𝐿(0)
⋮ ⋱ ⋮

𝑦1(𝑁 − 1) … 𝑦1(𝑁 − 1)
 

 

      =  𝛼1𝑞𝐬𝑞 𝜏1 𝐩𝑞 ⋯ 𝛼𝐿𝑞𝐬𝑞 𝜏𝐿 𝐩𝑞

𝑄

𝑞=1

+   ⋯ 0 𝛼𝑙𝑞
(𝑚)
𝐬𝑞 𝜏𝑞𝑙

(𝑚)
0 ⋯

𝑀𝑞𝑙

𝑚=1

𝐿

𝑙=1

𝑄

𝑞=1

+𝐖 

 

 𝐬𝑞(𝜏) stacks 𝑁 times samples of the emitted signal delayed by 𝜏: 

𝐬𝑞(𝜏) = 𝑠𝑞 0 − 𝜏 ⋯ 𝑠𝑞 𝑁 − 1 𝑇 − 𝜏
𝑇
 

Sensors 

Samples 



Observations at 
all sensors: 𝐑 

Find sparsest number of 
sources and NLOS paths that 

explains the observations Recover the 
source’s 
location 

𝐑 =  𝛼1𝑞𝐬𝑞 𝜏1 𝐩𝑞 ⋯ 𝛼𝐿𝑞𝐬𝑞 𝜏𝐿 𝐩𝑞

𝑄

𝑞=1

+   ⋯ 0 𝛼𝑙𝑞
(𝑚)
𝐬𝑞 𝜏𝑞𝑙

(𝑚)
0 ⋯

𝑀𝑞𝑙

𝑚=1

𝐿

𝑙=1

𝑄

𝑞=1

 

 

 How to decide on the number of NLOS paths 𝑀𝑞𝑙 and estimate the 

sources’ location?  Apply tools from compressive sensing  



 Simplicity [Chandrasekaran,Recht,Parrilo,Willsky’12] 

◦ Generalizes the notion of sparsity. 

◦ The dictionary (atomic set) contains the known atoms or building 

blocks of the received signals. 

◦ Dictionaries may contain atoms of different types and be 

infinite. 

 We wish to distinguish between LOS and NLOS paths 

 two types of building blocks 

 

𝐑 =  𝛼1𝑞𝐬𝑞 𝜏1 𝐩𝑞 ⋯ 𝛼𝐿𝑞𝐬𝑞 𝜏𝐿 𝐩𝑞

𝑄

𝑞=1

+   ⋯ 0 𝛼𝑙𝑞
(𝑚)
𝐬𝑞 𝜏𝑞𝑙

(𝑚)
0 ⋯

𝑀𝑞𝑙

𝑚=1

𝐿

𝑙=1

𝑄

𝑞=1

 

LOS atom NLOS atom 

𝐋𝑞 𝐛, 𝐩 =
.

𝑏1𝐬𝑞 𝜏1 𝐩 ⋯ 𝑏𝐿𝐬𝑞 𝜏𝐿 𝐩  𝐍𝑞𝑙(𝜏) = 𝐬𝑞 𝜏 𝐮𝑙
𝑇 



 Simple model of the data is 

𝐑 =  𝑐𝑘𝐀𝑘

𝐾

𝑘=1

 

 …where the atoms 𝐀𝑘  belong to the dictionary 𝒜 

𝐀𝑘 ∈ 𝒜 = 𝒜𝐿𝑂𝑆 ⋃𝒜𝑁𝐿𝑂𝑆, 

 composed of LOS atoms… 

𝒜𝐿𝑂𝑆 = 𝐋𝑞 𝐛, 𝐩 : 𝐛 ∈ ℂ
𝐿, 𝐩 ∈ 𝑆

𝑄

𝑞=1

 

 …and NLOS atoms: 

𝒜𝑁𝐿𝑂𝑆 =  𝐍𝑞𝑙 𝜏 : 𝜏 ∈ 0, 𝜏𝑚𝑎𝑥

𝐿

𝑙=1

𝑄

𝑞=1

 

𝑆 



 Finding the simplest explanation (smallest linear combination of 

atoms) of the data is an NP-hard problem. 

 

 

 The atomic norm ⋅ 𝒜 is the ℓ1-norm ⋅ 1 when 𝒜 is the set of 

unit-norm one-sparse vectors. 

𝐑 
𝒜
= min
.
 𝑐𝑘𝑘     such that     𝐑 =  𝑐𝑘𝐀𝑘𝑘  

 Simplicity is induced by minimizing the atomic norm: 

 

The received signals are assumed simple in the sense that they 

can expressed by a relatively small number of atoms 

Approximate explanation 

in presence of noise 

Induces low number of atoms min
𝑐𝑘
.  𝑐𝑘

𝑘

                            

subject to: 𝐑 − 𝑐𝑘𝐀𝑘
𝑘 2

≤ 𝜖

 



min
𝑐𝑘
.  𝑐𝑘

𝑘

                            

subject to: 𝐑 − 𝑐𝑘𝐀𝑘
𝑘 2

≤ 𝜖

 

Simple explanation of the data: 

𝐑 = 𝑐𝑘
∗𝐀𝑘

𝑘

 

𝐑 =   𝑐𝑘
𝑞∗
𝐋𝑞 𝐛𝑘

𝑞
, 𝐩𝑘
𝑞

𝑘

𝑄

𝑞=1

+   𝑐𝑘
𝑞𝑙∗
𝐍𝑞𝑙 𝜏𝑘

𝑞𝑙

𝑘

𝐿

𝑙=1

𝑄

𝑞=1

 

Solution: 𝑐𝑘
∗ > 0 

Expansion in LOS 

and NLOS atoms 

LOS atoms are a 

proxy for locations: 

𝐩𝑘
𝑞

 

Create dictionary 𝒜 from: 
• Search area 

• Largest MP delay 

• Sensors locations 

• Waveforms 

Does this procedure yield 

the correct sources’ 

locations? 



 Example: 

Definition: A location 𝐩 is said to be consistent with 𝑋 paths (LOS or NLOS) if the 

propagation delays of such paths, say 𝜏1, … , 𝜏𝑋, satisfy 

𝜏𝑥 = 𝜏𝑙𝑥 𝐩  for 𝑥 = 1,… , 𝑋, 

where 𝑙1, … , 𝑙𝑋 ⊆ 1,… , 𝐿   are the indexes of the destination sensors of the 𝑋 
paths, and 𝜏𝑙𝑥(𝐩) is the delay of the direct path between location 𝐩 and sensor 𝑙𝑥. 

Phone’s location 

is consistent with 

3 paths. 



Assumptions: 

(1) The number of LOS paths 𝑆𝑞 from the 𝑞-th source is known. 

(2) Noiseless 

 

Lemma 1: 

 If the size of the LOS atoms 𝐋𝑞 𝐛, 𝐩  is normalized to 

𝐛 2 = 𝑢𝑞 

 where 𝑢𝑞 is such that 

𝑢𝑞 <
1

𝑆𝑞 − 1
, 

 then any output location for the 𝑞-th source will be consistent with 𝑆𝑞 
paths or more. 

 

Interpretation: given a solution that produces a location  with less than 𝑆𝑞 

paths, and if 𝑢𝑞 < 1 𝑆𝑞 − 1  is met, there exists another lower cost 

solution, , implying that a solution with fewer than 𝑆𝑞 paths cannot be 
optimal. 



Assumptions: 

(1) The number of LOS paths 𝑆𝑞 from the 𝑞-th source is known. 

(2) Noiseless 

 

Lemma 2: 

 If the size of the LOS atoms 𝐋𝑞 𝐛, 𝐩  is normalized to 

𝐛 2 = 𝑢𝑞 

 where 𝑢𝑞 is such that 

𝑢𝑞 >
1

𝑆𝑞
, 

 then at least one location will be output for the 𝑞-th source . 

 

Interpretation: given a solution that does not produce a location for the 

𝑞-th source, and if 𝑢𝑞 > 1 𝑆𝑞  is met, there exists another lower cost 

solution that produces a location for the 𝑞-th source. 



Assumptions: 

(1) The number of LOS paths 𝑆𝑞 from the 𝑞-th source is known. 

(2) Noiseless 

(3) Only the true location of the 𝑞-th source is consistent with 𝑆𝑞 paths. 

 

Theorem: 

 If the size of the LOS atoms 𝐋𝑞 𝐛, 𝐩  is normalized to 

𝐛 2 = 𝑢𝑞 

 where 𝑢𝑞 is such that 
1

𝑆𝑞 − 1
< 𝑢𝑞 <

1

𝑆𝑞 − 1
, 

 then by Lemma 1 and 2, a location will be output for the 𝑞-th source 

that is consistent with 𝑆𝑞 paths, and by Assumption (3) it must be the 

correct location. 

 



 𝑆1 = 4 

 Define 𝑣 = 1 𝑢1 2  

 By Theorem: 𝑆1 − 1 < 𝑣 < 𝑆1 



Minimize atomic 

norm and recover 

sources locations 

 Relaxing assumption 𝑆𝑞 is known. 

◦ 𝑆 𝑞  initial guess # LOS paths for source 𝑞. 

◦ If 𝑢𝑞 is chosen such that 
1

𝑆 𝑞−1
< 𝑢𝑞 <

1

𝑆 𝑞−1
 where 𝑆 𝑞 > 𝑆𝑞… 

…no location will be output for source 𝑞. 

 

If 𝐩 𝑞 =   
          
  𝑆 𝑞 𝑆 𝑞 − 1 

for any 𝑞 

𝑆 𝑞 = 𝐿 

for all 𝑞 

Stop if 𝐩 𝑞 ≠  for all 𝑞 



 Optimization problem is ∞-dimensional: 

min
𝑐𝑘
𝑞
,𝑐𝑘
𝑞𝑙
.  𝑐𝑘

𝑞

𝑘

+ 𝑐𝑘
𝑞𝑙

𝑘

                                                   

subject to: 𝐑 −  𝑐𝑘
𝑞
𝐋𝑞 𝐩𝑘

𝑞

𝑘

𝑄

𝑞=1

+   𝑐𝑘
𝑞𝑙
𝐍𝑞𝑙 𝜏𝑘

𝑞𝑙

𝑘

𝐿

𝑙=1

𝑄

𝑞=1
2

≤ 𝜖

 

 

Grid approach (converges to original problem [Rang,Bhaskar,Recht’13]) 

𝐩𝑘
𝑞
∈ 

𝜏𝑘
𝑞𝑙
∈ 

Search area 

2D 

0 Max delay 

∞ locations and ∞ delays 

 
         

 ∞ atoms 

Create 

grids 

𝐩𝑘
𝑞
∈ 

𝜏𝑘
𝑞𝑙
∈ 

Search area 

2D 

0 Max delay 

Finite # locations and # delays 

 
         

 finite # atoms 



 Two types of grids 

 Reduces computational complexity 



 10 MHz emitter (30 m ranging resolution) 

 Multipath channel RMS delay spread is 500 ns (exponential profile, 

Poisson arrivals) 

 Search area: 200 x 200 m 

 5 base stations and 1 UE 

 100 samples/sensor 

 

 

Sensor with blocked LOS 



 Correct recovery if error is smaller than 10 m 



 Error normalized to 30 m 

 SNR =  30 dB per observation window (100 samples and 5 

sensors) 

 



 SNR =  30 dB per observation window 

 



SNR = 30 dB per observation window 



 Resources allocation for MIMO radar 

Algorithms for power and/or bandwidth allocation in the presence 

of multiple targets are provided. 

Bandwidth allocation shown to be more valuable than power 

allocation. 

 

 A novel approach for localization of emitters in multipath featuring 

Direct localization outperforms classical TOA indirect localization 

An approximation of ML estimator 

+ novel framework captures additional information: 

Sparse multipath 

LOS are first arrivals 

Sparse # sources 

LOS signals originate from a common emitter location 

Multipath is local 

 

 

 

 

 



Does not require channel state information, such as power 

delay profile 

Cloud-based 

 Computationally more expensive than indirect techniques but… 

…Grid refinement approach proposed for reduced complexity 

 

 




