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Abstract—This paper studies a robust algorithm allowing the
estimation of the center and the radius of a hypersphere in the
presence of outliers. To that extend, the Student-t distribution
is assigned to the noise samples to mitigate the impact of the
outliers. A von Mises-Fisher prior distribution is also assigned to
latent variables in order to exploit the fact that the observed sam-
ples are located in a part of the hypersphere. A robust Bayesian
algorithm based on a Gibbs sampler is then proposed to solve the
hypersphere fitting problem. This algorithm generates samples
asymptotically distributed according to the joint distribution of
the unknown parameters of the hypersphere (radius and center),
as well as the other model parameters such as the noise variance.
Simulations conducted on synthetic data with controlled ground
truth allow the performance of this algorithm to be appreciated.

Index Terms—t-distribution, von Mises-Fisher distribution,
Gibbs sampler, hypersphere fitting, robust estimation

I. INTRODUCTION

In the context of a biological study of phenotype evolution,
LiDAR sensors capturing the same scene from several angles
have been mounted on a phenoMobile [1]. The calibration of
these sensors is made using spheres whose parameters have
to be estimated for each LiDAR sensor [2]. This problem is
related to the adjustment of hyperspheres from noisy point
clouds referred to as hypersphere fitting, which is recurrent
in many applications such as object tracking [3]-[5], robotics
[6]-[8] or pattern recognition [9]-[11].

A specificity of the problem addressed in this paper is that
only part of the hypersphere is reached by the LiDAR point
cloud, which makes standard fitting methods inefficient. This
problem was studied in [2] that derived an interesting EM
algorithm for hypersphere fitting. A robust implementation
of the EM algorithm was also investigated in [12] using a
mixture model allowing inliers and outliers to be detected.
The first component of this mixture model was based on
latent variables defined as affine transformations of unitary
random vectors having von Mises-Fisher distributions, while
the second component used latent variables with Bernoulli
distributions indicating whether each point is an outlier or not.
The von Mises-Fisher distribution is a probability distribution
on a hypersphere in R?. The parameters of this distribution
are the mean direction g, which is a unit vector defining the
direction of the point cloud, and the concentration parameter
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K, which represents how much the data move away from
the mean direction. This distribution reduces to the uniform
distribution over the hypersphere when « = 0. It is well
adapted to data that are concentrated on a part of a hypersphere
when x > 0 (e.g., when a LiDAR is pointing a sphere). The
estimation method presented in [12] is very robust to outliers
located uniformly in a fixed window containing the sphere
of interest. However, the performance of the method drops
for other kinds of outliers, which can be observed in some
practical applications. This paper introduces a robust Student’s
t-distribution for the additive noise corrupting the hypersphere
measurements, which overcomes this problem. The Student’s
t-distribution is classically used to ensure robust estimation
due to its heavy-tailed nature. As closed-form expressions for
the Bayesian estimators of this model are intractable, a Gibbs
sampler is investigated generating samples that are used to
estimate the model parameters.

This paper is organized as follows. Section 2 introduces
the model used for robust hypersphere fitting and derives its
posterior distribution and the conditional distributions required
for the Gibbs sampler. Section 3 presents the different steps
of the proposed Gibbs sampler. Simulations conducted on
synthetic data are studied in Section 4 whereas conclusions
are reported in Section 5.

II. BAYESIAN MODEL

A. Problem formulation

Consider n noisy measurements z; € R% i = 1,...,n
located around a hypersphere with radius r and center ¢ € R
We assume that the noise samples are mutually independent
and distributed according to a multivariate ¢-distribution with
location parameter 04, scale matrix 021, with o2 unknown,
and number of degrees of freedom v, denoted as t4(0,02,v).
We introduce latent vectors u; € S, i = 1,... n, where
S%1 is the unit sphere of dimension d. These vectors are
assigned a von Mises-Fisher prior with known parameters « >
0 and p € R?, denoted as vM F(k, u)'. The corresponding

In the practical LIDAR application mentioned before, g is the known
direction of the LIDAR and v is a parameter fixed by the user to account for
the presence of outiers



model for hypersphere fitting is:
zi=c+ru; +e;, u; ~vMF(k,p), (D
ei ~ ta(04,0%14,v). 2

The probability density function (pdf) of a von Mises-Fisher
distribution with parameters « and g is given by:

fa(@; p, k) = Ca(k) exp (kp' ), 3)

with K > 0, ||p]|]2 =1 and Cy4(k) is a normalization constant

defined by:

d/2—1

Ca(rk) = (27r)d/2]d/271(’€) ,

“4)

where I,, is the modified Bessel function of the first kind
of order m. Regarding the noise distribution, v is a parameter
fixed by the user in order to control the robustness of the model
[13]. Any multivariate ¢-distribution being a scale mixture of
Gaussians [13], the problem can be reformulated as follows:

Y;

JE
14

®)

z;=c+ru; +

with

v 1
yiNN(Od,O'ZId), wlNX2(V):F<2,2> . (6)
The latent variables y; have a multivariate normal distribution
with mean vector 04 and covariance matrix o214, denoted as

N(04,0%14), whose pdf is

exp [—3(z—p) Sz — p)]

fn(z;p,X) = (271_)(1/2 det(z)l/Q ’

(7

with g = 04 and 3 = 021 ,. The latent variables w; have a

gamma distribution with shape parameter % and rate parameter

%, denoted as I" (4, 3). The pdf of a gamma distribution with

shape parameter o and rate parameter [ is:

a-18% exp(—fz)
I(c)

where 14 is the indicator function on the set A defined by

fF (xv Q, B) = H]O,oo[(x)7 3

Ta(z) = 1 ifzeA,
AT 0 otherwise.

The latent variables u; and w; are supposed to be independent.
Thus, the joint distribution of the observations and latent
variables conditioned on the model parameters, known as the
complete likelihood, can be expressed as:

(€))

p(zi, ui,w; | 0,%) = p(z; | ui,w;, 0,)

X p(wl | V)fd(ui | R, y’)a (10)

where p(w; | v) = fr (wi; %, 3), 6 = {r,c,0?} is the vector

of unknown model parameters and 1) = {x, u, v} contains the
model hyperparameters.

B. Likelihood

The likelihood of the observations can be expressed as:

E(O;va):Hp(zz‘IO,@b)?

i=1
= H/d / p(ziui, wi | 0,1) dw;du;.
=17/ S Ry

The maximum likelihood estimator of the unknown parameter
vector @ maximizing L£(0;Z,1p) cannot be expressed in
closed-form and cannot be easily computed using a numerical
optimization method. Instead, we propose to investigate a
Markov chain Monte Carlo (MCMC) method to generate
samples asymptotically distributed according to the following
augmented posterior distribution

p(O.U,w|Z,¢)xp(Z,U,w|6,4)p(0|v),

with Z = [z1, ..., 2,),U = [u1,....;u,],w = [wy,...,w,]|"
and p (@ | ¢) is the prior distribution of the model parameters.
The generated samples are then used to approximate the
Bayesian estimators of the model parameters.

(1)

C. Prior distributions

The hyperparameters r and c are assigned independent non
informative uniform improper distributions, i.e.,

fr(r) = Ir, (1), fe(€) = Ipa(c).

The prior distribution for o2 is a non-informative conjugate
Jeffrey’s prior [14], which reflects the absence of knowledge
regarding this parameter and will simplify the analysis:

1

f02 (02) = ?HR-# (02)'

(12)

13)

D. Conditional distributions of the augmented posterior

This section derives the conditional distributions of (10) that
are required to implement the Gibbs sampler. Using (3), (7),
(8) and (10), the posterior distribution of the unknown and
latent parameters can be written as:

p(zi7ui7wi | 0,'(/)) =

_a
2o\ 2 ( w; |
exp | — zi —
w; PAT 502 1%

w;)z 1 —w;
x Cq(k) exp(/iu—rui)(z)) exp (2> (14)

According to Bayes’ theorem,
plui, wi | 25,0,9) o< p(zi, wi, w; | 0,1), (15)

where o< means “proportional to”, which leads to:

p(us,w;i | 2i,0,9) o wi " exp(—w;B;) exp(kips wi),
(16)



with the following notations

wir(z; — ¢) + volkp

_ , 17

i |lwir(z; — €) + vo2kp||2 an
w;r(z; —c¢)+ volk

SIS E7 0 A
d

a="1Y, (19)
1/ ||z; —ecll2+72

Bi=3 (' : W”; +1). (20)

The conditional distributions of w; and w; can be determined
from (16) leading to:

u; | Zi7wi707¢ ~ ’UMF(’%%IJ%’)? (2])
and
wy | zivui70a¢ ~ F(O{7BZ)

Similarly, by denoting 6,. = 6 \ {r}, the conditional distribu-
tion of r can be determined:

(22)

n

p(’f’ | Z7an797“71/}) O(pT(T)Hp(Zivuhwi | ouw) (23)
i=1

Using (12), (14) and (23), the following result is obtained:
| Z,U,w, 0., ~ Njg oo (11, 07), (24)

where Mg oo(ttr, 02) is the Gaussian distribution with mean
- and variance o2 truncated on ]0, o[ and
Sl (im0 L o/b
r — n , 00 = .
D i1 Wi 2V Z?:l (5
Similarly, by denoting 8. = 6 \ {c}, the conditional distribu-
tion of ¢ can be determined:

(25)

n

ple| Z,U, w,0.,%) x p(c) [ [ p(zi, ui, wi | 0,4), (26)

i=1

which leads to:

c|l Z,U,w,0.,% ~N(p.,o’1,), (27)
with
= Dict w;(zi - ’I"’Uzi)’o_g _ anu . 28)
D i1 Wi D iy Wi

Finally, denoting 8, = 8 \ {02}, the conditional distribution
of o2 can be computed:

n

p(0'2 | ZaU7w700'a¢) O(pO'Q(O'Q) Hp(ziau%wi ‘ 97¢)

i=1
(29)
Using (13), (14) and (29), the following result is obtained:

o* | Z,U,w,0,,% ~ IG(ay2, By2) (30)

with

d 1 ¢
Qpr = o, B = 7 2 wile—e—rulh, 6D

where ZG(«, ) is the inverse gamma distribution with shape
parameter « and scale parameter (3, whose pdf is:

) (e

III. GIBBS SAMPLER

The Gibbs sampler [15] is an MCMC method generating
samples of each parameter of the posterior distribution accord-
ing to its conditional distribution. Since the distribution of the
generated samples converges to the posterior distribution, their
sample mean after a burn-in period is a good approximation of
the MMSE estimators. The Gibbs sampler for the hypersphere
fitting problem is summarized in Alg. 1. It generates nNgamples Of
the different parameters, discards the npym.in first samples (to
eliminate the samples too dependent on the initialization) and
uses the remaining samples to build the parameter estimates.

fIg (I’,O[,ﬂ) =

Algorithm 1 Gibbs sampler
Input: Z, v, Tsampless Tlburn-in
Output: cy, 7y, Uff
u(0) < ug
w(0) < wo
r(0) < 7o
C(O) <— Co
a%(0) < o3
for t =1,..., Nsamples dO

( Z,@(t—l),’l,b) > (21)

(t) «p(w|U®), Z,0(t-1),9) > (22)

t c(t—1),0%(t—1),9) > (24)
, , 02 (t—1),9) > (27)
a*(t) < p (o® | U(t),w(t), Z,7(t),c(t), ) > (30)

7 < mean(r(Npum-in: €nd))
¢y < mean(c(Npyrp-in: €nd))
aj% +— mean(o2(Npymein: €nd))
wy ¢ mean(w(Npym-in: €nd))

IV. SIMULATION RESULTS

Several experiments have been performed in order to evalu-
ate the performance of the proposed estimation method. This
method requires three parameters to be adjusted: the total
number of iterations (i.e., the total number of draws), the
number of initial draws used for burn in, and the number of
degrees of freedoms v. The two first parameters are chosen in
order to ensure the algorithm convergence. This convergence
can be assessed using the so-called potential scale reduction
factor v/p (a value of /p below 1.2 is recommended in
[16, p. 332]). In the following experiments, the center of
the hypersphere was initialized to the mean of the noisy
measurements denoted by ¢y, and its radius was initially set
to its MLE given the center cg, i.e., ro = = 37" ||z; — o2
The noise variance was initialized by its MLE given (cg,79),
ie, ol =-L3" |zi—coll3— 5rd. The latent variables were
initially set to w; = p and w; = 1, Vi = 1,...,n. Finally,



we place ourselves in an ideal case where the value of v, the
hyperparameter of the Gibbs agorithm, is equal to the value
of vy, the degree of freedom used to generate the data.

A. Synthetic 2D Dataset
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(b) Case n°2: Directional distribution on a part of the sphere.

Fig. 1. Comparison between REM and Gibbs algorithms. The first line
corresponds to data generated with « = 0. The second line corresponds to
data generated with k = 3.

This section compares the proposed method referred to as
Gibbs with the REM method presented in [12] for observations
generated with v, = 1. Experiments are conducted with data
generated with n = 100, d = 2, r = 10, ¢ = (=5,5)T and
o = 1. The first experiments are carried out with a uniform
distribution on the sphere (i.e., k = 0) whereas the other
experiments use a distribution concentrated on a part of the
sphere (with x = 3 and p = (1,1)//2). The field of view
of the sensor is supposed to be FoV = [—30,20; —20, 30],
i.e., all measurements falling outside this region of interest are
discarded. The total number of samples for the Gibbs sampler

is n, = 5000 with ny; = 3000 burn in iterations (i.e., Ny =
2000 samples are used to build the estimates). The number of
iterations used for the REM algorithm is 60. Figure 1 shows
the generated samples (referred to as “observations”) (note the
presence of outliers due to the ¢ distribution), and the estimated
circles using the proposed Gibbs sampler and the reference
method REM. The proposed Gibbs sampler is clearly more
robust to outliers than REM for directional data. In the case
of a uniform distribution on the circle, both algorithms tend
towards similar solutions. This figure also highlights the way
the two algorithms operate: REM estimates the parameters
of the hypersphere by indicating that an observation is an
outlier using a Bernoulli distribution. Conversely, the Gibbs
sampler estimates these parameters by assigning a weight
to each observation resulting from the Student-¢ distribution
assigned to the noise. Figure 2 shows the histogram of all
parameters of interest (r,¢ = (c1,ca),0?) generated for the
estimation (i.e., after the burn in) in a case of directional data.
These histograms are in good agreement with the marginal
distribution of each variable of interest.
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Fig. 2. Histograms of estimated parameters.

B. Monte-Carlo simulations

Monte-Carlo simulations allow the performance of the pro-
posed algorithm to be quantified. The data were generated with
the parameters indicated in Section IV-A for directional data.
A first experiment compares the robustness of the proposed



Gibbs sampler for different values of v, with that of REM.
Fig. 3 shows that the proposed Gibbs sampler provides better
performance than REM for all values of v, in the sense
that the MSEs of the radius and center estimates obtained
using the Gibbs sampler are lower than those using REM.
The robustness of the proposed algorithm to additive noise
can be evaluated using the results displayed in Fig. 4 (data
generated using v, = 2) showing better performance for the
Gibbs sampler than for REM. Finally the execution times of
the two algorithms are reported in Table I showing the price
to pay with MCMC methods.
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Fig. 3. MSEs of the estimates of (r, ¢) versus v for Gibbs and REM.
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Fig. 4. MSEs of the estimates of (7, ¢) versus o2 for Gibbs and REM.

TABLE 1
COMPUTATION TIME

Algorithm Time for Time for Time for
100 Points (s) 500 Points (s) 1000 Points (s)

Gibbs 8.5 x 1071 3.9 9.1

REM 4.1 x 1073 9.9 x 1073 1.5 x 1072

V. CONCLUSION

This paper proposed a robust Bayesian sampling algorithm
for hypersphere fitting. A student ¢-distribution was assigned to
the noise samples in order to mitigate the presence of outliers
whereas a von Mises-Fisher distribution was assigned to latent
variables in order to exploit the fact that observations are
located in a part of the hypersphere. The proposed algorithm
requires the knowledge of three parameters: the number of
generated samples, the number of burn in iterations, and
the number of degrees of freedom associated with the ¢-
distribution. The results obtained with the proposed Gibbs
sampler are very encouraging compared to the REM algorithm
of [12]. Future work includes the estimation of the parame-
ters of the von Mises-Fisher distribution within the MCMC
framework and the generalization of the algorithm to multiple
hyperspheres for an application to real LiDAR data.
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