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Abstract—In this paper, we consider single carrier continuous
phase modulations (CPM) over frequency selective time-varying
channels. In this context, we propose a new low-complexity
frequency-domain equalizer based on the minimum mean square
error (MMSE) criterion exploiting efficiently the band structure
of the associated channel matrix in the frequency domain.
Simulations show that this band-MMSE equalizer exhibits a good
performance complexity trade-off compared to existing solutions.

I. INTRODUCTION

Continuous Phase Modulations (CPM) are widely known
for their good spectral occupancy, their low-energy consump-
tion and their constant envelope, which make them robust to
non-linearities as the ones introduced by embedded amplifiers.
In the past few years, they have been considered for a wide
range of applications, such as the Internet of Things, military
communication (Ultra High Frequency band), 60Ghz commu-
nication or also aeronautical communication for Unmanned
Aerial Systems (UAS).
Due to their non linear structure, making a CPM transmis-
sion over frequency selective channels is by nature a very
challenging problem leading to advanced receiver techniques
to mitigate intersymbol interference. Several papers address
this issue in the case of time-invariant channels. The optimal
approach consists in considering jointly channel equalization
and CPM detection, using an extended trellis. However, this
approach has a prohibitive complexity as the trellis size grows
exponentially with the CPM memory and the channel length.
Hence, a common approach is to separate the equalization
from the CPM detection at the receiver side. In the case
of Time-Invariant (TIV) channel, a viable strategy is to per-
form Frequency-Domain (FD) equalization, before feeding a
CPM detector developed for AWGN channel. Low-complexity
schemes can be achieved by capitalizing on the diagonalization
of the channel matrix in the frequency-domain. In [1], the
authors present a minimum mean square error (MMSE) based
equalizer, a decision-feedback and also a turbo-equalizer. They
all rely on the Laurent Decomposition [2], estimating its
transmitted pseudo-symbols. However, this implies the use

of a non-conventional detector as the one in [3]. In [4], the
authors propose a slightly different version of the FD-MMSE
equalizer based on a polyphase representation of the received
signal. In this case, the output of the equalizer consists of an
equalized signal which fed, in this case, a conventional CPM
detector [5]. [6] shows that the equalizers proposed in [1] and
[4] have the same performance if a proper post-processing of
the equalizers outputs in [1] is done. In [7], [8], the authors
present low-complexity Frequency-domain MMSE Equalizers
by not taking into account the auto-correlation of CPM signals.
Indeed, this allows them to obtain a ”one-tap” equalizer with
an overall complexity dominated by the (Inverse) Discrete
Fourier Transform. However, all those Frequency-Domain
equalizers use the hypothesis of a TIV channel, which is
not true in case of large Doppler Spread as, for example,
in the aeronautical channel [9]. In this case, the channel is
frequency-selective (multiple paths) and time-varying, leading
to an even harder equalization problem. Surprisingly, to the
authors’ knowledge, only few papers deal with equalization
for CPM over Time-Varying (TV) channels.

In [10], the authors develop time-varying MMSE and Zero-
Forcing (ZF) equalizers in the time-domain, as they deal
with multipaths channels and large Doppler Spread. They
represent the TV channel with the popular Basis Expansion
Model (BEM) [11] and they capitalize on the Laurent rep-
resentation for binary CPMs, which allows them to write
their CPM (GMSK) signal as a sum of PAM waveforms and
to reduce the complexity of their overall receiver. However,
the computational complexity is still high as it requires full-
matrix inversion, which has a cubic dependency on the time-
dispersion of the channel.
In this paper, we present a new Frequency-Domain Equalizer
for CPM over time-varying and frequency selective channels.
As the channel matrix in the frequency-domain is no more
diagonal, it is often argued that the complexity of such an
equalizer can be prohibitive as it requires a full-matrix inver-
sion, and thus, time domain equalization should be preferred.
However, by enforcing, as an approximation, a band structure
for both the channel matrix and the CPM signal pseudo-



Fig. 1. CPM BICM Transmitter

symbols correlation matrix, we will show that it is possible to
reduce drastically the overall complexity for FD equalization
of CPM signals over TV multi-paths channels. The proposed
approach enables a lower complexity than existing time-
domain approaches and performs better at low signal to noise
ratio (SNR) in the uncoded case, which is a good feature
for the coded case when iterative detection and decoding is
performed. However, this reduction of complexity comes at
the price of a reasonable performance loss in the high SNR
regime in the uncoded case.
The paper is organized as follows. In Section II, we present
the system model for block-based CPM over TV channels. We
present the proposed band-MMSE frequency-domain equalizer
in Section III and show how to exploit the band structure of
the equalizer matrix to reduce the computational complexity,
which is discussed in Section IV. Some simulations results are
given in Section V. Conclusions and perspectives are drawn
in Section VI.

II. BLOCK-BASED CPM REPRESENTATION

A. Notations

In the following, a vector will be represented by an under-
lined letter (e.g. v, V ) and a matrix by a doubly underlined
letter (e.g. m, M ). Apart from transform matrices, small
letters (resp. capital letters) for vectors or matrices will refer to
as time domain quantities (resp. frequency domain quantities).
We note F

N
the Fourier transform matrix of size N × N

which corresponds to a FFT of size N . The matrix I
N

is the
identity matrix of size N ×N .

B. Communication system description

We consider the general Bit Interleaved Coded Modulation
(BICM) transmission scheme for CPM, as given in Fig 1. Let
{αn}0≤n≤N−1 ∈ {±1,±3, . . . ,±M − 1}N be a sequence
of N symbols taken from the M-ary alphabet . The complex
envelope sb(t) associated with the transmitted CPM signal is
written as follows

sb(t) =

√
2Es

T
exp (jθ(t,α)) (1)

where

θ(t,α) = 2πh

N−1∑
i=0

αiq(t− iT )

and

q(t) =

{∫ t

0
g(τ)dτ, t ≤ Lcpm

1/2, t > Lcpm

Fig. 2. Block-based structure of the CPM signal

Es is the symbol energy, T is the symbol period, θ(t,α) is
the information phase, q(t) is the phase response, h is the
modulation index and Lcpm is the CPM memory.
Let us now consider a transmission over a TV channel hc(t, τ).
At the receiver, we assume ideal low-pass filtering using
the front-end filter Ψ(t) and ideal synchronization. Denoting
h(t, τ) = Ψ ∗ hc(t, τ), where ∗ is the convolution operator,
the received signal can be written as:

r(t) =
∑
m

s(m
T

k
)h
(
t, t−mT

k

)
+ w(t), (2)

where w(t) is a complex baseband additive white Gaussian
noise with power spectral density 2N0, and k is the oversam-
pling factor.
In order to perform a frequency-domain equalization, we need
to circularize the channel. As for linear modulations, we can
derive a block-based model by using a Cyclic Prefix (CP) or
a known Unique Word (UW), also called training sequence.
We will consider here the use of a UW. Indeed, even if
the introduction of a UW brings a higher loss of spectral
efficiency, compared to the introduction of a CP, this allows
to increase the performance of the Block Decision Feedback
Equalizer [12] and to perform some useful estimations, such
as the carrier phase and frequency or the channel parameters
[13]. However, obtained results can still be extended to a
CP approach. Unlike for linear modulation, due to the CPM
memory, we need to add some termination symbols at the end
of the data block in order to ensure the phase continuity and
the uniqueness of the UW, as illustrated in Fig.2. Moreover,
the length of a UW must be larger than the time dispersion of
the channel to avoid interference between CPM blocks.

C. Baseband representation

Using a Fractionnally-Spaced representation of the received
signal, we have the following expression:

r[l] = r

(
lT

k

)
=
∑
m

s(m
T

k
)h
(
l
T

k
, (l −m)

T

k

)
+ w

(
l
T

k

)
=
∑
m

s[m]h[l; l −m] + w[l] (3)

By defining the channel matrix h as given in Eq.(5) where L
is the channel span, the signal has the following matrix-wise



representation:

r = hs+w (4)

with r = [r[0], r[1], . . . , r[kN − 1]]T

s = [s[0], s[1], . . . , s[kN − 1]]T

and w = [w[0], w[1], . . . , w[kN − 1]]T

Then, the received signal in the FD is now:

R = F
kN
r

= F
kN
hFH

kN︸ ︷︷ ︸
=H

F
kN
s︸ ︷︷ ︸

=S

+F
kN
w︸ ︷︷ ︸

=W

(6)

In the case where the channel is time-invariant, the matrix h
is circulant. Therefore, H will be a diagonal matrix. For time-
varying channels, H is not a diagonal matrix. However, it can
be well approximated using a band matrix [14]. We note Q
the number of lower and upper diagonals retained from H .
By defining the matrix B(Q) as having only non-zeroes on the
Q lower and upper diagonals, we approximate our matrix H
by

H
Q

= B(Q) ◦H (7)

where ◦ is the element-wise product operator. The approxi-
mated received signal can be finally written as

RQ = H
Q
S +W (8)

III. BAND FD-MMSE EQUALIZER

In this section, we present the proposed low-complexity
band MMSE equalizer for CPM over TV channels. Let J

MMSE
be the matrix of size kN×kN minimizing the following Mean
Square Error (MSE) criterion:

MSE = E
{

(S − J
MMSE

RQ)H(S − J
MMSE

RQ)
}

(9)

The linear block MMSE equalizer is given by:

J
MMSE

= R
SS
HH

Q
K−1 (10)

with K = H
Q
R

SS
HH

Q
+ N0IkN and R

SS
is the auto-

correlation matrix of S. We can note that the correlation
matrix R

BB
of the pseudo-symbols vector B and so the

correlation matrix R
SS

can be precomputed (see [4]) as
R

SS
= LR

BB
LH where L is the Laurent Pulses matrix,

using [2]. This can be also extended to the M -ary case. To
keep a band structure for our equalizer, we have to substitute
the autocorrelation matrix R

SS
by a truncated band version

defined as R
SS,Q

= B(Q) ◦ R
SS

. Then, the proposed
band-MMSE equalizer is explicitly written as follows:

J
MMSE,Q

= R
SS,Q

HQ
H [H

Q
R

SS,Q
HH

Q
+N0IkN ]−1 (11)

which is now also a band-matrix by construction.
The computation of the inverse of the matrix K =

H
Q
R

SS,Q
HH

Q
+N0IkN can be seen at first sight as computa-

tionally prohibitive, which is often argued for FD equalization

over TV channels. However, by enforcing this band structure,
as done above, we can exploit this structure to perform low-
complexity equalization. Indeed, following the idea of [15], the
equalization can be computationally efficient using the LDL
Decomposition. Thus, the following procedure can be applied
to efficiently equalize the received signal:

• Compute the band matrix K = H
Q
R

SS,Q
HH

Q
+N0IkN ,

• Compute the LDL decomposition of K = LDLH where
L is a lower triangular matrix and D a diagonal matrix
following [15],

• Solve the triangular system Lf = R,
• Solve the diagonal system Dg = f ,
• Solve the triangular system LHd = g,
• Compute Ŝ = R

SS,Q
HH

Q
d.

In the case of time-invariant channels, H is a diagonal
matrix by DFT properties. Then, by choosing Q = kN , we
obtain the following linear block MMSE equalizer :

J
MMSE, TIV

= R
SS
HH [HR

SS
HH +N0IkN ]−1 (12)

This equalizer corresponds to the FD-MMSE equalizers for
CPM of [1], [4] which are equivalent up to a proper post-
processing [6].
Moreover, by approximating the autocorrelation matrix R

SS
by the identity matrix and by choosing Q = 0, we obtain the
following equalizer:

J
approx, TIV

= HH [HHH +N0IkN ]−1 (13)

We remark that J
approx, TIV

is a diagonal matrix:

Japprox, TIV[l] =
H[l]∗

|H[l]|2 +N0
(14)

which corresponds to the FD linear MMSE equalizers for TIV
channels proposed in [7], [8].

IV. COMPLEXITY ANALYSIS

In this section, we discuss the computational complexity of
the proposed band MMSE equalizer. Due to the band structure
of the matrix K and similarly to [15], only (2Q2 + 3Q)kN
complex multiplications, (2Q2+Q)kN complex additions and
2QkN complex divisions are required. Then, only one diag-
onal and two triangular systems have to be solved in order to
equalize the received signal. They can be solved by band for-
ward and backward substitution [16]. By taking into account
the Fourier Transform, the overall complexity of the proposed
equalizer is in the order of O

(
kN(2Q2 +Q+ log(kN)

)
.

In the special case where Q = 0, the matrix H
Q

and R
SS,Q

are both diagonal matrices. Hence, our equalizer does not
require the LDL factorization of K as the inversion has a
lower complexity complexity. Then, the overall complexity
of our equalizer is dominated by the complexity of the Fast
Fourier Transform, which is in O

(
kN log(kN)

)
.

We also evaluate the computational complexity of the Time-
Domain Equalizer [10]. For each symbols sent, this equalizer
requires the inversion of a correlation matrix noted R

zz
of size

kLe where k is the oversampling factor and Le is a parameter



h =



h[0, 0] 0 . . . . . . 0
...

. . . . . .
...

h[L− 1, L− 1]
. . . . . .

...
...

. . . . . . 0
0 . . . h[kN − 1, L− 1] . . . h[kN − 1, 0]


+



0 . . . h[0, L− 1] . . . h[0, 1]
...

. . . . . .
...

0
. . . h[L− 2, L− 1]

...
. . . . . .

...
0 . . . 0 . . . 0


(5)

Fig. 3. Overall Receiver Structure

corresponding to the number of tap of the equalizer in number
of symbols. Typical values of Le used in [10] are in the
set {2, 3, 4, 5}. Hence, the equalizer has a overall complexity
of O

(
N(kLe)

3
)

which is of higher complexity compared to
the proposed FD equalizer. However, the performance of the
equalizer given in [10] does not suffer from the approximations
we have done to ensure the band matrix structure. Thus, lower
complexity is expected from our structure but at the price of
some (hopefully) reasonable loss of performance.

V. SIMULATIONS RESULTS

In this section, we present some simulations results. We
consider a binary CPM scheme with a raised-cosine (RC)
pulse shape, a memory of LCPM = 3 and a modulation index
h = 1/2 in the C-band. The transmitted signal is composed
by 9 block of 512 symbols, where a block is divided into
a data block and a Unique Word of 36 symbols. As we
consider a BICM scheme, as an outer coding scheme, we use
a convolutional code with polynomial generator (5, 7)8 given
in octal. The overall structure of the receiver is illustrated in
Fig.3.
The channel considered here is the ”En Route” aeronautical

channel by satellite with a C/M = 5dB and a Doppler Spread
of 500Hz [9]. We assume that the channel is perfectly known
at the receiver.

Fig.4 plots the obtained bit error rate as a function of
Es/N0, for several values of Q and considering an iterative
concatenated scheme using the proposed equalizer with 20
iterations between the CPM Detector and the MAP channel
decoder. We can see that choosing Q = 1 instead of Q = 0
leads to a gain of almost 2dB at a BER of 2 × 10−2. Then,
the improvement is up to 4 dB at a BER of 10−2.
The influence of the number of iteration between the CPM

Detector and the Channel Decoder and of the parameter Q
is shown in Fig.5 for several values of Q. We can see that
the choice of those two parameters (number of iteration and
Q) has a critical impact on the BER of the overall receiver.
However, there is a trade-off to find between performance and
computational complexity because increasing Q will increase

Fig. 4. Influence of the parameter Q

Fig. 5. Influence of the parameter Q and of the number of iteration

the complexity of the equalizer, whereas increasing the number
of iterations will increase the overall complexity and also the
latency of our receiver.
Finally, Fig.6 shows the performance of our receiver in the

context of [10] and compare it to the LTV-MMSE receiver.
We consider an uncoded binary GMSK with h = 1/2 and a



Fig. 6. Comparison with the LTV-MMSE [10]

memory of LCPM = 3. We can see that by choosing Q ≥ 3,
our low complexity equalizer outperforms the MMSE-LTV
equalizer in the low SNR region. However, at high SNR,
the MMSE-LTV is performing better. It can be explained by
the fact that our equalizer does not take into account all the
Doppler spread, unlike [10], producing a residual interference
between symbols. This drawback should be nevertheless bal-
anced by the fact that, when considering iterative detection
and decoding, low SNR behaviour of the detector mainly
conditioned the performance of the iterative receiver in the
waterfall region. Thus having enhanced performance of the
proposed detector in the low SNR regime is a good feature
for the coded case when performing iterative detection and
decoding.

VI. CONCLUSION

In this paper, we have derived a new low-complexity
Frequency Domain MMSE Equalizer for CPM in case of
frequency-selective time-varying channels. We have shown
that its computational complexity can be reduced by enforcing
the band structure of the channel and that this solution
enables good performance for a slight increase of complexity
compared to the time-invariant case. It is also shown that
the proposed solution enables to have a lower complexity
compared to state of the art time domain equalizers for CPM
over time-varying channels at the price of a reasonable loss
of performance at high SNRs in the uncoded case, while
performing better at low SNRs, which is a good feature for
iterative detection and decoding in the coded case.

VII. FUTURE WORK

Future works will deal with channel estimation for time-
varying channel and also possible extension to Widely-Linear
techniques as in [10].
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