

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers
and makes it freely available over the web where possible.

This is a publisher-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 2246

To link to this article: DOI: 10.1109/SIES.2009.5196187

URL: http://dx.doi.org/10.1109/SIES.2009.5196187

To cite this version: FERRANDIZ, Thomas, FRANCES, Fabrice, FRABOUL, Christian. A
method of computation for worst-case delay analysis on SpaceWire networks. In : IEEE
International Symposium on Industrial Embedded Systems, 2009 : SIES '09 ; 8 - 10 July
2009, Ecole Polytechnique Federale de Lausanne, Switzerland. Piscataway : Institute of
Electrical and Electronics Engineers (IEEE), 2009, pp. 19-27. ISBN 978-1-4244-4110-5

Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr

mailto:staff-oatao@inp-toulouse.fr
http://oatao.univ-toulouse.fr/

A method of computation for worst-case
delay analysis on SpaceWire networks

Thomas Ferrandiz Fabrice Frances Christian Fraboul
Univ. of Toulouse, ISAE Univ. of Toulouse, ISAE Univ. of Toulouse, ENSEEIHT/IRIT
10 avenue Edouard Belin 10 avenue Edouard Belin 2, rue Charles Camichel

BP 54032 BP 54032 B.P. 7122
31055 Toulouse Cedex 4 31055 Toulouse Cedex 4 31071 Toulouse Cedex 7

France France France
+33 5 61 33 90 97 Email: fabrice.frances@isae.fr Email: christian.fraboul@enseeiht.fr

Email: thomas.ferrandiz@isae.fr

19

Abstract-SpaceWire is a standard for on-board
satellite networks chosen by the ESA as the basis
for future data-handling architectures. However,
network designers need tools to ensure that the
network is able to deliver critical messages on time.
Current research only seek to determine proba-
bilistic results for end-to-end delays on Wormhole
networks like SpaceWire. This does not provide
sufficient guarantee for critical traffic. Thus, in
this paper, we propose a method to compute an
upper-bound on the worst-case end-to-end delay of
a packet in a SpaceWire network.

I. INTRODUCTION

SpaceWire ([1],[2]) is a high-speed on-board
satellite network created by the ESA and the Uni-
versity of Dundee. It is designed to interconnect
satellite equipment such as sensors, memories
and processing units with standard interfaces to
encourage re-use of components across several
missions.

SpaceWire uses serial, bi-directional, full-
duplex links, with speeds ranging from 2 Mbps
to 200 Mbps, and simple routers to interconnect
nodes with arbitrary topologies.

In the future, SpaceWire is scheduled to be
used as the sole on-board network in satellites.
As a high-speed network with low power con-
sumption, it is well-suited to this task. It will
be used to carry both payload and control traffic,
multiplexed on the same links. These two types of
traffic have different requirements. Control traffic
generally has a low throughput but very strict
time constraints. On the contrary, payload traffic

978-1-4244-4110-5/09/$25.00 ©2009 IEEE

does not need strict guarantees on the end-to-end
delays of packets but requires the availability of
a sustained, high bandwidth to be operational.

Both requirements were easy to satisfy on
point-to-point SpaceWire links. But in order to
connect every terminal on a single SpaceWire
network, a router was designed with space con-
straints in mind (especially radiation constraints
on memory) which led to the use of Wormhole
Routing.

However, the problem with using Wormhole
Routing is that it can occasionally lead to long
delays if packets are blocked as shown in our
SpaceWire overview in Section II. Those blocking
delays make it difficult to predict end-to-end
delays especially when control and payload traffic
are being transmitted on the same network.

This is why previous delay evaluation methods
on Wormhole networks have only focused on
probabilistic results which do not provide enough
guarantee for network designers, who would like
to be sure that control packets are always deliv-
ered within an acceptable timeframe (simulations
do not cover every possible case). To this end, a
better approach would be to determine only an
upper-bound on the worst-case end-to-end delay.

As a consequence, we have designed a method
of computation that enables the determination of
such a bound. Section III presents this method
and a demonstration on a sample network is given
in Section IV. Finally, we conclude and propose
future topics for research in Section V.

SIES 2009

Authorized licensed use limited to: ISAE. Downloaded on October 20, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

2

R1 R2

2

R1 R2

1.A packet is being tranferred from node 3 to node 4.
A packet sent by node 1 to node 4 arrives on R1.

2. The packet from node 1 is transferred to
R2 but is blocked there because the link from

R2 to node 4 is already in use.

R1 R2 R1 R2

3

3. Another packet is sent from node 2 to 3. It arrives in
R1 and is blocked because the link R1 -> R2 is in use.

4. Once the packet from node 3 to node 4 has been
transferred, the packet from node 1 to node 4 is

transmitted. The packet from node 2 still has to wait.

Figure 1. Packets can get blocked in a SpaceWire network

II. A BRIEF DESCRIPTION OF SPACEWIRE

A. SpaceWire as a point-to-point link

Originally, SpaceWire was designed to provide
only point-to-point links between satellite equip-
ment. It is derived from the IEEE 1355 standard
[3] but uses new connectors and cables suitable
for space usage.

SpaceWire uses two types of characters as
transmission units: data characters and control
characters. Data characters are lO-bits long and
carry one byte of data along with one parity bit
and one data/control flag. Control characters are
4-bits long and contain 2 bits coding a control
code, one parity bit and one data/control flag.
They are used to mark the (possibly erroneous)
end of packets and for flow control.

SpaceWire uses a flow control mechanism to
ensure that no node receives data that could cause
a buffer overflow. On each link, the emitter can
only send characters if the receiver allows him
to by sending a control character (Flow Control
Token or FCT). Each FCT allows the emitter
to send 8 characters with a maximum of 56
characters authorized at anyone time.

Data are organized in packets of arbitrary
length with a very simple format. Each packet is
composed of three fields: an address field, a cargo
field and an End-Of-Packet marker. The address
and cargo fields can be of any length and it is
even possible to send packets of unlimited size.

20

SpaceWire's point-to-point links thus provide
a simple and fast way to transmit data between
two terminals. Furthermore, the end-to-end delay
is quite simple to compute. If the source and
destination do not cause delays themselves, the
delay is simply ~ where T is the packet size and
C the capacity of the link.

B. SpaceWire as an interconnection network
With the increasing quantities of data ex-

changed by various equipment, using only point-
to-point links to connect all the equipment be-
comes too costly. Furthermore, in order to reduce
the complexity of the on-board system, it would
be better to use a single network to carry both
payload and command/control traffic instead of
using a dedicated bus (generally a MIL-STD-
l553B bus) for the control traffic and high-speed
data links for the payload traffic.

These considerations have led to the addition
of routers to the SpaceWire standard, allowing the
construction of networks with arbitrary topolo-
gies. These routers are required to comply with
two main constraints. Firstly, they must remain
compatible with the point-to-point links used to
interconnect equipment and secondly, they cannot
use a lot of memory because radiation tolerant
memory is very expensive.

As a consequence, Wormhole Routing was
chosen as the way to transmit packets through the
network. With this technique, instead of buffering

SIES 2009

Authorized licensed use limited to: ISAE. Downloaded on October 20, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

whole packets, a router reads a packet's header
on-the-fly when it arrives. Then the router uses
this information to determine the appropriate out-
put port and checks the state of this port (see
Figure I). If the output port is free (immediately
after the packet arrives or after a delay), the
packet header is transferred without waiting for
the rest of the packet. This allows the routers
to use only 8 to 64 bytes of buffer memory per
input link. When the output port is allocated to
the packet, it is marked as occupied by the router
and no other packet can pass through as long
as the current packet has not been completely
transferred.

This means that, if the output port is already
occupied by a packet, the second packet will have
to wait until the first one has been transferred.
Given that the flow control mechanism is active
on each link, small parts of the second packet
are blocked in each of the routers crossed by the
packet as they wait for the head of the packet to
get access to the occupied output port. In tum,
they block access to all the output ports used
by the packet in the above routers. When the
occupied output port finally gets free, one of the
blocked worms (packet) is elected, on a round-
robin basis.

As can be seen, using Wormhole Routing sat-
isfies both constraints cited above. Routers need
little memory for each input link and no memory
at all for output links. They are also backward
compatible since they propagate the point-to-
point SpaceWire flow control to each link along
the end-to-end path, backwards from the receiver
to the emitter.

However, Wormhole Routing has a major draw-
back which is that packets might get blocked for
a long time in routers. Two mechanisms were
thus added to SpaceWire routers to offset this
problem. The first is a two-level static priority
scheme that is used in routers so that packets
sent to a high-level address are always transmitted
before packets sent to low-level addresses. As
SpaceWire routers are not preemptive, the priority
mechanism is only applied when two packets are
waiting for the same output port to be freed.
The round-robin scheme is then used to arbitrate
between packets of the same priority level.

The second mechanism is called Group Adap-
tative Routing. It works by putting two or more

21

parallel links between two routers. In this case,
they're declared as a group in the routing tables
and the routers are able to automatically balance
the load on the multiple links. However, as it
increases the number of links instead of sharing
them, this mechanism should be used only for
fault tolerance or if it is really impossible to
transmit all the traffic on one link.

Together, these two mechanisms can reduce
the blocking problem but they cannot solve it
completely. Thus, in order to evaluate the end-
to-end delays in a SpaceWire network, we need
to be able to determine how long packets might
remain blocked.

C. The end-to-end delay determination problem:
related work

Optimally, a packet is not blocked in any en-
countered router and endures only the switching
delay of each router. The switching delay includes
the time to read the header of the packet, deter-
mine the output port and copy the first character
to the output link. SpaceWire router specifications
require the router's switching delay to be less
than 0.5 J-LS when links work at 200 Mbps. This
means that the delivery time of a packet across a
SpaceWire network will be equal to the delivery
time on a point-to-point link plus 0.5 J-LS per
router crossed.

However, access conflicts can occur on each
link taken by a packet. Furthermore, the packet
blocking a link can in tum be blocked farther
on the network. This makes it very hard to
determine the end-to-end delay of a single packet
analytically.

A great deal of research has been published on
the estimation of end-to-end delays in Wormhole
Routing networks, particularly in supercomputers.
However, that research only seeks to determine
average latency using techniques like queuing
theory (see [4] and [5] for example). Knowledge
of average latency is not sufficient here since we
must be certain that all messages are delivered
within an acceptable timeframe.

Network Calculus [6] is another technique that
has been successfully used to evaluate bounds
on worst-case end-to-end delays in embedded
networks. For example, it was used in [7] to
analyze a Switched Ethernet network used to re-
place a MIL-STD-1553B bus in a military avionic

SIES 2009

Authorized licensed use limited to: ISAE. Downloaded on October 20, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

network. However, SpaceWire does not appear to
be modelisable using classical network elements
like multiplexers and buffers. Indeed, we could
not model Wormhole routers using service curves
because the service offered to a flow depends on
the other flows in the network and on the network
topology. To our knowledge, no one has done
such a modelisation at the moment.

As a consequence, we propose a more practical
approach which works by computing a bound on
the worst-case end-to-end delay for each flow.
This way, the individual delay of each packet
is not characterized but the timely delivery of
control traffic packets can still be guaranteed.

III. COMPUTING A BOUND ON THE
WORST-CASE DELAY

A. Notations and definitions
We model a SpaceWire network as a con-

nected directed graph 9(N, L). The nodes N of
the graph represent both the terminals and the
SpaceWire routers. The edges L represent the set
of SpaceWire links. We use two edges in opposite
directions to represent a bi-directional SpaceWire
link.

A communication between a source and a
destination is modeled as a flow f. Each flow
f has a maximum packet size, noted T]. This
includes the protocol headers. Each flow goes
through a set of links that form a path in 9(N, L).
The set of flows is denoted F. Knowing the
throughput of every flow is not necessary but we
make the assumption that the capacity of any link
is sufficient to transmit all the data using that link.

We note links(f) the ordered list of the links
the flow f follows. first(f) returns the first
link in links(f). We note next(f, l) the function
which, given a flow f and a link l in links(f)
returns the next link in links(f) right after land
prev(f, l) the function returns the previous link
in links(f) just before l. If l is the last link in
links(f), next(f, l) returns null. If l is the first
link in links(f), prev(f, l) returns null.

We also make the following assumptions :
• the routing is static (current SpaceWire

routers use static routing anyway)
• SpaceWire's Group Adaptative Routing fea-

ture is not used (thus S is not a multigraph)
• all the links have the same capacity C (this is

not very restrictive since reducing link speed

22

does not seem to reduce power consumption
significantly)

• we do not take into accounts adresses prior-
ities in the routers (i.e. all nodes have low
priority adresses)

• we neglect the delays caused by Time-Codes
and Flow Control Tokens (Time-Codes are
special characters used by SpaceWire to syn-
chronize a global clock on the network)

• packets are processed as soon as they arrive
at their destination (i.e. the destination itself
does not delay the packet)

• when a source starts to send a packet, it
transmits it at the maximum possible speed
until the entire packet has been transferred
(i.e. the source itself does not delay the
packet)

In order to remove the last two assumptions, we
would have to model the behaviour of each node
on a case-by-case basis since we do not have a
generic model of the nodes at the moment.

B. The method of computation
The method of computation is based on the

idea that, in a SpaceWire network, the delivery of
a packet can be divided into two phases. During
the first phase, the first character (the header)
of the packet is routed to its destination through
intermediary routers and creates a "virtual circuit"
between the source and destination of the packet
using Wormhole Routing. In the second one, the
whole packet can be transferred along the path
of the circuit, as if it were a point-to-point link.
When the packet's transfer is completed, the links
are freed and the "virtual circuit" disappears.

Let us consider a bound on the worst case
delay for packet p of flow fp. As the source
and destination of the packet do not cause any
delays, only the routers crossed by p can delay
it during the first phase. In each router, this
delay has two possible causes. The first is the
switching delay of the router and includes the
time needed to determine the port through which
p will be transferred. This delay is constant for
every packet and every SpaceWire router. We will
note it dsw afterwards.

The second delay occurs when the output link
is already in use by another packet. With Worm-
hole Routing, p has to wait until the packet
using the port is completely transferred. It is

SIES 2009

Authorized licensed use limited to: ISAE. Downloaded on October 20, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

also possible that one or more packets coming
from other ports may already be waiting for the
same output port to become free. The delays will
then accumulate if those packets are transferred
before p. Note that, as ports are independent in
SpaceWire routers, only packets using the same
output port as p can cause a delay.

SpaceWire routers use a Round Robin scheme
to arbitrate between concurrent input links trying
to access the same output link. Therefore, even
in a worst case scenario, at most one packet from
each of the other input link may be transmitted
before p can be transferred.

For each of these input links, several flows
can enter the router. Thus we need to compute
a bound on the maximum delay that each of
these flows may produce and then calculate the
maximum of these potential delays.

The maximum delay that a packet q can cause
p is the time to transfer q starting from the current
router if q was alone in this router (i.e. q does not
have to wait for the output port to become free).
However, q may in turn become blocked in the
next routers it crosses by other packets.

Once it can access the appropriate output link,
the header of a packet is transferred to the next
router and must once again wait to access the
output port it needs.

As a consequence, we can now formulate a
recursive definition of an upper bound on the
delay di], l) needed to deliver a packet of flow f
starting from the moment when the packet tries
to access link l with l i- null and l i- first(f) :

d(f, l) == L [max d(fin, next(fin, l))
i. EB fin EUl i n

un. f,l

+dsw]

+ di], next(f, l)) + d-«
(1)

where
Bf,l == {lin E L, lin i- prev(l), for which

3fin E Flnext(fin, lin) == l}

(i.e. Bf,l is the set of links that are used imme-
diately before next(f, l) by at least one flow fin
and that are not prev(l))

and

ULn == {fin E Filin E links(fin)}

(i.e. ULn is the set of flows that use the link lin).

Thus (1) means that for every input link which
a flow uses before l, we first compute the delay
that the flows coming from this link may need to
be transfered from this link to their destination if
each of them was alone in the router. We then
take the maximum for each input link and add
those values to the delay for the packet from f
itself.

However, (1) is valid only if l is not null and
if it is not the first link used by f. If l is null,
it means that the first character of the packet has
arrived at its destination. Thus there is no delay
due to a router and, in our assumptions, neither
does the destination itself create a delay. The only
remaining delay possible is the time needed to
transmit the packet on the virtual circuit created.
This delay is simply

dU, null) = ~ (2)

However, when l is the first link in links(f),
it means that the emitter node of l is the source
of the flow f. As such, there are no flows coming
from other input links competing to use the link.
If several flows have the same source, other
packets from this source can use the output link
before p can access it. If l == first(f), the delay
is thus

d(f, first(f)) == L d(fin, next(fin, l))
hnESF (3)
+ di], next(f, l))

where

SF =={fin E Flfin i- f
and first(fin) == first(f)}

(i.e. SF is the set of flows that have the same
source as f).

Taken together, these three equations give us
a way to compute an upper bound on the worst
case end-to-end delay of any flow f in F.

Given (1), it is easy to see that the worst-
case delay is reachable when a packet has to let
every possible packet pass before it. Although
this scenario seems unlikely, we must take it into
account in a worst-case analysis.

The method can then be used as a tool to make
trade-offs on the worst-case delays for the various
flows by changing the size of packets and the

23 SIES 2009

Authorized licensed use limited to: ISAE. Downloaded on October 20, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

17

Figure 2. An example of a SpaceWire network (only edges used by at least one flow are displayed)

(4)

topology of the network as we will show in the
next Section.

The proof of termination of the method and its
complexity are given in the Appendix.

IV. EXAMPLES

A. Application of the method of computation
We will now study how the method works on

an example of a SpaceWire network. The network
is pictured on Figure 2. It contains 5 nodes and 2
SpaceWire routers. Six flows share the network
and are represented. We do not need to know
the throughput of each flow, only the maximum
packet size, which is noted Ti, i E {I, ... , 6}.

First the dependency graph (see the Appendix
for the definition) is computed and it is verified
that it is not cyclic. This graph is drawn in Figure
3. It is easy to see that it has no cycle so that the
computation can be started safely. We will first
compute a bound on the worst-case delay for flow
1 which starts in N 1 and ends in N«.

We first have
d(fl' fir st(fl)) == d(fl' ll)

== d(f2' next(f2' ll))
+ d(fl' next(fl' ll))

== d(f2' l3) + d(fl' l3)
The second half becomes

d(fl' l3) == max(d(f3' l7), d(f4' ls))
+ d(fl' l7) + 2.dsw

with
d(fl' l7) == d(fs, null) + d(f6, null)

+ d(fl' null) + 3.dsw

24

Similarly

d(f3, l7) == d(fs, null) + d(f6, null)
+ d(f3' null) + 3.dsw

d(f4' ls) == d(f4' null) + dsw

The first part of (4) develops into

d(f2, l3) == max(d(f3, l7), d(f4, ls))
+ d(f2, ls) + 2.dsw

and

Substituting the developments in (4) and using
(2) we get:

d(f l) == T1 + T2 + Ts + T6
1, 1 C

T3 + Ts + T6 T4+ 2. max(C + 2.dsw , C)

+ 9.dsw
(5)

Similarly, for f4 we find:

d(f l) == T3 + T4 + Ts + T6
4,2 C

T1 + Ts + T6 T2+ 2. max(C + 2.dsw , C)

+ 9.dsw
(6)

For fs we first have:

d(fs, l4) == d(fs, next(fs, l4))
== d(fs, l7)
== max(d(fl' null), d(f3, null))
+ d(f6' null) + d(fs, null) + 3.dsw

SIES 2009

Authorized licensed use limited to: ISAE. Downloaded on October 20, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

which gives us

d(f l) == Ts + T6
S,4 C

t: T3 (7)+ max(C' C)
+ 3.dsw

B. Remarks on the results
Several points can be observed concerning

these results. First note that (5) and (6) are similar.
(6) can be obtained from (5) by swapping T; and
T3 on the one hand, and T2 and T4 on the other
hand. This is coherent with the fact that N l and
N 2 have identical communication patterns with
N 4 and Ns.

We thus see in (5) that fs and f6 have a bigger
impact than f2 and f3 on the delay endured by fl.
Therefore, unless T4 is greater than T3+Ts +T6 ,

in the worst case, a packet from fl will be delayed
three times by packets from fs and f6, twice by
packets from f3 and once by a packet from f2.

Note that this holds true for f4 although it does
not have the same destination as fs and f6. This is
because a packet from f4 can get blocked behind
packets from f3 and [: which may, in tum, be
blocked by packets from fs and f6. This example
highlights the fact that the delays are not caused
by an access conflict to a common destination but
by the access conflicts to the shared link l3.

N1

N2

N3

------ -t3--~---~'t-+-I-+------pI

N4

flows starting close to the destination have a
large impact on those coming from farther on
the network. On the contrary, flows starting far
from the destination have a small impact on those
closer from the destination.

As a consequence, putting the nodes with the
largest sized packets farther from the destina-
tion is preferable. This greatly decreases the
worst-case delay for the other nodes while only
marginally increasing the delay for long packets
because only short delays accumulate due to the
closer nodes.

However, this only takes into account the
worst-case delay, not average delays or through-
put. Indeed, when doing a worst-case analysis, we
have to assume that, at each link, packets from
nodes close to the destination will be interleaved
between packets coming from farther away. Of
course, this may not happen every time a packet
arrives at each link. In this case, sending long
packets from nodes far from their destination
will end up blocking several links with no bene-
fits. Furthermore, this can potentially delay other
flows not headed to the same destination but
sharing links with the long packets.

c. Numerical example

To better understand the meaning of these
formulas, it might be useful to consider a numer-
ical example. We will also use this example to
illustrate how our method of computation can be
used as a tool to make trade-offs on the worst-
case delays for the various flows by changing the
size of packets.

We will use the following values for the max-
imum packet sizes:

Tl , T3 :5120 B
T2,T4 :50 B
Ts,T6 :1000 B

Figure 3. Dependency graph for the network example (in
bold)

Besides, (7) shows that packets from fs are
delayed only once by a packet from f4 and once
by a packet from fl or f3.

These observations suggest that if several nodes
send data to a common destination (a mass
memory module for instance) using shared links,

Those are typical values if, for instance, N l
and N 2 are observations instruments, N 4 is a
processor module, Ns is a mass memory module
and N 3 a monitoring equipment. Both N l and N 2
send data at a high rate with large packet sizes
to N«. They also send monitoring traffic to N4
which synthesizes it and send it to the memory.
The monitoring traffic (f2 and f4) is considered
time-critical. N 3 also sends its results to Ns;

25 SIES 2009

Authorized licensed use limited to: ISAE. Downloaded on October 20, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

We use C == 200 Mbps as the capacity for
every link and dsw == 0.5 us as the switching
delay in both routers. With the same values, we
compute both the best- and worst-case delays for
f1, f4 and [e. The best case delay is the delay
when the packet suffers no delays in any router.
Results are given in Table I.

Table I
DELAYS FOR THE EXAMPLE OF NETWORK (WITHOUT

FRAGMENTATION)

Flow Best Case Worst Case
fl 0.257 ms 1.076 ms
f4 3.5 JLS 1.076 ms
f6 50 JLS 356 JLS

Concerning these results, as can be expected
given their formulas, f1 and f4 have the same
worst-case delay. However, they have very dif-
ferent best-case delays. As a consequence, the
ratio between the best and worst case delays is
far smaller for f1 (4) than for f4 (307). This
highlights the impact of the recursive blockings
that leads to long delays even for small packets.
For f6, the ratio is only 7 which is coherent with
the fact that flows starting from nodes close to
the destination are less influenced by other flows.

In order to reduce the worst-case delay for f4,
we can try to fragment the large packets from f1
and f3 in smaller chunks of 256 bytes. As can be
seen in Table II, the worst-case delay for f4 goes
down to 346 us which is roughly one third of the
delay without fragmentation. The delay for f5 is
also reduced in the same proportion.

However, the fragmentation has a cost for fl.
As we now need to send 20 fragments to transmit
the same information, the worst-case delay for a
whole packet becomes 6.9 ms which is almost 7
times more than before.

v. CONCLUSION AND FUTURE WORK

We have presented a simple method of compu-
tation that allows us to compute an upper bound

Table II
DELAYS FOR THE EXAMPLE OF NETWORK (PACKETS

FROM fl AND f3 ARE FRAGMENTED)

Flow Best Case Worst Case
fl 0.276 ms 6.9 ms
f4 3.5 JLS 346JLs
f6 50 JLS 113 JLS

26

on the worst-case end-to-end delay of flows car-
ried by a SpaceWire network. This bound is such
that it can never be exceeded by a packet as long
as the network does not fail. This is especially
important for control traffic whose timely delivery
is critical to the operation of a satellite. The
method uses a recursive definition of the delay
endured by each packet in each router to obtain
the bound.

Furthermore, the example illustrates the huge
difference between the best and worst case delays
for a given flow. It also illustrates the fact that
the impact of each flow on the delay of other
flows varies according to the distance between the
source and destination of the flow. Developing
the results formally reveals which flows have
more impact on others. Finally, we showed on
the example how our method can be used as a
tool to make trade-offs on the worst-case delays
for the various flows in order to better dimension
the network.

We have three perspectives to extend our
method of computation. The first is to complete
the modelisation of SpaceWire by adding Group
Adaptative Routing and packet priorities in the
model. This will allow us to compute tighter
bounds than at present.

At the moment, we do not make strong hypoth-
esis on the input traffic. We only suppose that
each flow has a maximum packet size. Although
this increases the generality of the method, it also
means that the results we get may be pessimistic.
Thus we plan to use a more precise modelling
of the input traffic to obtain tighter bounds. For
example, we could use arrival curves to describe
the traffic instead of supposing that each flow tries
at the maximum speed.

Another interesting direction is to model
SpaceWire-RT using the method we have ap-
plied for SpaceWire. SpaceWire-RT ([8]) is an
extension of SpaceWire, designed as a Quality Of
Service layer between a SpaceWire network and
its applications. At the moment, it is only a draft
but it should provide better temporal guarantees
to critical flows. Using our method, we should
be able to determine what improvements it will
bring for worst-case delays.

ACKNOWLEDGMENT
This work was supported by a PhD grant from the CNES

and Thales Alenia Space.

SIES 2009

Authorized licensed use limited to: ISAE. Downloaded on October 20, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. M. Parkes and P. Armbruster, "SpaceWire: A space-
craft onboard network for real-time communications,"
IEEE-NPSS Real Time Conference, no. 14, pp. 1-5, Feb
2005.

[2] ECSS, "ECSS-E-ST-50-12C, SpaceWire - links, nodes,
routers and networks," pp. 1-129, Aug 2008.

[3] IEEE Computer Society", ''''IEEE Standard for Hetero-
geneous Interconnect (hie) (lowcost, low-latency scal-
able serial interconnect for parallel system construc-
tion)"," IEEE Standard 13551995, 1996.

[4] J. T. Draper and J. Ghosh, "A comprehensive analytical
model for Wormhole Routing in multicomputer sys-
tems," Journal of Parallel and Distributed Computing,
pp. 1-34, Jan 1994.

[5] W. Dally, "Performance analysis of k-ary n-cube in-
terconnection networks," Computers, IEEE Transactions
on, vol. 39, no. 6, pp. 775 - 785, Jun 1990.

[6] J.-Y. Le Boudec and P. Thiran, "Network Calculus: a
theory of deterministic queuing systems for the internet,"
Springer Verlag, no. LNCS 2050, pp. 1-265, Apr 2004.

[7] A. Mifdaoui, F. Frances, and C. Fraboul, "Real-
Time characteristics of switched ethernet for "1553b"-
embedded applications: Simulation and analysis," Indus-
trial Embedded Systems, 2007. SIES '07. International
Symposium on, pp. 33 - 40, Jun 2007.

[8] S. Parkes and A. F. Florit, "SpaceWire-RT initial proto-
col definition v2.1," pp. 1-120, Feb 2009.

[9] W. Dally and C. Seitz, "Deadlock-free message routing
in multiprocessor interconnection networks," Comput-
ers, IEEE Transactions on, vol. C-36, no. 5, pp. 547 -
553, May 1987.

ApPENDIX A
PROOF OF TERMINATION OF THE METHOD
We first define the link dependency graph D for a network

represented by the graph Q(N, L) as the directed graph D =
Q(L, E) where the nodes L of D are the links of Q(N, L)
and the edges E are the pairs of links used successively by
a flow:

E = {(li,lj) E L [or which
3j E Flnext(j, li) = lj}

Theorem 1: For any flow j in F and any link l in
links(j), the computation of d(j, l) finishes if and only
if D is acyclic.

Proof: ::::} Suppose there's a cycle in D. Since next(j, l)
cannot return l for any l (a packet cannot use the same
link twice in a row), this cycle's length is at least 2. Given
the definition of d, this means we can find a flow j and
a link l such that computing d(j, l) requires calling d(j, l)
during the recursion. Thus the computation of d(j, l) does
not finish.

<¢::: Suppose D is acyclic. We can then use topological
sorting to assign a total order to the vertices of D such that
if u., lj) E E then i. > lj (if D is not connected in the
graph theory sense we can order each connected component
individually then arbitrarily order the component). From the
definition of E and next(j, l), it follows that computing
d(j, l) only requires calls to d with links inferior to l as
parameters. Since F is a finite set and d(j, l) is called only
once for some given j and l, it follows that computing d(j, l)
always terminates.

•Note that as shown in [9] that for an interconnection
network using Wormhole Routing under assumptions similar
to ours, it is equivalent to say that the link dependency
graph is acyclic and that the network is deadlock-free. Since
deadlock prone networks would not be valid for satellite
use, Theorem 1 shows that the computation finishes in every
pertinent case. This is also coherent with the fact that, when
the computation does not finish, d(j, l) becomes infinite
which is characteristic of a deadlock.

A simple way to check beforehand if the computation
will finish is to use the adjacency matrix of the dependency
graph and iterate it. If it converges toward the zero matrix
then there are no cycles in the graph. However, if a power
of the matrix has only 1 on its diagonal, it means that the
dependency graph is cyclic and the sum will diverge.

ApPENDIX B
COMPLEXITY OF THE ALGORITHM

The exact number of operations required to compute
d(j, l) on a given network will vary with the topology and
the number of conflicting flows on each link. However, we
can compute an upper-bound on the number of operations
without difficulties.

Let us note n the number of flows in F and m the number
of links in L. If we compute naively the delay for each flow,
the size of the computation will increase exponentially with
the number of flows in conflicts on each link. However, it
is easy notice that the number of possible calls to d(j, l) is
finite and bounded by n.m. Thus, if we store the results of
all the calls during the computation, the complexity of the
computation will be O(n.m).

27 SIES 2009

Authorized licensed use limited to: ISAE. Downloaded on October 20, 2009 at 06:20 from IEEE Xplore. Restrictions apply.

	Ferrandiz_2246
	To link to this article: DOI: 10.1109/SIES.2009.5196187

	Ferrandiz_2246.pdf

