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Abstract—This article focuses on the study of time-delay and
Doppler estimation under high dynamic non-Gaussian scenarios.
We aim at analysing the Mean Squared Error (MSE) perfor-
mance of a misspecified receiver architecture which deliber-
ately simplifies the signal model by neglecting the acceleration
parameter and assumes the noise process as complex normal
distributed. Specifically, we derive the pseudo-true parameters
by minimazing the Kullback-Leibler (KL) divergence between
the true and assumed models and the related Misspecified
Cramér-Rao Bound (MCRB) will be provided in closed form.
Theoretical derivations are validated via Monte Carlo simulations
showing the asymptotic efficiency of the Misspecified Maximum
Likelihood Estimator (MMLE). One remarkable outcome of this
study is that the lack of knowledge of the true statistical noise
model does not lead to asymptotic performance degradation in
the estimation of the parameters of interest.

Index Terms—Complex elliptically symetric distribution, Mis-
specified Cramér-Rao bound, time-delay and Doppler estimation,
band-limited signals.

I. INTRODUCTION

The estimation of deterministic signal parameters plays a
crucial role in various applications, such as navigation, radar,
or communications [1]–[10]. This problem has garnered sig-
nificant attention over the past decades and has become an in-
tegral part of modern signal processing. Generally, noisy signal
observations are assumed to be sampled from a well-specified
family of parametric distributions, i.e. the statistical model.
However, in certain scenarios, the true parametric model can
be deliberately misspecified to simplify the estimation of the
parameters of interest [11]–[14]. This might entail choosing
to estimate fewer parameters than those actually influencing
the signal dynamics. For instance, many applications related
with the GNSS and Radar systems assume that the effects of
receiver and/or target acceleration are negligible [15]. In other
words, instead of attempting to jointly estimate time-delay,
Doppler, and acceleration, the focus is solely on estimating
time-delay and Doppler. In previous works, concise analytical
expressions of the Cramér-Rao Bound (CRB) have been in-
troduced for GNSS and radar systems receiver architectures.
Specifically, the closed forms of the CRB, along with the
investigation of the MSE performance of the related Maximum
Likelihood Estimator (MSE), have been provided in [16],
[17] for time-delay and Doppler and in [18], [19] for time-
delay, Doppler, and acceleration, assuming a band-limited
signal. Moreover, the assessment of performance limits in

terms of MSE for a misspecified receiver architecture, where
the acceleration is not considered in the parameter space, was
first explored in [15]. Specifically, in [15], it is shown that
under certain acceleration ranges, it is convenient to implement
the misspecified maximum likelihood estimator (MMLE) in-
stead of the well-specified MLE. Moreover, building upon the
Slepian-Bangs formula derived in [20], a new compact closed-
form expression of the MCRB [13] for the time-delay and
Doppler parameters estimation under high dynamic scenarios
was derived. However, the main assumption adopted in [15]
is that both the true and assumed noise distributions are
centred complex-normal distributions. Nonetheless, real-world
scenarios often deviates from the Gaussian assumption, with
the true data process being a heavy-tail and non-Gaussian one.
These assumptions have been introduced for the first time
in [21], for low dynamics scenarios. Thus, in this article,
we assume that the true noise process is characterised by a
Complex Elliptically Symmetric (CES)-distribution and we
present the two following contributions: i) we derive the
pseudo-true parameters by minimizing the Kullback-Leibler
(KL) divergence between the true and assumed observation
models and we prove that the pseudo-true parameters of
interest equate the ones obtained by considering a complex-
normal distribution and ii) we derive a closed-form MCRB
expression for the parameter of interest under the assumption
of band-limited signal and we prove that this expression is
similar to the MCRB considering a true complex-normal distri-
bution. Finally, we validate the theoretical outcomes via Monte
Carlo simulations for one representative CES distribution: the
Generalised Gaussian GG one.

II. TRUE AND MISSPECFIED SIGNAL MODEL

A. True Signal Model

Let us consider that a band-limited signal a(t), with band-
width B, is transmitted over a carrier frequency fc (λc = c/fc,
ωc = 2πfc) from a transmitter T at position PT (t) to a
receiver R at position PR(t). The radial displacement between
transmitter and receiver pTR(t) = ∥pT (t)− pR(t)∥ is pro-
portional to the signal time-delay, which is in-turn affected
by the relative motion described by the relative velocity
v = vT − vR and relative acceleration a = aT − aR (where
pT (t) = pT (0) + vT t+

1
2aT t

2 and pR(t) = pR(0) + vRt+
1
2aRt

2) between both transmitter and receiver. This distance



is used in the ranging equation for tracking of the target
pTR(t;η) = cτtrue(t; η̄), where c is the speed of light and
τtrue(t; η̄) represents the delay as a function of time and
the true parameters η̄ = [τ̄ , b̄, d̄]⊤ ∈ R3 that describe the
displacement dynamics. Thus, the equation which describes
the line of sight distance travelled by the transmitted signal
can be approximated, up to the second order, as [22]:

pTR(t; η̄) = ∥pT (t− τtrue(t; η̄))− pR (t)∥ = cτtrue(t; η̄)

≃
∥∥∥∥pT (0)− pR(0)− vt− 1

2
at2
∥∥∥∥ , (1)

with τtrue (t; η̄) ≃ τ̄ + b̄t + d̄t2, τ̄ = ∥pT (0)−pR(0)∥
c , b̄ =

∥−v∥
c , d̄ = ∥−a∥

2c . The received “noise-free” signal at the output
of the Hilbert filter can be expressed as [15], [19]

s (t; η̄) = ᾱa (t− τ̄) e−j2πfc(b̄(t−τ̄)+d̄(t−τ̄)2) (2)

with ᾱ = ρ̄ejΦ̄. It is worth pointing out that in (2) the
narrowband assumption is adopted, i.e. the Doppler and ac-
celeration parameters does not have a direct impact on the
the baseband signal samples. In order to take into account the
random channel effects, a noise term is added leading to:

x(t) = s (t; η̄) + n(t), (3)

where n(t) is defined as complex non-Gaussian, wide-sense
stationary, continuous-time noise process. The discrete signal
model is built from N = N1−N2+1 samples at Ts = 1/Fs =
1/B,

x = ᾱµ(η̄) + n = ρ̄ejΦ̄µ(η̄) + n, (4)

with x = (. . . , x (kTs) , . . .)
⊤, N1 ≤ k ≤ N2 signal samples.

The samples of the non-Gaussian noise process n(t), i.e. n =
(. . . , n (kTs), . . .)

⊤ are assumed to be zero-mean, Complex
Elliptically Symmetric distributed n(kTs) ∼ CES(0, σ̄2

n, g)
with variance σ̄2

n and unspecified density generator g [23].
Furthermore, we assume that the noise samples are indepen-
dent and identically distributed (i.i.d.). Moreover, from eq. (3),
an explicit expression for each entry µk(η̄) of µ(η̄) can be
obtained as:

µk(η̄) = a(kTs − τ̄)e−j2πfc(b̄(kTs−τ̄)+d̄(kTs−τ̄)2). (5)

For further reference, the true “data-generating” parameters
can be gathered in a vector ϵ̄⊤ =

(
σ̄2
n, ρ̄, Φ̄, η̄

⊤) ∈ Γ ⊂ R+×
R+ × [0, 2π]× R3.

It follows immediately from the above definition of the
considered signal model, that the true probability density
function (pdf) of the non-Gaussian random vector x ∈ CN

in (4) is given by x ∼ pϵ̄ ≜ px(x; ϵ̄) = ΠN2

k=N1
pxk

(xk, ϵ̄),
with pxk

(xk, ϵ) = CES(ᾱµk(η̄), σ̄
2
n, g). From the Stochastic

Representation Theorem [23, Theo. 3], we have:

xk =d ᾱµk(η̄) +
√
Qσ̄nuk, (6)

where uk ∈ C is a complex uni-variate random variable
uniformly distributed on CS ≜ {u ∈ C||u| = 1}, i.e.
uk ∼ U(CS). The second order modular variate Q is
a positive random variable, independent from uk with pdf

pQ(q) = δ−1
g g(q), where δg ≜

∫∞
0

g(q)dq is a normalizing
constant (see [23, Eq. (19)]). To avoid the well-known scale
ambiguity between σ̄2

n and g, we impose that E{Q} = 1. Note
that, this constraint allows us to consider σ̄2

n as the statistical
power P of the data xk, (see the discussion in [23, Sec. III.C]),
since from (6), we have that:

P ≜ E{|xk − ᾱµk(η̄)|2} = E{Q}E{|uk|2}σ̄2
n = σ̄2

n, (7)

since E{|uk|2} = 1 [23, Lemma 1].

B. Misspecified Signal Model

Unfortunately, in standard receivers it is not possible to
implement acceleration-aware estimators within the signal
model due to its complexity. In addition, as a second simplifing
assumption, the noise vector n in eq. (4) is usually considered
as a zero-mean, complex Gaussian vector with diagonal covari-
ance matrix and statistical power σ2

n. Clearly, the two above-
mentioned simplifications lead to a model misspecification.
In particular, since the acceleration will not be considered,
one can define a reduced (and misspecified) version of the
continuous signal model in eq. (3) as:

smiss(t;γ) = αa(t− τ)e−j2πfcb(t−τ). (8)

As for the true signal, we can build the misspecified discrete
model from N samples at Ts as:

smiss(kTs;γ) ≜ ακk(γ) = αa(kTs−τ)e−j2πfcb(kTs−τ) (9)

The misspecified signal parameters can be cast in a vector
γ = (τ, b)⊤ ∈ R2 and the complete set of unknown mis-
specifed parameters is ϕ⊤ = (σ2

n, ρ,Φ,γ
⊤) = (σ2

n,θ
⊤) ∈

Ψ ⊂ R+ × R+ × [0, 2π] × R2. It is important to note that,
since the acceleration is not considered in the misspecified
estimation problem, the true and the assumed parameter
spaces, i.e. Γ and Ψ respectively, are different, and specifically
Γ = Ψ × R. Moreover, note that, while the true (uniquely
defined) parameter vector is indicated as ϵ̄ ∈ Γ, a generic
misspecified parameter vector in Ψ is denoted as ϕ ∈ Ψ.
By collecting the previous definitions, the Gaussian-based,
“acceleration-unaware” statistical model for the observation
vector in (4) can be expressed as:

Fϕ ≜
{
fϕ|fx(x;ϕ) = CN (ακ(γ), σ2

nIN );ϕ ∈ Ψ
}
. (10)

Since, in general, pϵ̄ /∈ Fϕ, no estimator can estimate
the true parameter vector ϵ̄ ∈ Γ. The best that we can
do is to estimate the so called pseudo-true parameter vec-
tor ϕ0 ∈ Ψ [13], [14], that is the vector that minimizes
the Kullback-Leibler divergence (KLD), i.e. D(pϵ̄||fϕ) =
Epϵ̄ [ln px(x; ϵ̄)− ln fx(x;ϕ)] between any fϕ ∈ Fϕ and
the true pdf pϵ̄. Moreover, since the assumed misspecified
parameter space Ψ is nested in the true one, i.e. Γ = Ψ× R,
the best we can expect is that the pseudo-true parameter
vector ϕ⊤

0 = (σ2
0 ,θ

⊤
0 ) ∈ Ψ equates the subvector ϕ̄ ≜

(σ̄2
n, ρ̄, Φ̄, τ̄ , b̄) = (σ̄2

n, θ̄
⊤)⊤ ∈ Ψ of the true parameter vector

ϵ̄⊤ = (ϕ̄⊤, d̄) ∈ Γ.



III. THE PSEUDO-TRUE PARAMETER VECTOR

The pseudo-true parameter vector ϕ0 ∈ Ψ is defined as

ϕ0 ≜ arg min
ϕ∈Ψ

D(pϵ̄||fϕ) = arg min
ϕ∈Ψ

Epϵ̄ [− ln fϕ] where,

(11)
Epϵ̄ [− ln fϕ] = Epϵ̄ [− ln fx(x;ϕ)] , x ∼ pϵ̄

= N ln(πσ2
n) + Epϵ̄

[
||x− ακ(γ))||2

σ2
n

]
.

(12)

Let us start by minimising with respect to (w.r.t.) the
subvector θ ∈ Ξ ⊂ R+× [0, 2π]×R2 of ϕ⊤ = (σ2

n,θ0) ∈ Ψ.
This minimisation leads to the following expression that does
not depend on σ2

n:

θ0 =argmin
θ∈Ξ

{Epϵ̄ [− ln fx(x;ϕ)]} , x ∼ pϵ̄

= argmin
θ∈Ξ

{
Epϵ̄

[
∥x− ακ(γ)∥2

]}
= argmin

θ∈Ξ

{
∥ᾱµ(η̄)− ακ(γ)∥2

}
. (13)

By posing to zero the following derivative, the pseudo-true
noise variance σ2

0 can be evaluated as:

Epϵ̄

[
∂

∂σ2
n

ln fσ2
n,θ0

]
=

N

σ2
n

−
Epϵ̄

[
∥x− α0κ(γ0)∥2

]
σ4
n

=
N

σ2
n

− 1

σ4
n

(
∥r0∥2+Nσ2

n

)∣∣∣∣
σ̄2
n=σ2

0

= 0,

(14)

where r0 ≜ r(θ0) = ᾱµ(η̄)− α0κ(γ0), we immediately get

σ2
0 = σ̄2

n + ∥r0∥2/N. (15)

As shown in [15], for relatively short coherent integration
time and realistic acceleration, we have that the pseudo-true
parameters are given by:

α0 ≈ ᾱ, τ0 = τ̄ , b0 = b̄+ d̄Te, (16)

where Te is the integration time. The results in eqs. (15) and
(16) show that the pesudo-true parameters are different from
the true ones except for τ̄ and approximately for ᾱ.

IV. CLOSED FORM EXPRESSION FOR THE MCRB

In this section, the MCRB on the estimation of the pseudo-
true parameter vector ϕ0 ∈ Ψ is presented. This result can be
derived from the general formula introduced in [24], where it
is shown that the MCRB can be calculated from the product
of two matrices A(ϕ0) and B(ϕ0) as follows:

MCRB(ϕ0) = A(ϕ0)
−1B(ϕ0)A(ϕ0)

−1, (17)

According to the misspecified signal model introduced in
Sec. II-B, the assumed pdf is given by fx(x;ϕ) =
CN (ακ(γ), σ2

nIN ). This is a particular case of the Scenario
1 in [24, Sec. 3.2] and consequently the matrices A and B,
needed to evaluate the MCRB, can be obtained from eq. [24,
Eq. (34)] and [24, Eq. (30)], respectively. By indicating as δ[·]
the Kronecker delta, the following simplifications are in order:
S1 The matrix, that in the case under study becomes a scalar,

in [24, Eq. (19)] can be expressed as P0
i = σ−2

0 δ[i − 1]
for i ∈ {1, 2, 3, 4, 5}.

S2 The matrix (scalar in our case) in [24, Eq. (25)] is
uniformly equal to 0, i.e. P0

ij = 0 ∀i, j ∈ {1, 2, 3, 4, 5}.
S3 The matrix in [24, Eq. (23)] is given by S0

i = σ−4
0 δ[i−1]

for i ∈ {1, 2, 3, 4, 5}.
S4 The term tr(S0

iΣ) in [24, Eq. (23)] can be obtained
as tr(S0

1Σ) = S0
1 σ̄

2
n = (σ̄2

nσ
−4
0 )δ[i − 1] for i ∈

{1, 2, 3, 4, 5}.
S5 The term tr(S0

iΣS0
jΣ) in [24, Eq. (23)] can be evaluated

as tr(S0
iΣS0

jΣ) = S0
i S

0
j σ̄

4
n = (σ̄4

nσ
−8
0 )δ(i− 1)δ(j − 1),

∀i, j ∈ {1, 2, 3, 4, 5}.
By making use of S1 - S5, the general expression of the matrix
B(ϕ0) given in [24, Eq. (31)] can be simplified as:

B(ϕ0) =

(
Nσ̄4

nσ
−8
0 (E{Q2} − 1) 01×4

04×1
2σ̄2

n

σ4
0
C(θ0)

)
(18)

where the matrix C(ϕ0) is given by:

[C(θ0)]i,j ≜
N2∑

k=N1

ℜ
{[

∂(α0κk(γ0))

∂θi

]∗
∂(α0κk(γ0))

∂θj

}
(19)

Moreover, by exploiting S1 - S5, it is immediate to verify that
the matrix A(ϕ0) given in [24, Eq. (34)], we get:

A(ϕ0) =

(
A11(ϕ0) 01×4

04×1
2
σ2
0
D(θ0)

)
(20)

where A11(ϕ0) = Nσ−2
0 (σ−2

0 − 2||r0||2 − 2σ−4
0 σ̄2

n) and the
matrix D(θ0) is given by:

[D(θ0)]i,j =

N2∑
k=N1

ℜ
{
[r0]

∗
k

∂2(α0κk(γ0))

∂θi∂θj

}
− [C(θ0)]i,j

(21)

Finally, the MCRB can be expressed as:

MCRB(ϕ0) = A(ϕ0)
−1B(ϕ0)A(ϕ0)

−1 (22)

=

(
σ4
n(E{Q2}−1)

Nσ4
0(σ

−2
0 −2||r0||2−2σ−4

0 σ̄2
n)

2
01×4

04×1 MCRB(θ0)

)

MCRB(θ0) =
σ̄2
n

2
D(θ0)

−1C(θ0)D(θ0)
−1 (23)

which yields to the classical misspecified MCRB of the Gaus-
sian scenario, proving that asymptotic estimation performance
of θ0 are similar to the pseudotrue parametess considering a
true signal model following a Gaussian model [15].

A. Closed-Form MCRB Expression for a Band-Limited Signal
A compact expression of MCRB(θ0), that depends only

on the baseband signal samples, was recently derived in [15],
C(θ0) in a matrix form can be expressed as

C(θ0) = Fsℜ
{
QWQH

}
, (24)

where

Q =


jρ0 0 0
1 0 0

jwcρ0b0 0 −ρ0
0 −jwcρ0 0

 , W =

w1 w2 w∗
3

w2 W2,2 W ∗
3,2

w3 W3,2 W3,3

 ,

(25)



with W derived in [16],

w1 =
1

Fs
aHa, w2 =

1

F 2
s

aHDa, w3 = aHΛa, (26)

W3,2 =
1

Fs
aHDΛa, W2,2 =

1

F 3
s

aHD2a, W3,3 = Fsa
HVa.

with a, the baseband samples vector, D, Λ and V defined as,

a = (. . . , a(nTs), . . .)
⊤
N1≤n≤N2

, (27a)

D = diag (. . . , n, . . .)N1≤n≤N2
, (27b)

(Λ)n,n′ =

∣∣∣∣∣ n′ ̸= n : (−1)|n−n′|
n−n′

n′ = n : 0
(27c)

(V)n,n′ =

∣∣∣∣∣ n′ ̸= n : (−1)|n−n′| 2
(n−n′)2

n′ = n : π2

3

(27d)

On the other hand, D(θ0) in a matrix form can be expressed
as [15]

D(θ0) = Fsρℜ{χ} , (28)

with χ = −QeWeQ
H
e and

Qe =


−jρ0 0 0 0 0
−1 1 0 0 −1

−jρ0ωcb 0 0 ρ0 0
0 0 jωcρ0 0 0

 , (29)

We =


we1 0 we2 we3 0
0 w1 0 0 0

we2 0 We2,2 We3,2 0
we3 0 We3,2 weM 0
0 0 0 0 we1

 , (30)

we1 = w1 − jωcd̄Tew2, we2 = w2 − jωcd̄TeW2,2, (31)
we3 = w3 − jωcd̄TeW3,2, We3,2 = W3,2 − jωcd̄TeW4,3,

We2,2 = W2,2 − jωcd̄TeW4,2, weM = −W3,3 − jωcd̄TewM,2

with W4,3 = 1
F 2

s

(
sHDΛDs − sHDs

)
, W4,2 = 1

F 4
s

(
sHD3s

)
and wM,2 = −sHDVs, both derived in [19].

V. VALIDATION AND DISCUSSION

We consider a scenarios where a GPS L1 C/A signal [10]
is received by a GNSS receiver which assumes that the noise
follows a standard centered normal distribution. Then, we set a
true signal model where the noise is distributed according to
a complex centered Generalized Gaussian (GG) distribution
, [14, Sec. 4.6.1.2] with exponent s > 0 and scale b > 0,
where s is a parameter controlling the level of non-Gaussianity.
The second-order modular variate Q of a GG distribution is
given by Q =d G1/s where G is a Gamma distributed random
variable with parameter 1/s and b, i.e. G ∼ Gam(1/s, b) [23,
Sec. IV.B]. In order to satisfy the constraint E{Q} = 1 (see
section IV), we set b =

(
σ2
nΓ(1/s)
Γ(2/s)

)s
where σ2

n depends on the
signal to noise ratio at the output of the match filter SNRout.
The SNRout is defined as:

SNRout =
|α|2aHa

σ2
n

. (32)

We set the acceleration d = 50g, with g = 9.81m/s2,
and the integration time to Te = 5ms, i.e. 5 GPS L1 C/A
sequences. Moreover, complex centered Generalized Gaussian
distributions with s = {0.2, 2} has been used as a true model.
The MMLE for the joint estimation of the time-delay and
Doppler can be expressed as 1:

γ̂ = argmax
γ

∥∥Πκ(γ)x
∥∥2 (33)

For this algorithm we can verify that the delay estimation is
unbiased. On the other hand, the Doppler estimate is biased
with ∆b = dTe. The root mean square error (RMSE) results of
the MMLE for the parameters of interest ηT = [τ, b] are shown
in Figs. 1 and 2 w.r.t. the SNRout and considering the follow-
ing setup: a GNSS receiver with sampling frequency Fs = 2
MHz and the number of Monte Carlo is set to 1000 iterations.
The results clearly demonstrate that the RMSE, represented
as

√
MSE, for the pseudotrue parameter converges towards

the asymptotic estimation performance derived in Section IV.
These findings validate the theoretical derivation. It’s worth
noting that the square root of the misspecified Cramér-Rao
bound (

√
MCRBτ ) for the time-delay is equivalent to the

square root of the Cramér-Rao bound (
√
CRBτ ) of the time-

delay. This is due to the fact that the time-delay bias is this
particular case is zero. Moreover, we remind that the CRB is
equal whether acceleration is considered or not within the sig-
nal model [19]. Thus, time-delay MMLE estimates reduces the
complexity at the receiver and provides the same asymptotic
performance than the MLE. On the other hand, we can verify
that the

√
MCRBb for the Doppler differs from the Doppler√

CRBb. Note that the
√
CRBb represents the asymptotic

performance of the joint Doppler and acceleration estimation.
By comparing these two bound along with the bias ∆b, we
can verify that the MMLE, which is less computationally
consuming, can improve the estimation performance of the
MLE for certain SNRout regimes. Moreover, we can observe
that the MCRB is the same as in the case where the true
error distribution is a complex Gaussian [15]. It is important to
emphasize that the earlier theoretical findings apply to all CES-
distributed true noise models, not just the GG distribution.
A formal explanation of this observation is grounded in
semiparametric theory (as outlined in [25, Sec. IV;B] and [26,
Sec. III.B]). A more detailed and comprehensive explanation
will be offered in future research endeavors.

VI. CONCLUSION

The objective of this paper is to present novel insights to
the theory of time-delay and Doppler estimation. Specifically,
we derive asymptotic performance expressions MCRB for
a non-standard scenario where a receiver decides to carry
out the estimation of a subset of parameters of interest in
order to reduce the computational complexity. Moreover, the
true noise model conforms to a centered CES distribution,
while the receiver assumes that the noise model adheres to a

1Let S = span (A), with A a matrix, be the linear span of the set of its
column vectors. The orthogonal projector over S is ΠA = A

(
AHA

)
AH .
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Fig. 1. RMSE of the MMLE of the time-delay considering complex centered
GG dist. with s = {0.2, 2}. The sampling frequency is set to Fs = 2 MHz
and the integration time is set to T = 5ms.
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Fig. 2. RMSE of the MMLE of the Doppler considering complex centered
GG dist. with s = {0.2, 2}. The sampling frequency is set to Fs = 2 MHz
and the integration time is set to T = 5ms.

centered complex normal distribution. The main conclusion is
that the asymptotic estimation performance of the parameters
of interests is independent of the true noise distribution and
it is the fact of considering an alternative signal model that
can generate perturbation in the estimation performance. For
this scenario, we have observed that the time-delay MMLE is
unbiased and converges to the CRB, i.e. is indepedent of the
acceleration value. On the other hand, the Doppler estimate is
biased, and converges to the MCRB. Moreover, we have shown
that the MCRB is indepedent of the true noise distribution.
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