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Abstract—Periodic Nonuniform Samplings of order N (PNSN)
are interleavings of periodic samplings. For a base period
T, simple algorithms can be used to reconstruct functions of
spectrum included in an union ∆ of N intervals δk of length
1/T. In this paper we study the behavior of these algorithms
when applied to any function. We prove that they result in N
(or less) foldings on ∆, each of δk holding at most one folding.

keywords: periodic nonuniform sampling, interpolation, fold-
ings.

I. INTRODUCTION

LET consider some real or complex function g (t) with a
(regular enough) Fourier transform G (f) (the ”spectrum”

of g (t))

g (t) =

∫
∆

e2iπftG (f) df (1)

where ∆ is the support of G (f) (the set where G (f) 6= 0).
The integral has a more general sense than a Riemann integral.
For instance, G (f) could be the sum of a continuous function
with a linear combination of ”Dirac functions”. If g̃ (t) is
defined by

g̃ (t) =
∞∑

n=−∞
sinc

[
π

(
t

T
− n

)]
g (nT ) (2)

we know that g̃ (t) = g (t) when ∆ =
]
− 1

2T ,
1

2T

[
[1], [2], [3].

It is the simplest version of the ”sampling formula” attributed
to numerous scientists, for instance Cauchy, Shannon, Nyquist,
Whittaker.... When the condition on ∆ is not fulfilled, we have

g̃ (t) =

∞∑
n=−∞

hn (t) e−2iπnt/T (3)

hn (t) =

∫ (2n+1)/2T

(2n−1)/2T

e2iπftG (f) df (4)

hn (t) is the component of g (t) on the frequential interval
((2n− 1) /2T, (2n+ 1) /2T ) , and the hn (t) e−2iπnt/T are
on (−1/2T, 1/2T ) . Whatever the ”spectrum” G (f) of g (t) ,
the sampling formula (2) ”folds” g (t) on (−1/2T, 1/2T ) .

Consequently, when we misuse the sampling formula (2) ,
the result accumulates h0 (t) (perhaps the interesting part of
g (t)) with all other parts hn (t) shifted in frequency into
(−1/2T, 1/2T ) .

This paper adresses the same problem in the framework of
Periodic Nonuniform Samplings of order N (PNSN) which
are interleavings of periodic samplings. We know interpolation
formulas which are errorless in particular conditions. The
question is: what happens when these formulas are misused?
We will see that considerations above are generalized: the
solution is a sum of N foldings matched to the spectrum of

the analysed function. The problem has the same solutions
when we replace the function g (t) by the autocorrelation of
a stationary process and G (f) by the usual power spectrum.

II. PERIODIC NONUNIFORM SAMPLING OF ORDER N
(PNSN)

1) A Periodic Nonuniform Sampling of order N (PNSN)
is a sequence t of real numbers (the sampling times) in the
form

t = {tk + nT, k = 1, .., N, n ∈ Z} (5)

0 ≤ t1 < t2 < .... < tN < T. For N = 1, the sequence is
periodic. For N > 1, t interleaves periodic sequences of same
period T with delays tk. Pioneering papers are attributed to J.
L. Yen [4], and A. Kohlenberg [5] (for N = 2). Results were
diversely generalized [6], [7], [8]. Many papers assume that
the tk belong to particular sets (for instance tk ∈ (T/M)N
for some integer M). Here, the sequences are not subjected to
such constraining hypotheses. Moreover, spectra of functions
are not limited to the ”baseband” case ∆ = (−a, a).

Now, we consider the function g (t) defined in (1) with (for
some real µ and different αk)

∆ = ∪Nk=1

(
αk
T
,
αk + 1

T

)
, αk ∈ µ+ Z (6)

With respect to ∆, the sequence t verifies the ”Landau
condition”: the length of ∆ is equal to N/T and it is the mean
number by unit time of sampling times (it is a generalization
of the ”Nyquist criterium” for sets which are finite unions of
intervals [9]). Obviously, usual ∆ can be approximated by or
enclosed in sets like (6) . We will disregard particular effects at
the bounds of intervals of ∆ for instance due to discontinuities
of G (f) at these points. Intervals are well suited for periodic
samplings (PNS1). More general sets like (6) are matched to
PNSN for well chosen N.

2) We consider functions g (t) with ∆ like (6) , constituted
by N intervals of length 1/T . The set of samples

g (t) = {g (tk + nT ) , k = 1, .., N, n ∈ Z}

is generally sufficient for an errorless reconstruction of g (t) ,
from the reconstruction of its ”components” gl (t) defined as

gl (t) =

∫ (αl+1)/T

αl/T

G (f) e2iπftdf, g (t) =
N∑
l=1

gl (t) (7)

In this case, the equation

Mg (t) = H (t) (8)

M =
[
eiπ(2αl+1)tk/T

]
,g (t) =

[
gl (t) e

−iπ(2αl+1)t/T
]

(9)
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H (t) =

[∑
n∈Z

(−1)
n
e−2iπnµg (nT + tk) sincπ

(
t− tk
T
− n

)]
(10)

is true (see [8], [10]). g (t) ,H (t) are (N, 1) matrices. M is
(N,N) and does not depend on t. Provided that |M| 6= 0
(|M| is the determinant), the equation above has the unique
solution

g (t) = M−1H (t) (11)

(8) allows the determination of gl (t) for l = 1, .., N and g (t)
by (7) . Results are linear combinations of sampling formulas
which are the elements of H (t)

III. FOLDINGS

Sampling formulas (8) to (11) are true if g (t) verifies some
conditions as the integral representation (1) , with (6) where
αk = mk + µ for some real µ and integers mk. Otherwise,
they define functions g̃l (t) , g̃ (t) different from gl (t) , g (t) .

In this more general situation, (9), (10) and (11) become

g̃ (t) = M−1H (t) with g̃ (t) =
[
g̃k (t) e−iπ(2αk+1)t/T

]
(12)

where M−1 and H (t) are given by (8) and (it is a definition)

g̃ (t) =
N∑
l=1

g̃l (t) (13)

A. The elementary case

Let assume that

g (t) = e2iπf0t, f0 ∈ ∆µ+m0 =

(
µ+m0

T
,
µ+m0 + 1

T

)
(14)

for some f0 which defines some integer m0. We note g̃ (t) =
ẽ2iπf0t, g̃l (t) = ẽ2iπf0t

l .
If µ + m0 = αk for some k, we have g̃ (t) = g̃m0

(t) =
e2iπf0t and g̃l (t) = 0 for l 6= m0. Otherwise, let us introduce
the complex functions βl,m0

(t), l = 1, .., N, such that (αl =
ml + µ)

ẽ2iπf0t
l = βl,m0 (t) e2iπt(f0−(m0−ml)/T )

ẽ2iπf0t =
∑N
l=1 ẽ

2iπf0t
l

(15)

Actually, we prove that these functions are reduced to con-
stants verifying (see Appendix)

β1,m0

β2,m0

..
βN,m0

 = M−1


eiπ(2m0+2µ+1)t1/T

eiπ(2m0+2µ+1)t2/T

..
eiπ(2m0+2µ+1)tN/T

 (16)

Therefore, the solution of the problem is contained in the
formula

ẽ2iπf0t =
N∑
l=1

βl,m0
e2iπt(f0−(m0−ml)/T ) (17)

where the βl,m0
are computed from (16)

B. Consequences

Following properties are derived from (17) :
Property 1: when f0 ∈ ∆m0+µ, we have f0 −

(m0 −ml) /T ∈ ∆αl
. So, e2iπf0t is folded on each ∆αl

at a
frequency which is different from f0 by a multiple of 1/T. It
is possible that some lines disappear following the solutions
of (16) . Apart from some particular situations (for instance a
periodic sampling), an undesirable monochromatic line at f0 is
split in N replicas in the sets ∆αl

with (complex) amplitudes
βl,m0

defined by (16).
Property 2: the βl,m0

do not depend on the place of the
line f0 in ∆µ+m0

. Therefore, any g (t) such that

g (t) =

∫ (m0+µ+1)/T

(m0+µ)/T

e2iπftG (f) df

will be folded as

g̃ (t) = g (t)
N∑
l=1

βl,m0
e−2iπt(m0−ml)/T (18)

Property 3: but the βl,m0 depend on m0. So, in a more
general case, we will have something like

g̃ (t) =
∑
m

[
N∑
l=1

βl,me
−2iπt(m−ml)/T

]
gm (t) (19)

where gm (t) is the component of g (t) on ∆m+µ.
Previous results are given in a complex framework where

e2iπf0t is a unit spectral line at f0, with f0 ∈ R. When ∆
is symmetric together with the ”spectrum” G (f) , it is usual
to consider only the positive part of the frequency axis. It
is the case for real stationary processes where G (f) is real
and non-negative. In this framework, the unit spectral line is
cos2πf0t, f0 ≥ 0. Foldings are defined by

c̃os2πf0t =
1

2

(
ẽ2iπf0t + ẽ−2iπf0t

)
Examples 1 to 4 of section IV treat PNSN with N = 2, 3, 4
for baseband or two-bands symmetric functions.

IV. EXAMPLES

Section III-B and formulas (18) and (19) prove that ẽ2iπft

and the set of βl,m define perfectly foldings in the case of
PNSN fitted to (6) . In the case of symmetric set ∆ and
real symmetric g (t) , foldings g̃ (t) are real and even. In this
situation, it is equivalent to calculate c̃os2πf0t for positive
values of f0, as usual.

A. Example 1

We consider the case (PNS2 in baseband)

∆ = (−1, 1) , t = {n, n+ 0.53, n ∈ Z} .

We have α1 = −1, α2 = 0, µ = 0. Using (16) , we find

β1,m = − sin 0.53πm

sin 0.53π
e0.53iπ(m+1)

β2,m =
sin 0.53π (m+ 1)

sin 0.53π
e0.53iπm.
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We verify that we obtain an errorless reconstruction of
cos 2πf0t when f0 ∈ ∆0 (m0 = 0). In any other case, we have
two lines at (positive) frequencies m0 + 1− f0 and f0 −m0.
Furthermore, the order of magnitude of the folded wave is that
of the input. Figure 1 shows the positions and the amplitudes
of lines of c̃os2πf0t for f0 = 0.72, 1.72, 3.72.

Actually, this PNS2 is a TI-ADC2 (based on 2 elementary
ADC) with a ”timing skew” equal to 0.03. If the latter value
lacks accuracy, we will see 6 lines and not 5 in figure 1,
which gives a method of estimation of timing skews (a parasite
line will appear at the frequency 0.28 which will increase
with the gap with 0.03). Furthermore, any signal g (t) with
spectral support ∆ = (− 1

T ,
1
T ) can be reconstituted without

resampling, using (11) or specific formulas of PNS2 [11], [12]:

g (t) =
−Ao(t) sin

(
π t−θT

)
+Aθ(t) sin

(
π t
T

)
sin
(
πθ
T

)
Ax(t) =

∑
n∈Z

(−1)
n sinc[π(

t− x
T
− n)]g (nT + x) (20)

Fig. 1. Foldings for PNS2 in baseband (example 1), frequency-domain view.

B. Example 2

When ∆ = (− 1
T ,

1
T ), N = 2, θ/T = 1/2 the periodic sam-

pling allows a perfect reconstruction for functions in baseband.
But the periodic sampling cannot give a good reconstruction
when (for instance)

∆ =

(
−3

2T
,
−1

2T

)
∪
(

1

2T
,

3

2T

)
, t = {nT, nT + θ, n ∈ Z}

We are in the PNS2 two bands framework with (for instance)

µ = −0.5, α1 = −1.5, α2 = 0.5

β1m = − sinπ (m− 1) θ/T

sin 2πθ/T
eiπθ(m+1)/T

β2m =
sinπ (m+ 1) θ/T

sin 2πθ/T
eiπθ(m−1)/T

The value θ/T = 1/2 is inappropriate (|M| = 0), and
we know that a periodic sampling cannot be applied to this
kind of spectrum. We retrieve the errorless formula for f0 ∈(

1
2T ,

3
2T

)
,m0 = 1, and two spectral lines elsewhere. At the

opposite of example 1, cõs2πf0t, as a function of θ/T, is not
finite.

Figures 2 and 3 illustrate this example when θ = 0.41, T =
1. Curves are done for f0 = 0.32, 1.32, 3.32 corresponding to
m0 = 0, 1, 3. We find one line for m0 = 1 (at 1.32) and two
lines for m0 = 0 and 3 (at 0.68 and 1.32). Examples 1 and
2 are based on PNS2, where more general situations can be
treated [11], [12].

Fig. 2. Foldings for PNS2 in two-bands (example 2), time-domain view.

Fig. 3. Foldings for PNS2 in two-bands (example 2), frequency-domain view.

C. Example 3

We consider a PNS3 and a spectrum defined by

0 = t1 < t2 < t3 < 1
∆ = (−1.5, 1.5) , T = 1

which corresponds to (for instance)

µ = 0.5, α1 = −1.5, α2 = −0.5, α3 = 0.5

The case m0 = 1 appears figure 4 and figure 5 with f0 =
1.57, t1 = 0, t2 = 0.05 and t3 = 0.1. The line at 1.57 is folded
in lines at f0−1 = 0.57,−f0 +1 = 0.43 and −f0 +2 = 1.43.
Actually, the value 0.57 comes from ẽ2iπf0t, and the others
come from ẽ−2iπft
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Fig. 4. Foldings for PNS3 in baseband (example 3), time-domain view.

Fig. 5. Foldings for PNS3 in baseband (example 3), frequency-domain view.

D. Example 4

We consider a PNS4 and a (two-bands) spectrum defined
by

t1 = 0, t2 = 0.05, t3 = 0.1, t4 = 0.15
α1 = −13, α2 = −12, α3 = 11, α4 = 12, T = 1

As explained, we retrieve the (real) line at f0 when f0 ∈
(11, 13) . Otherwise, the line is folded in four places y1...y4

in (11, 13) : if f0 ∈ (m0,m0 + 1) for the positive integer m0,
we have

y1 = −f0 +m0 + 13 y2 = −f0 +m0 + 12
y3 = f0 −m0 + 11 y4 = f0 −m0 + 12

Of course, two of them come from negative frequencies. Fig-
ures 6 and 7 are drawn for f0 = 7.4, 12.4, 17.4, corresponding
to m0 = 7, 12, 17.

V. CONCLUSION

Periodic Non-uniform Sampling of order N (PNSN) are
mixes of periodic samplings which appear in various contexts.
For instance, in mechanical devices, PNS model Blade-Tip
Timings due to detectors on the circumference of rotating

Fig. 6. Foldings for PNS4 in two-bands (example 4), time-domain view.

Fig. 7. Foldings for PNS4 in two-bands (example 4), frequency-domain view.

engines [15], [18], [19].
More generally, irregular samplings can be approximated by
PNS, with an accuracy which increases with N .

As an example, the Vostok Ice Core provides irregular datas
(around 300) on the concentration of gases (CO2,N2O...) and
of isotopes (D2,O18) during more than 400,000 years. These
elements have a great importance in the study of wheather and
climatic warming. Using PNSN allows a good reconstruction
of the process and power spectra [8], [10].

A Time-Interleaved Analog-to-Digital Converter (TI-
ADCN) is a parallel display of N elementary ADC which
has to deliver a T

N periodic sampling. It is a PNSN where
tk=(k − 1)T/N. Actually, this equality is never satisfied, and
the gaps are the ”timing skews”. Example 1 (IV-A) explains
a method to recover the timing skew in the elementary case
N = 2, and which is fitted to any N .

When N = 4, ∆ = (−2/T, 2/T ) , we can have 3 timing
skews µk = tk − (k − 1)T/4, k = 2, 3, 4, (t1 = 0). µ2 is
estimated considering the PNS2 {nT, nT + t2} , where t2 is
not well known but close to T/4. When µ2 = 0, formula
20 is true when applied to a function g (t) with spectrum on
(−1/T, 1/T ) and θ = T/4. But the result is erroned when
µ2 6= 0. Small variations of the used parameter in the formula
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will allow to approach its true value. The operation can be
repeated between the outputs of ADC 1 and 3, 1 and 4, and the
results verified using ADC 2 and 4... Actually, taking g (t) =
cos 2πf0t, 0 < f0 < 1/T as test function generates a parasite
spectral line, which disappears when a satisfactory value of the
parameter is obtained. Once the tk are better known, formula
20 allow to reconstruct functions without resampling.

Furthermore, reconstruction formulas (8) to (11) allow to
overcome timing skews, without resorting to resamplings,
whatever the order N .

This paper gives generalizations about the Periodic Nonuni-
form Sampling of order N (PNSN) plan. We consider spectra
which are unions of N intervals(

αk
T
,
αk + 1

T

)
, k = 1, ..., N with αk ∈ µ+ Z

for some µ ∈ R . Such sets are able to approach many
practical situations (we assume that the bounds shape have
no incidence). Regarding the periodic case (PNS1), spectral
lines are moved without change of amplitude. When N > 1,
a spectral line is folded in each interval

(
αk

T ,
αk+1
T

)
, and we

give the right places and the (complex) amplitudes.

APPENDIX A

With g (t) = e2iπf0t, equation (12) becomes

N∑
l=1

ẽ2iπf0t
l e−iπ(2αl+1)

t−tk
T = (21)

∑
n∈Z

(−1)
n
e−2iπnµ+2iπf0(nT+tk)sincπ

(
t− tk
T
− n

)
for some f0 ∈ ∆µ+m0

(m0 ∈ Z). When µ + m0 = αk for
some k, we have ẽ2iπf0t

l = e2iπf0t
l for all l. Elsewhere, f0 −

(m0 + µ− αl) /T ∈ ∆αl
, which allows to write (8) under the

form (k, l = 1, .., N)

e2iπ(t−tk)(f0−(m0+µ− 1
2 )/T) = (22)∑

n∈Z
(−1)

n
e−2iπnµ+2iπf0nT sincπ

(
t− tk
T
− n

)
Using (21) , (22), yields

N∑
q=1

[
ẽ2iπf0t
l e−2iπ t

T (f0−m0+mq)
]
e2iπ

tk
T (mq+µ+ 1

2 ) = (23)

e2iπ
tk
T (m0+µ+ 1

2 ).

wich is equivalent to the matricial equality

B = M−1K (24)

where M =
[
e2iπ

tk
T (mq+µ+ 1

2 )
]

,

K =
[
e2iπ

tk
T (m0+µ+ 1

2 )
]
,B =

[
ẽ2iπf0t
l e−2iπ t

T (f0−m0+mq)
]
.

B is independent of t, and f0 appears through m0,which
proves (16) with (17) .
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