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Abstract—This article studies a robust expectation maximiza-
tion (EM) algorithm to solve the problem of hypersphere fitting.
This algorithm relies on the introduction of random latent vectors
having independent von Mises-Fisher distributions defined on the
hypersphere and random latent vectors indicating the presence
of potential outliers. This model leads to an inference problem
that can be solved with a simple EM algorithm. The performance
of the resulting robust hypersphere fitting algorithm is evaluated
for circle and sphere fitting with promising results.

Index Terms—Robust estimation, hypersphere fitting,
expectation-maximization algorithm.

I. INTRODUCTION

Fitting a circle, a sphere or more generally a hypersphere
to a noisy point cloud is a recurrent problem in many
applications including object tracking [1]–[3], robotics [4]–
[6] or image processing and pattern recognition [7]–[9]. This
problem was recently investigated in [10] by introducing
latent variables defined as affine transformations of random
vectors distributed according to von Mises-Fisher distributions.
The von Mises-Fisher distribution is a probability distribution
on the hypersphere parameterized by a mean vector and a
concentration. This distribution reduces to the uniform dis-
tribution on the hypersphere when the concentration is zero,
or to more informative distributions for other values of the
concentration parameter. An expectation-maximization (EM)
algorithm was investigated in [10] using latent variables with
von Mises-Fisher prior distributions, allowing the hypersphere
parameters and possibly the von Mises-Fisher distribution
hyperparameters to be estimated.

This paper studies a robust EM algorithm for hypersphere
fitting allowing the hypersphere parameters to be estimated
while being robust to the presence of potential outliers. It is
organized as follows. Section II recalls the maximum like-
lihood (ML) formulation of the hypersphere fitting problem
and extends this formulation to the presence of outliers. A
specific attention is devoted to the estimation of the model
hyperparameters that can be estimated jointly with the sphere
center and radius and the noise variance. Section III evaluates
the performance of this robust EM algorithm for circle and
sphere fitting through various experiments. Conclusions and
future works are reported in Section IV.
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II. A ROBUST EM ALGORITHM FOR HYPERSPHERE
FITTING

A. Problem Formulation

Consider n noisy measurements yi ∈ Rd, i = 1, ..., n
located around a hypersphere with radius r and center c ∈ Rd.
We assume that the noise realizations corrupting the obser-
vations are mutually independent and distributed according
to the same isotropic multivariate Gaussian distribution. The
hypersphere fitting problem can then be formulated as an
ML estimation problem by introducing latent vectors xi ∈
Sd−1, i = 1, ..., n, where Sd−1 is the centered unit hyper-
sphere in Rd [10]. These latent vectors are the unknown unit
vectors located on the hypersphere whose center and radius
need to be estimated, i.e.,

yi = c+ rxi + ei, (1)

where ei ∼ N (0d, σ
2Id) is the ith model error, 0d is

the zero vector of Rd, σ2 is the unknown noise variance
and Id is the d × d identity matrix. The vectors xi are
assigned independent von Mises-Fisher distributions denoted
as xi ∼ vMFd(xi;µ, κ) with density

fd(xi;µ, κ) = Cd(κ) exp
(
κµTxi

)
1Sd−1(xi), (2)

where µ ∈ Rd is the mean direction with ‖µ‖2 = 1, κ ≥ 0 is
the concentration parameter, 1Sd−1(.) is the indicator function
of Sd−1, and Cd(κ) is a normalization constant defined as

Cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
. (3)

In (3), Iν(.) denotes the modified Bessel function of first kind
of parameter ν [11, Chap. 10.25]. Note that this distribution re-
duces to the uniform distribution on the hypersphere for κ = 0.
This distribution is well-suited for LIDAR applications whose
calibration can be achieved using sphere imaging [12]. Indeed,
in this case, the LIDAR beam only hits a part of a sphere,
resulting in points located in this area, concentrated around a
mean direction with a certain deviation around this direction,
which corresponds to a von Mises-Fisher distribution.

The hypersphere fitting problem thus consists of estimating
the radius r and center c of the hypersphere (and possibly the
noise variance σ2) from the measurements Y = {y1, ...,yn},
given that the latent vectors X = {x1, ...,xn} are also



unknown. To allow the presence of outliers in the observations,
we borrow the idea of the so-called Maximum Likelihood Es-
timation SAmple Consensus (MLESAC) [13], which is a gen-
eralization of the RANdom SAmple Consensus (RANSAC),
by introducing an outlier uniform distribution defined on a
volume A ⊂ Rd. This uniform distribution is defined as

p(yi) =
1

a
1A(yi), (4)

where a is the volume of A, and 1A is the indicator function
on the set A. When A is chosen as the whole observation
domain, 1A(yi) = 1,∀yi, which allows this indicator function
to be omitted without loss of generality, as done hereafter.

B. Likelihood and complete likelihood

The conditional distribution of yi given xi is a mixture
between the uniform distribution (4) and the Gaussian distri-
bution (1), i.e.,

p(yi|xi,θ) =
γ

a
+

1− γ
(2πσ2)d/2

exp

{
−‖yi − c− rxi‖

2
2

2σ2

}
,

(5)

where γ is the unknown proportion of outliers in the ob-
servations, and θ = (r, cT , σ2, γ)T contains the unknown
parameters of interest of the proposed statistical model. We
propose to add a binary latent variable zi, i = 1, . . . , n such
that zi = 1 if yi is an outlier and zi = 0 otherwise. The
likelihood (5) can then be rewritten as

p(yi|xi, zi,θ) =
1

azi

[
1

(2πσ2)d/2
e−
‖yi−c−rxi‖

2
2

2σ2

]1−zi
. (6)

The latent variable zi is naturally assigned a Bernoulli distri-
bution with parameter γ, i.e.,

p(zi|θ) = γzi(1− γ)1−zi . (7)

We also introduce the following notation

p(xi|zi,θ) = p1(xi)
zi
[
Cd(κ) exp

(
κµTxi

)]1−zi
, (8)

where p1(xi) = p(xi|zi = 1,θ) is the distribution assigned to
the latent variable xi when it corresponds to an outlier, and
p(xi|zi = 0,θ) is a von Mises-Fisher distribution with param-
eters κ and µ, which corresponds to the inlier distribution. We
assume that p1(xi) does not depend on θ, which makes sense
as outliers do not provide information about the hypersphere.
In this case p1(xi) does not appear in the derivation of the
algorithm.

The (marginal) likelihood of this model, which does not
involve the latent vectors (xi, zi), is

L (θ;Y ) =

n∏
i=1

p(yi|θ) =
n∏
i=1

∫
Sd−1

∑
zi∈{0,1}

p(yi,xi, zi|θ)dxi.

(9)

As explained in [10] for hypersphere fitting, a closed-form
expression for the ML estimator (MLE) of θ cannot be
derived. Instead, we propose to resort to the EM algorithm [14]

to estimate the unknown vector θ. The so-called complete
likelihood is

Lc (θ;Y ,X, z) =

n∏
i=1

p(yi,xi, zi|θ), (10)

where z = {z1, ..., zn}. Moreover, using (6), (7) and (8), the
following result is obtained

p(yi,xi, zi|θ) = p(yi|xi, zi,θ)p(xi|zi,θ)p(zi|θ),

=
[γ
a
p1(xi)

]zi [ 1− γ
(2πσ2)d/2

Cd(κ)

]1−zi
×
[
exp

(
−‖yi − c− rxi‖

2
2

2σ2
+ κµTxi

)]1−zi
.

(11)

C. Proposed EM Algorithm

The EM algorithm alternates between two steps referred to
as expectation (E) and maximization (M) steps that are recalled
below for iteration (t+ 1) [14]:
1- The E-step consists of computing Q(θ|θ(t)), the expected
value of the complete data log-likelihood given the observed
data and the current parameter estimate θ(t), defined as

Q(θ|θ(t)) = EX,z|Y ,θ(t) [logLc (θ;Y ,X, z)] . (12)

2- The M-step consists of estimating θ(t+1) by solving

θ(t+1) = argmax
θ

Q(θ|θ(t)). (13)

The complete log-likelihood can be computed using (10) and
(11). Straightforward computations lead to

logLc (θ;Y ,X, z) = K + log (γ)

n∑
i=1

zi

+

[
log (1− γ)− d

2
log
(
σ2
)
+ logCd(κ)

] n∑
i=1

(1− zi)

− 1

2σ2

n∑
i=1

(
‖yi − c‖22 + r2

)
(1− zi)

+

n∑
i=1

κiµ
T
i xi(1− zi), (14)

where K is a term independent of θ and

κi =
‖r(yi − c) + σ2κµ‖2

σ2
, (15)

µi =
r(yi − c) + σ2κµ

‖r(yi − c) + σ2κµ‖2
. (16)

The distribution of X, z|Y ,θ(t) can be determined as

p(X, z|Y ,θ(t)) =
n∏
i=1

p(xi, zi|yi,θ(t)), (17)

where

p(xi, zi|yi,θ) ∝ p(yi|xi, zi,θ)p(xi, zi|θ), (18)

∝ [π̃i,1p1(xi)]
zi [π̃i,2fd(xi;µi, κi)]

1-zi , (19)



where ∝ means “proportional to” and

π̃i,1 =
γ

a
, (20)

π̃i,2 =
1− γ

(2πσ2)d/2
Cd(κ)

Cd(κi)
exp

(
−‖yi − c‖

2
2 + r2

2σ2

)
. (21)

Defining

πi,1 =
π̃i,1

π̃i,1 + π̃i,2
, πi,2 = 1− πi,1, (22)

the following results are obtained:

EX,z|Y ,θ(t) [zi] = π
(t)
i,1 , (23)

EX,z|Y ,θ(t) [1− zi] = π
(t)
i,2 , (24)

EX,z|Y ,θ(t) [xi(1− zi)] = π
(t)
i,2Ad(κ

(t)
i )µ

(t)
i , (25)

where κ(t)i ,µ
(t)
i , π

(t)
i,1 and π

(t)
i,2 are computed from (15), (16),

(20), (21), and (22) using the current values of r, c, σ2, γ, κ
and µ. Note that (25) has been obtained using the mean of a
von Mises-Fisher distribution, where

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
. (26)

After substituting these expectations into (14), the maximiza-
tion of the function Q(θ|θ(t)) with respect to θ leads to the
following updates for r, c, σ2, and γ

r(t+1) =
1

1− uTt ut
(uTzt − uTt zt), (27)

c(t+1) = zt − r(t+1)ut, (28)

dσ2(t+1)
= ‖z‖22t + ‖c

(t+1)‖22 + r(t+1)2

−2
{
c(t+1)Tzt + r(t+1)

[
uTzt − uTt c(t+1)

]}
, (29)

γ(t+1) =1− π
(t)
2

n
, (30)

with

π
(t)
2 =

n∑
i=1

π
(t)
i,2 , (31)

ut =
1

π
(t)
2

n∑
i=1

π
(t)
i,2α

(t)
i , (32)

α
(t)
i = Ad(κ

(t)
i )µ

(t)
i , (33)

zt =
1

π
(t)
2

n∑
i=1

π
(t)
i,2zi, (34)

uTzt =
1

π
(t)
2

n∑
i=1

π
(t)
i,2z

T
i α

(t)
i , (35)

‖z‖22t =
1

π
(t)
2

n∑
i=1

π
(t)
i,2‖zi‖

2
2. (36)

Note that the quantities with bars and subscript t are the
weighted sum of these quantities over the weights correspond-
ing to the inlier class at iteration t, and the α(t)

i are means of
von Mises-Fisher distributions with parameters κ(t)i and µ(t)

i .

Finally, π(t)
i,2 is a useful piece of information, as it can be

interpreted as the probability of data i to belong to the inlier
class. An outlier detector can therefore be implemented, e.g.,
declaring that yi is an outlier if π(t)

i,2 < 0.5 (maximum a
posteriori detector).

D. Hyperparameter Estimation

The method presented before assumed that the hyperparam-
eters κ and µ of the hidden variables xi are known. When
these parameters are unknown, they can be included in the
vector θ for their estimation (explaining why some terms
depend on κ and µ in (14)). This results in additional updates
for their estimates in the M-step using their MLE given the
current estimation of the hidden variables, i.e.,

κ(t+1) = A−1d (‖ut‖2), µ(t+1) =
ut
‖ut‖2

. (37)

Note that these equations have been obtained by using the
expressions of the ML estimators for the von Mises-Fisher
distribution parameters [15, Chap. 10.3.1]. Note also that the
inverse function A−1d has no closed-form expression but can
be computed using a two-steps iterative method [16].

III. EXPERIMENTS

Several experiments have been performed to illustrate the
robustness of the proposed approach to outliers. Before pre-
senting the results, note that the proposed algorithm only
requires two parameters to be set: the stopping criterion of
the algorithm (we chose to set a fixed number of iterations in
our experiments) and the volume occupied by the outliers a,
which can be fixed as the volume of the observation window.
It is the volume of the smallest hypercube englobing all the
observations, obtained by multiplying the differences between
the maximum and minimum observed values of the different
features. Note that the curse of dimensionality might occur as
d increases. However, the experiments presented in this paper
are restricted to 2D and 3D datasets.

In all the experiments, the center has been initialized by
the mean of the noisy measurements denoted as c0, the
initial radius has been fixed to its MLE given c0, i.e., r0 =
1
n

∑n
i=1 ‖zi − c0‖, and the noise variance by its MLE given

(c0, r0), i.e., σ2
0 = 1

nd

∑n
i=1 ‖zi − c0‖2 −

1
dr

2
0 . Moreover,

the concentration parameter was initialized to κ0 = 1, the
mean direction to c0/‖c0‖2 and the ratio of outliers to
γ0 = 0.1. Note that in all scenarios considered in this paper,
the hyperparameters κ,µ are unknown and therefore estimated
jointly with the parameters r, c, σ2 and γ.

A. Illustrations on a synthetic 2D Dataset

The proposed method referred to as REM (for robust EM), is
compared to the original EM proposed in [10]. The estimation
performance is first evaluated using a simple scenario with
n = 200, d = 2, r = 6, c = (−5, 5)T , σ2 = 0.25 and µ =
(1, 1)T /

√
2. The estimation results obtained for representative

values of γ and κ are depicted in Fig. 11. The outliers were

1All the codes are available on the first author webpage http://perso.tesa.
prd.fr/jlesouple/codes.html

http://perso.tesa.prd.fr/jlesouple/codes.html
http://perso.tesa.prd.fr/jlesouple/codes.html
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Fig. 1: Comparison of EM and robust EM. The first and second
columns correspond to κ = 0 and κ = 6. The first and second
rows correspond to γ = 0.1 and γ = 0.4. The blue points
are the normal vectors (inliers) whereas the red points are
the outliers. The yellow circle is the theoretical one used to
generate the different observations, the dotted purple circle is
obtained with the EM algorithm and the dotted green circle
is obtained using the proposed robust EM algorithm. Finally,
data circled in green are the data detected as outliers by REM.

generated using a uniform distribution on [−10, 10]×[−10, 10]
and the number of iterations of any EM algorithm was fixed to
100. As one can see, the EM algorithm is strongly affected by
the presence of outliers, whereas REM provides better results,
even with a proportion γ = 40% of outliers and a high value
of the concentration parameter.

B. Monte-Carlo simulations

This section first analyzes the robustness of REM to the
level of outliers γ. All the results presented here have been
averaged using 500 Monte-Carlo runs. For d = 2, the config-
uration is the same as in Section III-A, whereas for d = 3, the
parameters were fixed to c = (−5, 5, 3)T , µ = (1, 1, 1)T /

√
3,

and the outliers are sampled uniformly in the cube [−10, 10]3.
Once again, the algorithms are challenged in two configura-
tions κ = 0 (uniform distribution) and κ = 6 (informative
distribution), with the outlier ratio varying between 0 and 1.
Figs. 2a and 2b show the averaged mean square errors (MSEs)
of the vector containing the parameters of interest, namely
(r, cT , σ2)T , and the vector of hyperparameters (κ,µT )T . The
proposed REM method was also compared to a robust version
of the EM algorithm using the RANSAC [17] paradigm.
Note that the RANSAC algorithm is also an iterative method.
Therefore the combination of RANSAC and EM has a higher
execution time compared to the proposed REM. RANSAC
samples k0 sets of size n0 from the observations. From the
k-th subset, it computes the corresponding solution c(k), r(k)

using this subset and evaluates the data that are conform
with these parameters. The parameters are finally estimated
using all the conform data obtained with the subsets that
lead to the maximum number of conform data. The RANSAC
parameters were set as advised in [17] : n0 = 2d + 3 for
the minimum subset size, k0 = log (1− p)/ log (1− wn0)

for the number of subset to sample, where p = 0.9 is the
desired probability of having at least one subset containing
only inliers, and w = 0.5 is the a priori proportion of outliers.
Finally, a data xi is declared as conform with the model when
|‖xi − c(k)‖22 − r(k)

2| ≤ S with S = 8 fixed by cross-
validation. As one can see, the EM solution is not robust to
the presence of outliers, contrary to REM (until a breakpoint
close to 60%) and RANSAC. The advantage of the proposed
REM is its reduced execution time with respect to RANSAC.

The next experiments study the convergence speed of the
algorithm (versus the number of iterations) and its robustness
with respect to the noise variance. For those experiments, all
the parameters have been set as explained before, and the
outlier ratio is γ = 0.1. The influence of the number of
iterations is depicted in Fig. 3a whereas that of σ2 can be
observed in Fig. 3b. As one can see, the REM algorithm takes
more time to converge when κ > 0, i.e., when the distribution
of the latent variables is not uniform. Regarding the noise
variance, there seems to be a breakdown around σ2 = −10dB
beyond which the algorithm performance collapses. Note that
in the extreme cases where γ > 60% and/or the noise
variance is large, it becomes extremely difficult to discriminate
the noisy observations from the outliers, especially if their
proportion is unknown. This could be addressed by assigning
informative hyperpriors to γ and σ2.

IV. CONCLUSION

This paper proposed a robust EM algorithm for hypersphere
fitting. The algorithm was derived assuming a uniform distri-
bution for the outliers and von Mises-Fisher distributions for
latent variables associated with the observations. The resulting
algorithm only requires two parameters to be adjusted: the
stopping criterion for the EM iterations and the volume of the
outlier distribution. Note that the hyperparameters of the von
Mises-fisher distributions assigned to the latent variables can
be also estimated by the algorithm.

The proposed algorithm was evaluated for circle and sphere
fitting allowing its performance to be evaluated in various
scenarios. The results obtained on simulated data are encour-
aging and show the competitiveness of the proposed approach
with respect to the classical RANSAC algorithm, requiring
less hyperparameters to adjust and a significantly reduced
execution time. Future work includes the generalization of the
proposed work to the robust estimation of several hyperspheres
with application to LIDAR calibration.
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