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Abstract—In this communication, we propose a new Bayesian
framework to characterize the concentration parameter of the
von Mises distribution. To achieve this, we equip this parameter
with a Lie group structure. We design a Lie group (LG)
estimator by incorporating prior information modeled by a
Gaussian distribution on R+. This estimator is determined using
a dedicated optimization algorithm on R+. The performance of
this estimator is then evaluated by computing a new expression
of the Bayesian Cramér-Rao bound on the Lie group (LG-BCRB)
R+. The consistency between the proposed estimator and the LG-
BCRB is validated through numerical simulations by comparing
it with the Bayesian Mean Squared Error.

Index Terms—Lie group, von Mises distribution, Bayesian
estimation, Cramér-Rao bound.

I. INTRODUCTION

The problem of processing angular data has emerged in
many research areas within signal processing over the past
decade. Such data are typically provided by various acquisition
systems, including remote sensing systems (RADAR, LIDAR)
and instrumental sensors such as gyrometers [1]–[3]. Classi-
cally, angle data lie on ]−π, π], making standard distributions
like the Gaussian distribution inadequate for accounting for
their periodicity [4], [5]. The von Mises distribution is one
of the most popular distributions for fitting angular measure-
ments and has demonstrated high modeling performance in
various applications [4], [6], [7]. Additionally, it is well-suited
for modeling signal phase observations in GNSS navigation
systems within a Kalman filter architecture [8]–[10].

Starting with von Mises modeling whose probability density
function is given by

p(ψi|ϕ, κ) =
1

2πI0(κ)
exp[κ cos(ψi − ϕ)], (1)

(I0(·): modified Bessel function) the first objective is to
estimate the location parameter ϕ that provides a noise-free
measurement. This estimation problem has been studied in the
literature [11], [12]. However, estimating the second parameter
κ, known as the concentration parameter and related to the
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variance of the distribution, is more challenging because it
has no closed-form and its estimation is inaccurate for few
observations [13], [14]. This problem is encountered in a
plethory of applications as GNSS signal quality estimation
[15], or thermal noise fluctuation characterization [14].

But also in sensor fusion applications where von Mises data
is involved [16]. In environmental monitoring, the concentra-
tion estimation allows the assessment of wave measurement
modeling ocean wave directions [17].

Although various solutions have been proposed to address
the bias and the lack of accuracy, they remain empirical
[18]. To overcome these issues, one solution is to change
the space in which this parameter is expressed. A natural
choice is to constraint κ in the set of positive values, which
can be done by embedding it on the Lie group (LG) space
R+ [19]. Lie groups are powerful tools that allow for the
proper modeling of the geometrical properties of a parameter.
They have demonstrated promising results across a plethora of
applications [20]. Through this natural representation can be
viewed as a geometric prior information, the precision of the
estimation could be improved. Another solution is to define
the problem within a Bayesian framework. Indeed, it is well-
known that the mean squared error (MSE) of a Bayesian
estimator depends only on its variance and is by definition
unbiased.
In this article, we propose to combine these two solutions by
developing an original Bayesian framework on LG and derive
a new estimator of the concentration parameter of the von
Mises distribution. It is important to emphasize that this is
a preliminary work, and ultimately, the estimation of κ will
be combined with that the one of ϕ. The first contribution
of our work is to seek the estimator of κ by utilizing the
LG structure of the positive real numbers, R+. The prior
information is provided by a LG Gaussian distribution on R+,
and the estimator is derived by defining a new LG cost function
obtained from the posterior distribution of κ. Specifically, a
Newton algorithm on the LG R+ is implemented [21]. The
second contribution is to study the theoretical performance of
this estimator by computing a LG Bayesian Cramér-Rao bound
(LG-BCRB) on the concentration parameter. Based on the



LG-BCRB developed in [22], a novel closed-form expression
is derived for our problem. Contrary to some other LGs, it
has the advantage of being provided without approximation
due to the commutativity of R+. The consistency of the
proposed estimator with respect to the LG-BCRB is validated
through numerical experiments that study the impact of various
parameters of the problem.
The communication is organized as follows: section II pro-
vides the necessary background on LGs, sections III and IV
respectively develop the proposed LG estimator based on von
Mises observations and the associated LG-BCRB, section V
is dedicated to numerical simulations.

II. BACKGROUNDS ON LIE GROUPS

In this section, we review background and useful Lie group
tools for performing Bayesian estimation and deriving the
Cramér-Rao bound.

A. Lie group: Definitions

A matrix Lie group (G ⊂ Rn×n,⊛) is a set of n × n
matrices that forms a smooth manifold and a group under the
operation ⊛. The tangent space at the identity matrix, called
the Lie algebra g, is a vector space that serves as a local
approximation of G. Elements of g are linked to the Lie group
through the exponential and logarithm maps expG : g → G
and logG : G→ g. If g has dimension m, we can use bijections
and their reciprocals [.]∧ : Rm → g and [.]∨ : g → Rm
to move between g and Rm. This structure is advantageous
because it allows us to work with Euclidean vectors rather than
matrices, which is more suitable from a numerical perspective.
Fig.1 presents a schematic illustrating the relationship between
the Lie group, Lie algebra, and Euclidean space.

Lie algebra Euclidean space Rm

0m×1 a

a = [a]∧G a = [a]∨G

0n×n

Lie group G ⊂ Rn×n

In×n

expG(a) a

logG(X)X

Fig. 1: Relation between Lie group, Lie algebra and Euclidean
space.

The space R+ forms a commutative Lie group under the
operation of classical multiplication, with the neutral element
being 1. The logarithm and exponential maps for this group
are given by the natural logarithm log(.) and the exponential
function exp(.), respectively, both defined on R+ and R.

B. Bayesian estimation on Lie groups

In this section, we review the Bayesian tools for Lie groups
that are necessary in order to apply in our methodology. In
the following, we propose to define all the concepts for a 1-
dimensional Lie group G, i.e. log∨G (.) ∈ R. We define the
notation log∨G (v) as the composition of the logarithm map
logG and [.]∨, such that log∨G (v) = logG(v). Note that it can
be easily generalized for any matrix Lie group for dimension
greater than 1.

1) Gaussian distribution : To perform Bayesian inference
on Lie groups (LGs), it is essential to define uncertainty
i.e. probability distribution functions (pdfs). Here, we focus
on the LG-Gaussian, generalizing the Euclidean Gaussian
distribution. This distribution has several important properties,
particularly the advantage of being easy to sample [22]. Let
ϵ ∈ R (isomorph to G) be a zero-mean Gaussian variable
with variance σ2, and let µ the mean defined on G. Then,
the Gaussian distribution on Lie groups of x = µ exp∧G(ϵ) is
given by1:

p(x) ≃ 1√
(2π)σ2

exp

Å
− 1

2σ2
log∨G

(
µ−1x

)2ã
. (2)

In the case where G is commutative we can rewrite the
latter distribution as:

p(x) =
1√

(2π)σ2
exp

Å
− 1

2σ2
(log∨

G (x)− log∨G (µ))2
ã
.

(3)
2) Posterior estimator: Let x ∈ G be an unknown LG

parameter estimated from a set of N independent Euclidean
observations ψ = {ψi}Ni=1. We assume that x is a priori
distributed according to a probability density function (pdf)
p(x) and that it is related to ψ through the posterior distribu-
tion p(ψ|x). A posterior estimator is basically given by the
maximum a posterior (MAP)

x̂ = argmax
x∈G

p(x|ψ) (4)

While the likelihood depends on the nature of the sensor,
it is conventional to assume that the prior is a Gaussian
distribution on Lie groups as:

p(x|x0, σ0) =
1√

(2π)σ2
0

exp

Å
− 1

2σ2
0

(log∨G (x)− log∨G (x0))
2

ã
.

(5)
The advantage of using this distribution is that it allows for
directly specifying a prior value on LG, with the associated
uncertainty characterized by the variance σ2

0 . From a practical
perspective, the latter represents the variance of the random
variable log(κ). Thus, if the physical variance of κ, denoted by
σ̃2
0 is known, the corresponding value of σ2

0 can be computed
using the following transformation

σ2
0 =

σ̃2
0

κ0
. (6)

1The Gaussian can be also defined with x = exp∧G(ϵ)µ



Due to the non-linear structure of the latter through the
logarithm operator, the solution of (4) must be determined
using numerical methods, primarily based on gradient descent
techniques.

3) Bayesian Cramér-Rao bound on Lie groups: Finally, the
accuracy of x̂ can be assessed by computing the Bayesian
mean square error on LGs

MSE(x, x̂) =
∫
ψ

∫
x

log∨G
(
x−1x̂

)2
p(ψ | x) p(x) dψ µ(dx)

(7)
where µ denotes a Haar measure.

whose achievable minimum value is given by the Bayesian
Cramér-Rao bound on Lie groups (LG-BCRB). Its expression
is given by [22]

P = Ep(ψ,x) (J(x, x̂)) I−1Ep(ψ,x) (J(x, x̂)) . (8)

where J(x, x̂) =
+∞∑
n=0

Bn
n!
adG(log∨

G

(
x−1 x̂

)
)n such as Bn are

the Bernoulli numbers, adG(a) b = b a− a b ∀(a, b) ∈ g2 and
I is the LG-Bayesian information Fisher matrix:

I = −Ep(ψ,x)

Ç
∂2 log p (ψ, x exp∧G (ϵ1) exp∧

G (ϵ2) )

∂ϵ1∂ϵ2

∣∣∣∣
ϵ1,ϵ2=0

å
.

(9)
In the particular case where G is commutative, which we

will interest in the following of the paper, then J(x, x̂) = 1
and

P = I−1. (10)

III. PROPOSED VON MISES BAYESIAN ESTIMATION ON LIE
GROUPS

In this section, we introduce a novel Bayesian method for
Lie groups, specifically tailored for observations following a
von Mises distribution. We focus on the estimation of the
concentration parameter: as it is related to the variance of the
distribution, we propose to treat it as an intrinsic element of
the Lie group R+. In addition, we consider a prior Gaussian
distribution on the Lie group R+ and derive a new LG cost
function for its estimation.

A. Problem statement

Let us assume a set of N independent angular observations
{ψi}Ni=1 following the von Mises distribution whose expres-
sion is given by 1. The likelihood function is given by:

p(ψ1, ..., ψN |ϕ, κ) =
N∏
i=1

p(ψi|ϕ, κ). (11)

In the following, we assume that the parameter ϕ is known
(or already previously estimated) and we only focus on the
estimation of κ. This choice is primarily made because an
estimator of ϕ can be established very simply using estima-
tion methods from the literature [23], [24]. Ultimately, both
parameters will be jointly estimated. In the following, the
dependence on ϕ is therefore eliminated from the likelihood.

The aim is to design a Bayesian estimator of κ on the Lie
group R+. To accomplish this, it is essential to define a prior

distribution that meets this constraint. We propose using the
LG Gaussian distribution on R+, defined by

p(κ) =
1√
2π σ2

0

exp

ß
− [log(κ)− log(κ0)]

2

2σ2
0

™
, (12)

where κ0 ∈ R+ is the prior mean of κ with its variance
denoted as σ2

0 .

B. Estimation problem

A conventional approach to this problem consists in identi-
fying the value of κ that maximizes the posterior distribution
of κ given by

p(κ|ψ1, ..., ψN ) ∝ p(ψ1, ..., ψN |κ) p(κ). (13)

By using expressions (11) and (12), it ensues that

κ̂ = argmax
κ∈R+

N∏
i=1

1

I0(κ)
exp [κ cos(ψi − ϕ)] exp

ï
−τ(κ)

2

2σ2
0

ò
,

(14)
where τ(κ) = log(κ) − log(κ0). The latter equation can
be reformulated in order to minimize the negative logarithm,
thereby defining the estimation problem as the new following
optimization problem on R+

κ̂ = argmin
κ∈R+

h(κ), (15)

where:

h(κ) = −
N∑
i=1

[κ cos(ψi − ϕ)] +N log[I0(κ)] +
τ(κ)2

2σ2
0

(16)

is the LG cost function. The latter does not admit any
analytical solution due to the presence of the modified Bessel
function. In order to address this issue, we propose to use a
numerical approach thanks to a Newton algorithm on the Lie
group R+ [21]. Generally designed for any matrix Lie group,
the recursion on R+ is basically given, at each iteration l, by

κl+1 = κl exp(δl), (17)

where δl ∈ R is

δl = −H(κl)−1∇h(κl), (18)

and where ∇h(κ) and H(κ) are respectively the LG gradient
and Hessian of h computed as follows

∇h(κ) = ∂

∂ϵ
h(κ exp(ϵ))

∣∣∣∣∣
ϵ=0

, (19)

H(κ) =
∂

∂ϵ1∂ϵ2
h(κ exp(ϵ1) exp(ϵ2))

∣∣∣∣∣
ϵ1=ϵ2=0

. (20)

By using (16), and knowing that ∂
∂ϵκ exp(ϵ)

∣∣
ϵ=0

= κ, we can
demonstrate that

∇h(κ) = N

ï
κ
I1(κ)

I0(κ)

ò
−

N∑
i=1

[κ cos(ψi − ϕ)] +
τ(κ)

σ2
0

, (21)



H(κ) =

N

ï
κ2

I0(κ)

ï
I0(κ) + I2(κ)

2

ò
− κ2 I1(κ)

2

I0(κ)2
+ κ

I1(κ)

I0(κ)

ò
−

N∑
i=1

[κ cos(ψi − ϕ)] +
1

σ2
0

.

(22)

In the Algorithm 1, we describe the Newton algorithm to
estimate κ.

Algorithm 1 Newton-Based Bayesian Estimation of κ
Input: ϕ, σ0, {ψi}Ni=1, κ0
Output: κ̂l

εmin ← 10−4, κ̂l ← κ0, ε← εmin + 1,
while ε > εmin do
κ̂lpast ← κ̂l

Compute gradient ∇h(κ) (21)
Compute Hessian H(κ) (22)
κ̂l ← κ̂lpast exp(δ

l) (17)
ε← |κ̂lpast − κ̂l|

end while
return κ̂l

IV. BAYESIAN CRAMÉR-RAO BOUND ON THE LG R+

In order to assess the performance of the proposed Bayesian
estimator on LG, it is essential to determine the theoretically
best achievable value. Additionally, this error bound must
account for the fact that the parameter belongs to R+. To
address this, we derive the expression of the LG-BCRB based
on the von Mises distribution and the prior distribution in this
section.

A. Expression of the LG-BCRB for von Mises observations

Let us consider a set of N independent observations ψ =
{ψ1, . . . , ψN} distributed according to (1). Furthermore, let
us assume that κ is a priori distributed according to (12). The
LG-BCRB on κ is given by:

P = I−1 (23)

I = −Ep(ψ,κ)

Ç
∂2 log p (ψ, κ exp(ϵ1) exp(ϵ2))

∂ϵ1∂ϵ2

∣∣∣∣
ϵ1,ϵ2=0

å
.

(24)
By using (1) and (12), it is expressed as

I =
1

σ2
0

+ Ep(κ)
Å
N

ï
κ2

I0(κ)

ï
I0(κ) + I2(κ)

2

ò
− κ2 I1(κ)

2

I0(κ)2

òã
.

(25)

B. Demonstration

To achieve this, we first utilize the expression (9) to obtain
the equation (24). Subsequently, we apply the conditional rule

I = Il + Ip. (26)

with

Il =

− Ep(ψ,κ)

(
N∑
i=1

∂2 log p(ψi|κ exp(ϵ1) exp(ϵ2))
∂ϵ1∂ϵ2

∣∣∣∣∣
ϵ1=ϵ2=0

)
(27)

Ip = −Ep(κ)

(
∂2 log p(κ exp(ϵ1) exp(ϵ2))

∂ϵ1∂ϵ2

∣∣∣∣∣
ϵ1=ϵ2=0

)
(28)

As
N∑
i=1

∂2 log p(ψi|κ exp(ϵ1) exp(ϵ2))
∂ϵ1∂ϵ2

∣∣∣∣∣
ϵ1=ϵ2=0

is equal to the

Hessian derived in (20), it results

Il =Ep(ψ,κ)
Å
N

ï
κ2

I0(κ)

Å
I0(κ) + I2(κ)

2

ã
− κ2 I1(κ)

2

I0(κ)2
+ κ

I1(κ)

I0(κ)

ò
−

N∑
i=1

[κ cos(ψi − ϕ)]
ã

(29)

By using the fact that Ep(ψ,κ)(.) = Ep(κ)
(
Ep(ψ|κ)(.)

)
and

that Ep(ψ|κ)(cos(ψi − ϕ)) =
I1(κ)

I0(κ)
, we obtain

Il = Ep(κ)
ï
N

ï
κ2

I0(κ)

ï
I0(κ) + I2(κ)

2

ò
− κ2 I1(κ)

2

I0(κ)2

òò
.

(30)

Regarding the term Ip, we can readily demonstrate, by utiliz-
ing the expression (12) of p(κ), that

Ep(κ)

[
∂2 log p(κ exp(ϵ1) exp(ϵ2))

∂ϵ1∂ϵ2

∣∣∣∣∣
ϵh=0

]
= − 1

σ2
0

(31)

Then, by combining (30) and (31), we acquire the equation
(25).

V. NUMERICAL SIMULATION

A. A-Evaluation of the LG estimator and LG-PCRB

In this subsection, we present the numerical simulations
which were conducted in order to validate the proposed
estimator and the LG-CRB. It was ran by generating N
independent von Mises sequential measurements, and known
constant ϕ angle of 10° and with a true value of κ = 1 to
estimate. Then, we run algorithm (1) on Nr = 10000 Monte
Carlo realizations of the measurements (ψ) and we compute
the intrinsic Bayesian MSE of κ̂ by Monte-Carlo approxi-
mation which is compared to the LG-BCRB. This process is
repeated for several scenarios of simulations corresponding to
three prior values of κ0. For each of these values, we wish to
study the evolution of both MSE and LG-CRB as a function
of the number of measurements to validate their consistency
while also studying the influence of the prior variance σ2

0 .
In Figs. 2, 3, 4 we show the evolution of the MSE and

LG-BCRB respectively for κ0 = 2.2, 3 and 4. First, it can
be observed globally in all the figures that the MSE tends to
converge to the LG-BCRB, although it does not completely



reach its optimal value. Second, we note that regardless of
the value of σ2

0 , the behavior of the MSE and LG-BCRB are
coherent with respect to the value of N . Also, the LG-BCRB
consistently remains below the MSE, which validates both the
estimator and the expression of the proposed bound.

On the other hand, we remark also a consistency through
the impact of σ2

0 . Indeed, for few observations (N < 10),
when κ0 is close to the true value, as in the Fig. 2, the error
decreases when σ2

0 becomes low. Conversely, when κ0 deviates
from κ, as shown in Figs. 3 and 4, the error increases as
σ2
0 decreases. These two behaviors are consistent suggesting

that the algorithm seeks a compromise between the prior
information and the measurements to find the true value of
κ.
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Fig. 2: Intrinsic MSE κ̂ and associated LG-BCRB at κ0 = 2.2.
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Fig. 3: Intrinsic MSE κ̂ and associated LG-BCRB at κ0 = 3.

B. Lie Group vs Classical approach

In this subsection, we analyze the the performance by using
the intrinsic MSE of the LG approach against the Classic
Euclidean approach denoted as ”EU” (see Figs. 5, 6, 7). This
approach consists in estimating kappa without considering its
LG structure by using a Euclidean Newton algorithm with
the same simulation conditions as the previous subsection.
For κ = 2.2 (Fig. 5) where the a priori value is closer
to the real κ, it can be observed that by having a high
confidence in this scenario (σ2

0 = 0.25), the LG approach
outperforms the Euclidean in its entirety. For κ0 = 3 (Fig. 6),
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Fig. 4: Intrinsic MSE κ̂ and associated LG-BCRB at κ0 = 4.

we can observe how the performance of the Euclidean method
degrades greatly compared to the LG method, which is more
resilient to confidence at an a priori value farther from the true
value. Finally, for the last scenario in Fig. 7 where κ0 = 4,
the farthest from the real value, we can observe that the LG
approach outperforms the EU approach in all σ2

0 conditions.
It is relevant in the situation where the prior value is far from
the true value.
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Fig. 5: Intrinsic MSE κ̂ at κ0 = 2.2.
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Fig. 6: Intrinsic MSE κ̂ at κ0 = 3.

VI. CONCLUSIONS

In this communication, we introduce a novel Bayesian
approach for estimating the concentration parameter κ of the
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Fig. 7: Intrinsic MSE κ̂ at κ0 = 4.

von Mises distribution and its associated Bayesian Cramér-
Rao bound. This method reformulates the estimation problem
within a Lie group framework, providing an alternative to
frequentist approaches. The derived estimation algorithm and
LG-BCRB on Lie groups have been validated through numer-
ical simulations, demonstrating the significant impact of prior
values and their confidence on estimator performance when
using a small number of measurements. This is particularly
important in contexts like GNSS, where such conditions are
found. Future work will focus on extending this problem to
dynamic cases where the phase ϕ also needs to be estimated.
A significant challenge will be to develop a recursive Bayesian
estimator based on Bayesian filtering on Lie groups, as well
as a recursive Bayesian Cramér-Rao bound.
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Mendes, “EKF on lie groups for radar tracking using polar and doppler
measurements,” 2018 IEEE Radar Conference, RadarConf 2018, pp.
1573–1578, 6 2018.

[2] C. Xia, Y. Shen, T. Zhang, S. Zhang, Y. Huo, S. Chen, and N. Zheng,
“Robust extrinsic parameter calibration of 3d lidar using lie algebras,”
IEEE Intelligent Vehicles Symposium, Proceedings, vol. 2019-June, pp.
1775–1781, 6 2019.

[3] A. Kasparian, A. A. U. Communicated, and J. J. Slawjanowski, “Lie
gyrovector spaces,” Tech. Rep., 2004.

[4] K. V. Mardia and P. E. Jupp, “Directional statistics,” Directional Statis-
tics, pp. 1–432, 5 2008.

[5] X. Luo, M. Mayer, and B. Heck, “On the probability distribution of
GNSS carrier phase observations,” GPS Solutions, vol. 15, pp. 369–379,
10 2011.

[6] G. Stienne, S. Reboul, J. Bernard, and M. Benjelloun, “Circular data
processing tools applied to a phase open loop architecture for multi-
channels signals tracking,” IEEE PLANS, Position Location and Navi-
gation Symposium, pp. 633–642, 2012.

[7] V. Karavasilis, C. Nikou, and A. Likas, “Real time visual tracking using
a spatially weighted von mises mixture model,” Pattern Recognition
Letters, vol. 90, pp. 50–57, 2017.

[8] P. Teunissen and O. Montenbruck, Springer handbook of global navi-
gation satellite systems. Springer, 2017, vol. 10.

[9] J. C. Kucwaj, S. Reboul, G. Stienne, J. B. Choquel, and M. Benjelloun,
“Circular regression applied to GNSS-r phase altimetry,” Remote Sensing
2017, Vol. 9, Page 651, vol. 9, p. 651, 6 2017.

[10] S. Labsir, G. Pages, L. Ortega, J. Vila-Valls, and E. Chaumette, “The-
oretical performance analysis of gnss tracking loops,” 2023 IEEE/ION
Position, Location and Navigation Symposium, PLANS 2023, pp. 946–
951, 2023.

[11] R. Kutil, “Biased and unbiased estimation of the circular mean resultant
length and its variance,” Statistics, vol. 46, pp. 549–561, 08 2012.

[12] K. Mardia, G. Hughes, C. Taylor, and H. Singh, “A multivariate
von mises distribution with applications to bioinformatics,” Canadian
Journal of Statistics, vol. 36, pp. 99 – 109, 03 2008.

[13] D. J. Best and N. I. Fisher, “The bias of the maximum likelihood estima-
tors of the von Mises-Fisher concentration parameters,” Communications
in Statistics - Simulation and Computation, vol. 10, pp. 493–502, 1 1981.

[14] D. L. Dowe, J. J. Oliver, R. A. Baxter, and C. S. Wallace, “Bayesian
estimation of the von mises concentration parameter,” Maximum Entropy
and Bayesian Methods, pp. 51–60, 1996.

[15] F. Fabozzi, S. Bidon, S. Roche, and P. Benoı̂t, “Robust GNSS Phase
Tracking in Case of Slow Dynamics Using Variational Bayes Inference,”
in 2020 IEEE/ION Position, Location and Navigation Symposium, 2020,
pp. 1189–1195.

[16] G. Kurz and U. D. Hanebeck, “Stochastic sampling of the hyperspherical
von mises-fisher distribution without rejection methods,” 2015 Workshop
on Sensor Data Fusion: Trends, Solutions, Applications, SDF 2015, 12
2015.

[17] S. Caires and L. R. Wyatt, “A linear functional relationship model
for circular data with an application to the assessment of ocean wave
measurements,” Journal of Agricultural, Biological, and Environmental
Statistics, vol. 8, pp. 153–169, 6 2003.

[18] G. Marrelec and A. Giron, “Estimating the concentration parameter of a
von Mises distribution: a systematic simulation benchmark,” Statistics-
Simulation and Computation, vol. 53, pp. 117–129, 2024.

[19] J. Faraut, “Analysis on Lie groups: an introduction.” Cambridge
University Press, 2008, ch. 5.
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