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Abstract—We address the problem of partitioning a network of
nano-satellites to distribute fairly the network load under energy
consumption constraints. The study takes place in a context
where this swarm of nano-satellites orbits the Moon and works as,
but not limited to, a distributed radio-telescope for low-frequency
radio interferometry. During an interferometry mission, each
nano-satellite collects observation data, then shares them with
the other swarm members to compute a global image of space.
However, the simultaneous transmission of large volumes of
data can cause communication issues by overloading the radio
channel, leading to potential packet loss. In this context, we
investigate three division algorithms based on graph sampling
techniques. We prove that random walk-based algorithms overall
perform the best in terms of conservation of graph properties
and fairness for group sizes down to 10% of the original graph.

Index Terms—Swarm, Network, Fair division, Graph theory,
Graph sampling

I. INTRODUCTION

The study of the low-frequency range (below 100 MHz)
is essential for many scientific fields, such as astrophysics
for sky mapping and monitoring or the observation of the
Dark Ages signals, which are signatures of the very early
universe [1], [2]. Until now, the majority of low-frequency
radio interferometry instruments are ground-based and provide
high-quality observations of space. However, the capabilities
of these instruments are limited by ionospheric distortions,
terrestrial Radio Frequency Interferences (RFI), as well as
a complete reflection of radio waves below 10-30 MHz [3].
Therefore, the cosmic radio signals that are weak in terms of
power can be easily altered if not completely masked.

One solution to this problem is to create an interferometer
directly in space: the Nano-satellites for a Radio Interfer-
ometer Observatory in Space (NOIRE) [4] study investigates
and proves the benefit of using a swarm of nano-satellites
for low-frequency radio observation in space. A swarm of
approximately 100 nano-satellites orbiting the Moon is highly
protected from the Earth’s RFI and ionosphere influence,
and thus appears as a promising solution to the interference
problem met by ground-based telescopes.

A. Problem definition

The setup and configuration of a swarm of nano-satellites
as a space observatory is a challenging problem in terms of
communication, as the network relies solely on wireless Inter-
Satellite Links (ISL). It is possible to approximate this system
as a Wireless Sensor Network (WSN), with the particularity
that the average inter-satellite distance goes up to 50 km
(interferometry instrument requirement), making it a very low-
density network. Besides, the satellites move at an average
speed of 1 to 10 km/s, making the swarm a highly mobile sys-
tem and adding constraints to the communication model. But
most importantly, the system needs to operate in a distributed
manner. Indeed, unlike traditional observation satellites that
usually carry one or many measuring devices, a swarm of
nano-satellites consists of a single instrument distributed over
many satellites. Thus, each satellite collects observation data
from space, then shares them among the swarm to compute
one single image of cosmic rays. This image is a matrix of
cross-correlations between all data collected by every satellite
and shared among the swarm.

The main challenge is thus to disseminate significant
amounts of data within the swarm, which raises major commu-
nication issues. First, the simultaneous propagation of several
gigabytes of data over a radio channel by each satellite can
lead to potential link congestion, delay, and packet loss. Then,
the energy consumption of the swarm is proportional to the
amount of data shared between the satellites. Therefore, a
trade-off has to be made to limit the total energy consumption
of the swarm to alleviate these issues and prevent too early
energy depletion of the satellites. However, the heterogeneous
satellite repartition within the topology of the swarm implies
that some satellites are more likely to get overloaded and
thus go down faster. It becomes primordial to fairly distribute
the network load between each satellite of the swarm by
taking into account their failure likelihood. One potential
solution to distribute the network load is to divide the original
network into distinct sub-networks, which are basically groups
of satellites from the original network. The objective is thus to



improve the communication performance in terms of network
load, throughput and failure resilience by performing a fair
network division [5].

B. Motivations

Graph division applied to satellite swarms has been studied
before in the Orbiting Low-Frequency Array for Radioas-
tronomy (OLFAR) project. In [6], the authors focus on the
relevance of node clustering to minimize the energy con-
sumption related to data sharing and provide a slave-master
algorithm that proves to be a good solution for their topology.
Intuitively, clustering algorithms would perform poorly for
fair graph division, because nodes with similar characteristics
would be grouped together instead of distributed among the
sub-networks. Therefore, clustering algorithms can be used
to optimize the energy consumption, but fair division would
perform better.

In this paper, we compare the performance of random
selection and exploration algorithms to define the best-suited
algorithm for network division. We first characterize the swarm
network properties by deriving specific metrics, then compare
the performance of three graph division algorithms, namely
Random Node Division (RND), Multi-Dimensional Random
Walk (MDRW), and Forest Fire Division (FFD). RND is
the most straightforward division algorithm and a basis for
comparison. We chose to study MDRW and FFD because
exploration algorithms are expected to perform the best for
sub-network sizes of about 15% of the original network,
according to previous research on sampling algorithms [7]. We
demonstrate that exploration algorithms outperform random
selection algorithms regarding network properties conserva-
tion. More precisely, MDRW is the best-performing algorithm
for sub-networks sizes down to 10% of the original network.

The rest of the paper is organized as follows: in section II,
we describe our model. Next, the experimental evaluation is
presented in section III, where our results are also confronted
with some notable performances of graph sampling algorithms.
Finally, section IV summarizes the essential results and per-
spectives of the work.

II. MODEL DESCRIPTION

An interferometry mission in space operates in four steps:
1) Observation: each nano-satellite collects raw data from

space.
2) Inter-satellite transmission: each nano-satellite broad-

casts its data to the others and gathers the data from
the other nano-satellites.

3) Computation: each nano-satellite computes a part of the
overall space image by combining the data collected and
received from the others.

4) Swarm-to-Earth transmission: the swarm downlinks the
computed space image to a base station on Earth.

Let us model the swarm network at each timestamp t as
a graph Gt(Nt, Et) with a set of nodes Nt, representing the
nano-satellites, and a set of edges Et, representing the ISLs.

Fig. 1: Evolution of the nodes’ degree distribution as a time
function. The minimum degree almost always equals 0 despite
the variation in the statistical range.

We denote SG as the set of sub-networks, called subgraphs,
of G obtained after division, and T the set of timestamps.

A. Network Properties and Hypotheses

We assume that the nodes of N0, i.e., in their initial state,
are identical regarding power supplies. For all t, the nodes of
Nt use omnidirectional antennas to communicate with each
other. Then, we assume the model to be faultless, i.e.:

∀(i, j) ∈ T 2, |Ni| = |Nj | = |N |

This condition guarantees that the number of nodes in the
graph remains constant with time.

Each node must receive at least
√

|N | data signals to
compute (|N |−1)

2 cross-correlations [8] to create an image at
timestamp t. The global image corresponds to a matrix of
|N |(|N |−1)

2 cross-correlations between all data signals from
each node of Nt. We aim to fairly divide Gt into |SG| =

√
|N |

subgraphs to restrain network overload during the data-sharing
step. Our model has the following properties:

P1: Mobility. The trajectory of the swarm is pseudo-
periodic, i.e., a slight random drift is induced in each node’s
orbit over time. The nodes are also mobile for each other ac-
cording to a quasi-deterministic mobility model, i.e., ∃(i, j) ∈
T 2 |Ei ̸= Ej . This property highlights the dynamic nature of
the swarm network.

P2: Density. The analysis of the distribution of node
degrees over time is drawn in Fig. 1, where the minimum, me-
dian, and maximum degree values are represented. Q1 and Q3
refer to the 25%-quartile and 75%-quartile, respectively. The
figure shows that the network’s density is not homogeneous,
as high- and low-density zones can appear. Furthermore, the
variation in node density is periodic.

P3: Disponibility. The analysis of the inter-contact times
provides a measure of the disponibility of the ISLs [9]. Despite
an average disponibility below 25%, our model contains a
backbone of permanently connected pairs of nodes at all times.



(a) Mobility of the nodes on their lunar orbit. (b) Topology of G at snapshot (1). (c) Topology of G at snapshot (2).

Fig. 2: Dynamic topology of graph G. The orbit of G is defined as the average orbit of its |N | nodes. Each node position is
derived with a random offset to the first node position, which is fixed (see Section III-A).

The presence of such backbone implies that these nodes will
consume more energy than the rest and thus go down faster.

B. Connection Hypotheses

The connectivity within the swarm is exclusively based on
ISLs. Let et(u, v) be the edge between two nodes u and v of
graph G at time t, and d(u, v) the Euclidean distance between
these nodes. The set of edges Et is defined as follows:

Et = {et(u, v) | d(u, v) ≤ RG} ∀ (u, v) ∈ Nt (1)

where RG is the connection range of the model: it is indepen-
dent of time and identical for all nodes in G. We also assume
that each ISL is a duplex link, i.e., et(u, v) = et(v, u).

C. Division Algorithms

First, it is important to highlight the difference between
graph division, clustering, partitioning, and sampling. Graph
division is a method to split the original graph into smaller
subgraphs, with some constraints if specified (e.g., fairness).
Graph clustering aggregates nodes in groups (clusters) accord-
ing to a given similarity. Graph partitioning is a strict form of
graph clustering, forcing each node to be part of one and only
one group. Graph sampling is a method to create one smaller
sample graph that is similar, by some definition, to the original
graph. This paper introduces three graph division algorithms
based on sampling algorithms. Sampling and division algo-
rithms perform similarly but with different goals: sampling
algorithms aim at extracting a single subgraph, while our goal
is to divide the graph into multiple subgraphs fairly.

The most straightforward algorithm is the Random Node
Division (RND), which is a random selection type of algorithm
[7], [10]. Each node of graph G randomly selects a subgraph
number in [0 : |SG|]. Nodes with identical subgraph numbers
are part of the same subgraph. The algorithm is distributed
by nature. The signficant advantage of RND is its complexity
of O(1) because the subgraph attribution is instantaneous. We
expect this algorithm to work correctly because the number

of nodes in our model is high, so the network size should not
bias it.

The second algorithm is an exploration algorithm derived
from random walks, called Multi-Dimensional Random Walk
(MDRW) [10], [11]. We randomly choose |SG| source nodes,
then start random walks in parallel from them (each node
selects a random node between its neighbors for propagation).
Because our model consists of sparse graphs, a random walk
can be stuck if there are no available nodes in its neighbor-
hood. In that case, the node initiates a random jump in the
graph to carry on the walk. The algorithm stops when there
are no more available nodes in the graph, and the distinct
subgraphs consist of the obtained random walks. MDRW is a
centralized algorithm, so it has to be distributed in practice.
Because there is |SG| random walks evolving in parallel and
the random jump mechanism, the complexity of MDRW is
O(|SG|).

The third algorithm is a forest-fire-based exploration algo-
rithm [7], [10] called Forest Fire Division (FFD). We randomly
choose |SG| source nodes and then start ”burning” their
neighbors with a probability p. Like MDRW, if a node is
stuck when there are still available nodes left in the graph,
the node performs a random jump to keep burning elsewhere.
The algorithm stops when there are no more available nodes,
and the distinct subgraphs consist of the burnt areas. FFD is
also a centralized algorithm.

Many other graph sampling algorithms can be adapted for
graph division, such as Random Edge sampling, Random De-
gree Node sampling, Breadth/ Depth/ Random First sampling,
or Snow-Ball sampling. However, we specifically selected a
subset of them and studied RND, MDRW, and FFD, as these
algorithms obtained the best sampling from large graphs [7].

III. EXPERIMENTAL EVALUATION

In this section, we first describe the dataset used for the
simulation. Then we define the setup of our experiments



and the evaluation criteria, then present the results of our
experiments.

A. Description of the Dataset

We use synthetic data generated in Matlab, where each node
orbits the Moon and follows Kepler’s laws, as depicted in
Fig. 2a. The trajectory parameters of the first node are set
manually on a given orbit. In contrast, the parameters of the
others are generated with a random offset to the first one.
Fig. 2b illustrates the topology of G0, i.e., its initial state. The
dataset has the following properties:

• the data represent the coordinates of |N | = 100 nodes
in the Moon-centered coordinate system, distributed in a
sphere of 100 km in diameter in its initial state;

• the (x,y,z) coordinates of the nodes are sampled every 10
seconds;

• the simulation duration is T = 100, 000 seconds.
Geolocalization is impossible to achieve because there is no

GPS in outer space. In this case, the Moon-centered coordinate
system is convenient, as the nodes process the coordinates to
perform a distance-based peer localization.

B. Evaluation Criteria

We evaluate the fairness of the division algorithms by
comparing the metrics of the obtained subgraphs with the
metrics of the original graph, defined as the reference metrics.
Our evaluation is based on five metrics:

• Network size (|NS |): number of nodes in the (sub)graph.
|NS | is constant in time;

• Diameter (Dia): longest shortest path between all pairs of
nodes in the (sub)graph, in number of hops;

• Average Degree (AD): average number of neighbors of
each node;

• Graph Density (GD): the ratio between the observed
number of edges and the maximum possible number of
edges in the (sub)graph:

GDt =
2|Et|

|N |(|N | − 1)

• Average Clustering Coefficient (ACC): for each node, the
ratio between the observed number of edges between its
neighbors and the maximum possible number of such
edges, averaged on the (sub)graph.

Many additional metrics have been proposed in the litera-
ture [10], such as the betweenness centrality or assortativity.
We choose our set of metrics such that the outputs of the
algorithms can be directly compared between them (|NS | and
Dia) and to the original graph (AD, GD, and ACC).

We choose to use Jain’s fairness index to compare the
metrics obtained with each algorithm, defined for a metric
x as follows:

J(x) =
1

1 + c2x

where c is the variation coefficient, i.e., the standard deviation
over the average ratio of metric x. The best performance is
obtained when J(x) tends to 1 for |NS |, AD, GD, and ACC,

in other words, when the metrics are properly conserved.
The evaluation of Dia is slightly different, as the objective
is to minimize its average value and maximize its fairness
index simultaneously. Hence, both values are to be taken into
account.

C. Simulation Description

We implement our model in Python3 by creating a simple
yet adapted simulation module called swarm sim1. The setup
parameters for our experiment are listed in Tab. I. In our case,
time does not need to be taken into account during the graph
division because the execution of the algorithm is considerably
faster than the time needed for the graph topology and density
to evolve.

Variable Definition Value
|N | Number of nodes 100
|SG| Number of subgraphs 10
RG Connection range 30 km
p Burning probability (FFD) 0.7

TABLE I: Setup parameters of the simulation.

Each algorithm is run 50 times independently. Because
random processes are involved in the algorithms, a random
seed is generated to impact the output subgraph distributions.
For each repetition, the seed takes a different value, and the
node distribution of each subgraph is evaluated through the
criteria described in III-B. The results of the experiment are
summarized in Tab. II, where the best-performing algorithm is
bolded for each metric. The reference values are calculated on
the original graph G. Then, for each algorithm, we derive the
values of each metric averaged on |SG| subgraphs and on 50
independent repetitions (column x), and their corresponding
Jain’s index.

RND MDRW FFD
Metric Reference x J(x) x J(x) x J(x)
|NS | 100 10 0.917 10 0.967 10 0.923
Dia 10.2 6.5 0.922 6.6 0.932 6.6 0.932
AD 8.17 8.17 0.954 8.17 0.954 8.17 0.954
GD 0.08 0.08 0.920 0.08 0.932 0.08 0.931

ACC 0.5 0.5 0.988 0.5 0.988 0.5 0.988
Average score 0.940 0.955 0.945

TABLE II: Fairness performance of RND, MDRW and FFD.
MDRW performs the best according to the evaluation criteria.

D. Results Analysis

Surprisingly, we can see from Tab. II, the three algorithms
perform very well in conserving metrics. In particular, AD and
ACC are equally preserved by RND, MDRW, and FFD, which
makes it impossible to make a choice based on these metrics
alone. However, the fact that AD and ACC are remarkably
well-preserved (J(x) > 0.95) implies that one can base its
choice of the algorithm on other criteria, such as algorithm
complexity. In that case, the best solution would be RND

1Link to the source code available upon request.



(a) RND (b) MDRW (c) FFD

Fig. 3: Subgraph size distribution for all subgraphs obtained via RND, MDRW and FFD over 50 repetitions of our experiment.
MDRW gives the smallest statistical range, resulting in the fairest distribution.

because the the execution of the algorithm is instantaneous, i.e.
the complexity of RND is O(1). RND also gives the smallest
average value of Dia, but its variation is higher.

MDRW and FFD both give acceptable average metrics
values. The difference resides in their variation, i.e., their Jain’s
index: FFD usually has a higher variation than MDRW.

MDRW performs the best overall, outscoring RND and FFD
especially in subgraph size, as shown in Fig. 3. Indeed, the
probability of getting the fairest node distribution is obtained
with MDRW because its statistical range is narrowly centered
on

√
|N |. On the other hand, with RND or FFD, getting

extremely low or high subgraph sizes are statistically more
likely than with MDRW.

Finally, we highlight that only distributed algorithms can
be applied to the topology of the swarm (interferometry
requirement), so MDRW needs to be adapted accordingly.

E. Related results

Additional results can be found in [7], where the au-
thors compare the performance of graph sampling algorithms
(namely Random Node Sampling, Random Walk, and Forest
Fire Sampling, among others) in terms of fairness. Although
our work focuses on division and not sampling, our results
are consistent with theirs. For example, for subgraph sizes
of 10% of the original graph, they prove that random walk
algorithms perform better than forest fire sampling and random
node sampling according to a set of nine network metrics.
Furthermore, we obtain the same results when testing with
MDRW, FFD and RND and evaluating the performance with
only five metrics.

IV. CONCLUSION

The fair division of a network is primordial to improving
the communication performance within a nano-satellite swarm
by optimizing energy consumption and enhancing failure
resilience. In this paper, we presented the performance of
three division algorithms based on graph sampling techniques.

We proved that MDRW gives the fairest node distribution al-
though all three algorithms perform fine in terms of properties
conservation. MDRW is thus the most adapted to missions
where sub-networks need to be very small compared to the
original network (10% of the original size). It is essential to
highlight that MDRW is the best choice for our setup, but
another algorithm might work better if the sub-network sizes
need to increase (e.g., in the case of a completely different
mission). Nonetheless, the experimental evaluation presented
in this paper can be extended to any other swarm network
configuration.
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