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1  Introduction
Global navigation satellite systems (GNSSs) [1] have a wide range of applications, 
extending beyond navigation and timing to fields like Earth observation, attitude 
estimation, and space weather characterization. As a result, the accuracy of posi-
tion, navigation, and timing information is crucial, especially for critical applica-
tions like intelligent transportation systems and autonomous unmanned ground/air 
vehicles. While GNSS has become the primary source of positioning, it was origi-
nally designed for optimal performance in clear-sky conditions, making its reliability 
susceptible to degradation in challenging environments. For instance, phenomenon 
such as multipath (reflections) [2], spoofing and interferences (intentional or uninten-
tional) are the most challenging ones, being a key issue in safety-critical scenarios [3], 
such as civilian aviation [4]. These effects have been reported in the state of the art, 
and several mitigation countermeasures have already been proposed [5]. In the field 
of intentional interference, real-world scenarios have identified jammers broadcast-
ing interference characterized by a constant modulus (CM). Initially, these devices 

Abstract 

Interferences pose a significant risk to applications that rely on global navigation 
satellite systems (GNSSs). They have the potential to degrade GNSS performance 
and even result in service disruptions. The most notable type of intentional interfer‑
ence is characterized by a constant modulus, such as chirp and tone interferences. 
These interferences have a straightforward structure, leading to the creation of com‑
plex circles when attempting to identify their contribution. To address the interference 
and improve the situation, we calculate the maximum likelihood estimator for the rele‑
vant parameters (time delay and Doppler shift) while considering the presence of these 
latent variables. To achieve this, we employ the expectation–maximization algorithm, 
which has previously demonstrated its effectiveness in similar scenarios. Experiments 
conducted using synthetic signals confirm the efficiency of the proposed algorithm.

Keywords:  Maximum likelihood, Expectation–maximization, GNSS, Interference, Von 
Mises distribution

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Lesouple and Ortega ﻿
EURASIP Journal on Advances in Signal Processing         (2024) 2024:32  
https://doi.org/10.1186/s13634-024-01129-z

EURASIP Journal on Advances
in Signal Processing

*Correspondence:   
julien.lesouple@enac.fr

1 Fédération ENAC ISAE‑SUPAERO 
ONERA, Université de Toulouse, 
7 Avenue Édouard Belin, 
31400 Toulouse, France
2 IPSA, 40 Boulevard de la 
Marquette, 31000 Toulouse, 
France
3 TéSA, 7 Boulevard de la Gare, 
31500 Toulouse, France

http://orcid.org/0000-0001-9944-8830
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-024-01129-z&domain=pdf


Page 2 of 24Lesouple and Ortega ﻿EURASIP Journal on Advances in Signal Processing         (2024) 2024:32 

utilized constant amplitude tones to disrupt receiver functionality. With this type 
of signal (even with their straightforward structure), they were able to prevent the 
receiver from functioning. As a countermeasure, in the time domain, two common 
methods are employed

•	 pulse blanking  [6], which involves zeroing-out samples of the incoming signal 
exceeding a predefined power threshold to mitigate the impact of pulsed interfer-
ence

•	 adaptive notch filtering [7], where the jamming signal’s instantaneous frequency is 
continuously estimated using a recurrence equation in the time domain, and the 
corresponding frequency components are filtered out from the incoming signal. 
This approach avoids the need for frequency-domain transformations.

However, they proved ineffective when the tone’s frequency varied, paving the way 
for chirp interference, which remains a significant issue today. Notably, notch filters 
fail to attenuate chirp interference adequately, particularly with nonlinear frequency 
variations. Even with linear variations, these countermeasures encounter challenges. 
Alternative approaches involve signal processing techniques such as the discrete Fou-
rier transform (DFT), which project the signal into the frequency domain, allowing 
the application of a threshold to eliminate suspicious elements. Another transfor-
mation with potential for interference mitigation is the Karhunen–Loeve transform 
(KLT) [8, 9], which relies on the eigenvalues and eigenvectors of the incoming signal’s 
autocorrelation. However, these methods often overly degrade the signal, especially 
with wide chirp bandwidths.

In this article, we introduce a novel approach to mitigate interference characterized 
by a CM. This interference category is among the most prominent forms of inten-
tional interference reported in the literature and includes signals like pure tones and 
chirped signals with time-varying tones. The constant modulus property results in a 
complex circular search space when attempting to identify interference at the receiver. 
To characterize these circles, latent variables are introduced. The primary contribu-
tion of this article is the computation of the maximum likelihood estimator (MLE) for 
key parameters, specifically the time delay and Doppler shift, in the presence of these 
latent variables. To calculate the MLE, we choose independent von Mises distribu-
tions with unknown parameters for the interference phases and we employ the expec-
tation–maximization (EM) algorithm, which has demonstrated asymptotic efficiency 
in similar scenarios and has proven effective for N-hypersphere estimation  [10]. To 
evaluate the performance of our proposed algorithm, we compare it against the theo-
retical limits of time-delay and Doppler shift estimation under the following particu-
lar cases: i) we consider the scenario where no interference corrupts the GNSS signal. 
Note that this is the best possible scenario and the theoretical limits are provided by 
the Cramér–Rao bound (CRB) derived in [11], ii) the misspecified conditional model 
[12, 13]. In this scenario, the signal is corrupted by an interference but the receiver 
estimates the parameters of interest without considering it. Then, the time-delay and 
Doppler estimates are biased. Note that this is the worst possible case and the per-
formance limits are characterized by the misspecified CRB (MCRB) derived in [14]. 
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The fair comparison of our algorithm should be with respect to the CRB, which takes 
into account the parameters describing the structure of the interference. However, 
the corresponding derivation is intractable and we resort to the so-called modified 
CRB (MoCRB) [15], which is a looser bound, normally used in problems involving 
missing variables.

The article’s structure is organized as follows: In Sect.  2, we present the GNSS 
received signal model in the presence of a CM bandlimited interfering signal. In 
Sect. 3, we derive a closed-form expression of the MoCRB for the parameters of inter-
est, considering that the signal is bandlimited. This expression only depends on the 
baseband samples and the parameters that define the structure of the interference. 
Section 4 provides an in-depth description of the proposed EM algorithm, which is 
employed for mitigating interference under the CM hypothesis. Section  5 presents 
the simulation results that confirm the effectiveness of the proposed approach for two 
synthetic signal scenarios. Finally, Sect. 6 offers the concluding remarks.

2 � Signal model and complete likelihood function
2.1 � Signal model

In this article, we consider a bandlimited signal s(t), with bandwidth B, transmitted 
over a carrier frequency fc and traveling at the speed of light c, from a GNSS satellite 
to a receiver. The transmitter and receiver are assumed to be in uniform linear motion 
such as the distance can be modeled by a first-order d − v distance-velocity model 
[16]. At the receiver, a narrow-band signal model is assumed and the received signal 
x(t) at the output of the receiver’s Hilbert filter can be approximated by [11, 17]

where ρ and φ are the amplitude and phase of the complex coefficient α = ρejφ ∈ C 
induced by the propagation characteristics, τ = d/c is the unknown propagation delay, 
b = v/c is the unknown Doppler shift and n(t) is a zero-mean white complex circu-
lar Gaussian noise. An interfering signal I(t), unknown and bandlimited within the 
frequency band of interest, is also arriving at the receiver. Then, the received signal x 
becomes:

Considering the acquisition of N = N2 − N1 + 1 samples at the sampling frequency 
Fs = B = 1/Ts, and assuming that the observation window [N1Ts,N2Ts] is short enough 
to consider constant amplitude, delay and Doppler shift, the discrete signal model yields 
to:

where µ(η) = . . . , s(kTs − τ )e−j2π fcb(kTs−τ), . . .
T ∈ C

N with η = (τ , b) and 
k ∈ {N1, . . . ,N2} , I = [. . . , I(kTs), . . .]

T ∈ C
N and n = [. . . , n(kTs), . . .]

T ∼ CN (0, σ 2IN ) . 
Under constant modulus interference, all the components of the vector I have the same 
modulus A. We therefore propose the parametrization

(1)x(t) = ρejφs(t − τ )e−j2π fcb(t−τ) + n(t)

(2)x(t) = αs(t − τ )e−j2π fcb(t−τ) + I(t)+ n(t).

(3)x = αµ(η)+ I + n
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such that Ĩ =
[

Ĩ1 . . . ĨN
]T with |Ĩk | = 1 . In other words, each component of the vector 

Ĩ belongs to the complex unit circle, meaning that the vector Ĩ belongs to the complex 
hyper-torus of dimension N. Hence, there exists θ =

[

θ1 . . . θN
]T ∈ (−π ,π ]N

2.2 � Complete likelihood

The resulting problem has the following likelihood

where ε =
{

ηT , ρ,φ,A, σ 2
}

 is the vector gathering the parameters of interest. We con-
sider the angles θk as latent (random) variables with independent prior distributions 
p(θk) . We can therefore form the joint likelihood of observed random variables x and 
unobserved random variables θ as p(x, θ |ε) = p(x|θ , ε)p(θ) using  (6) and the chosen 
prior p(θ) =

∏N
k=1 p(θk) . One way to overcome the fact that θ is unobserved is to mar-

ginalize p(x, θ |ε) w.r.t. θ and to maximize this marginalized likelihood. For the particular 
case where p(θk) follows a uniform distribution over [0, 2π ] , the marginalized likelihood 
expression is:

 where Bν is the modified Bessel function of the first kind and order ν [18, Chap. 3.5.4]. 
This expression cannot be optimized wrt. ε , and one cannot derive closed-form expres-
sions for the maximum likelihood estimators of the parameters in ε . Moreover, when the 
chosen prior over θk is more complicated than the uniform one, the likelihood expres-
sion would be even more complicated and closed-form expressions for the maximum 
likelihood estimators cannot be derived. One way to bypass this limit is to resort to the 
EM algorithm. The EM algorithm [19] can be handy to evaluate the maximum likelihood 
estimator of parameters when missing variables appear in the estimation framework.

The complete likelihood of the parameters ε given the observations x and missing 
variables θ can be expressed as:

where p(x|θ , ε) is given in (6). For the prior p(θ) , in this article we choose independent 
Von Mises distributions with parameter γ and κ for the interference phases θ

with

(4)I = AĨ

(5)∀k = 1, . . . ,N Ĩk = ejθk .

(6)p(x|θ , ε) =
1

πNσ 2N
e
− 1

σ2

(

x−αµ(η)−AĨ
)H(

x−αµ(η)−AĨ
)

(7)p(x|ε) = 1

(πσ 2)N
e
− 1

σ2
(x−αµ(η))H (x−αµ(η))

e
− A2N

σ2 ×
N
∏

i=1

B0

(

2A

σ 2
|xi − αµi(η)|

)

(8)Lc(ε; x, θ) = p(x, θ |ε) = p(x|θ , ε)p(θ).

(9)p(θ) ∝
N
∏

k=1

p(θk)
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where γ is the mean direction of the von Mises distribution, κ is the concentration 
parameter. In the following, we use the notation

to describe the interference phases. One can note that when κ is set to 0, the uniform 
distribution is recovered, and hence, the results should be the same as presented in [20]. 
This prior distribution depends on a set of two hyperparameters ϕ = {γ , κ} . These 
hyperparameters might be set by the user or unknown. Therefore, in the following, we 
will consider the general case where they are unknown and will estimate them jointly 
with the vector of parameters ε . Using prior (9) and the conditional likelihood (6), we 
can rewrite the complete likelihood as

where �z�2 = zHz for any z ∈ C
N and where it is assumed all θk are in (−π ,π ] to avoid 

the indicator functions.

3 � Modified Cramér–Rao bound
To assess the performance of the proposed method, it would be appealing to derive the 
Cramér–Rao Bound (CRB) of the likelihood (7). However, the corresponding derivations 
are intractable, mainly due to the expectation of the B0 function, having no closed-form 
expression. To alleviate this problem, we propose to resort to the so-called modified 
CRB (MoCRB) [21], which has been designed for such problems involving missing vari-
ables. The MoCRB results in a looser bound of the asymptotic estimation performance 
of the parameter of interest, but with a closed-form formulation. The MoCRB of param-
eters of interest ε is then defined in its vector form as [15]

where the matrix to be inverted is the so-called modified Fisher information matrix 
(MoFIM) of the vector ε , denoted FM(ε) in the following. Moreover, we have

Hence, F θ (ε) = Ex|θ

{

∂ ln p(x|θ ,ε)
∂ε

[

∂ ln p(x|θ ,ε)
∂ε

]T
}

 is the Fisher information matrix (FIM) 

of a complex Gaussian model, and we can resort to the Slepian–Bangs formula  [22, 
(8.34)] to find its expression

(10)p(θk) =
eκ cos (θk−γ )

2πB0(κ)

(11)θk ∼ VM(θk ; κ , γ )

(12)Lc(ε,ϕ; x, θ) = p(x|θ , ε)p(θ |ϕ) ∝
e
− 1

σ2

∥

∥

∥x−αµ(η)−aĨ
∥

∥

∥

2
+κ

∑N
k=1 cos (θk−γ )

(

σ 2B0(κ)
)N

,

(13)

MoCRB (ε) = Ex,θ

{

∂ ln p(x|θ , ε)
∂ε

[

∂ ln p(x|θ , ε)
∂ε

]T
}−1

= Eθ

(

Ex|θ

{

∂ ln p(x|θ , ε)
∂ε

[

∂ ln p(x|θ , ε)
∂ε

]T
})−1

,

(14)x|θ , ε ∼ CN

(

x; ρejφµ(η)+ AĨ(θ), σ 2IN

)

.
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Recalling ε =
{

ηT , ρ,φ,A, σ 2
}

 and given the previous formula, the FIM is

where F θ (η
T , ρ,φ) = F (ηT , ρ,φ) is the FIM for the case without interference, 

F θ (σ
2) = N

σ 4 and both are derived in [11] and independent of θ . On the other hand,

To derive the MoFIM, one has to take the expected value of (16) wrt. θ . Given the 
previous results, one only requires the expected value ĨH (θ) , which yields to [18, 
(3.5.25),(3.5.26)]

with 1N the vector of ones with size 1× N  . Then, after some calculations that can be 
found in “Appendix 1”, (18) yields to

with wc = 2π fc , s =
[

. . . , s(kTs), . . .
]

 , eφ−γ (f ) =
[

. . . , ej(φ−γ−2π fkTs), . . .
]

 and 
D = diag(N1, . . . ,N2) . Finally, the MoFIM is

Finally, from the matrix inversion lemma [23, 14.11-(a)] we have the MoCRB expression 
for the parameters of interest

(15)

[F θ (ε)]k ,l =
1

σ 4
tr

�

∂σ 2IN

∂εk

∂σ 2IN

∂εl

�

+
2

σ 2
Re







∂

�

ρejφµ(η)+ AĨ(θ)
�H

∂εk

∂ρejφµ(η)+ AĨ(θ)

∂εl






.

(16)F θ (ε) =





F θ (η
T , ρ,φ) F θ

�

A,
�

ηT , ρ,φ
��T

0

F θ

�

A,
�

ηT , ρ,φ
��

F θ (A) 0

0 0 F θ (σ
2)





(17)F θ (A) =
2N

σ 2
,

(18)F θ

(

A,
[

ηT , ρ,φ
])

= 2

σ 2
Re

(

Ĩ
H
(θ)

[

ρejφ ∂µ(η)

∂ηT
, ejφµ(η), jρejφµ(η)

])

.

(19)Eθ

[

Ĩ
H
(θ)

]

= e−jγ B1(κ)

B0(κ)
1N

(20)

FM

(

A,
[

ηT , ρ,φ
])T

=
2

σ 2

B1(κ)

B0(κ)

[

0, ρ Im
{

Tswcs
TDeφ−γ (fcb)

}

, Re
{

sT eφ−γ (fcb)
}

, −ρ Im
{

sT eφ−γ (fcb)
} ]

,

(21)FM(ε) =







F (ηT , ρ,φ) FM

�

A,
�

ηT , ρ,φ
��T

0

FM

�

A,
�

ηT , ρ,φ
��

2N
σ 2 0

0 0 N
σ 4






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Note that when κ = 0 , i.e., when the prior distribution is uniform, the second term van-
ishes due to the term B1(κ)

B0(κ)
 which is 0 when κ = 0 , and the MoCRB becomes the CRB in 

the absence of interference.

4 � EM approach for interference mitigation under the CM hypothesis
In this section, we introduce the proposed EM algorithm. The EM algorithm iterates 
between the expectation (E) and the maximization (M) steps to obtain a maximum of the 
likelihood function:

•	 E-step: the derivation of the function 

•	 M-step: the maximization of this function Q(ε,ϕ|ε(t),ϕ(t))

where t represents the iteration index.

4.1 � E‑step

4.1.1 � Derivation of the Q function

At the t + 1 iteration, the E-step approximates the loglikelihood (which is to be maxi-
mized) around the parameters ε(t) and ϕ(t) . This approximation is given by:

where ε(t) , reps. ϕ(t) , represent the current value for the set of parameters, resp. hyper-
parameters. From (12), we have

(22)

MoCRB(ηT , ρ,φ) = F (ηT , ρ,φ)−1

+
σ 2

2N
F (ηT , ρ,φ)−1

FM

(

A,
[

ηT , ρ,φ
])T

FM

(

A,
[

ηT , ρ,φ
])

× F (ηT , ρ,φ)−1.

(23)Q(ε,ϕ|ε(t),ϕ(t)) = Eθ |x,ε(t),ϕ(t) [logLc(ε,ϕ; x, θ)]

(24)ε(t+1),ϕ(t+1) = arg max
ε,ϕ

Q(ε,ϕ|ε(t),ϕ(t)),

(25)Q(ε,ϕ|ε(t),ϕ(t)) = Eθ |x,ε(t),ϕ(t) [logLc(ε,ϕ; x, θ)]

(26)

logLc(ε,ϕ; x, θ) = K ′ − N log σ 2 − N logB0(κ)

− 1

σ 2

∥

∥

∥x − αµ(η)− aĨ
∥

∥

∥

2
+ κ

N
∑

k=1

cos (θk − γ )

= K ′ − N log σ 2 − N logB0(κ)−
1

σ 2
�x − αµ(η)�2

+
2A

σ 2
Re

{

(x − αµ(η))H Ĩ
}

−
NA2

σ 2
+ κ

N
∑

k=1

cos (θk − γ )

= K ′ − N log σ 2 − N logB0(κ)−
1

σ 2
�x − αµ(η)�2

−
NA2

σ 2
+

N
∑

k=1

(

2A

σ 2
δk cos (θk − βk)+ κ cos (θk − γ )

)

,
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where K ′ gather terms independent of {ε,ϕ, x, θ} , and 
Re

(

(x − αµ(η))H Ĩ
)

=
∑N

k=1 δk cos (θk − βk) with δk = |xk − αµk(η)| and 

βk = arg (xk − αµk(η)) , where arg(.) : C → (−π ,π ] the argument of a complex number. 
The only terms depending on θ in (26) are in the sum of cosines, leading to

4.1.2 � Conditional distribution

This expected value considers the distribution of θ |x, ε(t),ϕ(t) . The distribution of 
θ |x, ε(t),ϕ(t) can be expressed as (see “Appendix 2” for details)

and

To express the terms in this distribution, we define xk as the k-th component of the vec-
tor x and µk(η) the k-th component of the vector µ(η) , and then,

4.1.3 � Expectation

We have for any angle ψ ∈ (−π ,π ]

(27)

Q
(

ε,ϕ|ε(t),ϕ(t)
)

= K ′ − N log σ 2 − N logB0(κ)−
1

σ 2
�x − αµ(η)�2 −

NA2

σ 2

+
N
∑

k=1

2A

σ 2
δkEθ |x, ε(t),ϕ(t)[cos (θk − βk)]+

N
∑

k=1

κEθ |x, ε(t),ϕ(t)[cos(θk − γ )].

(28)p(θ |x, ε(t),ϕ(t)) ∝
N
∏

k=1

p(θk |xk , ε(t),ϕ(t))

(29)θk |xk , ε(t),ϕ(t) ∼ VM

(

θk ; κ(t)k , γ
(t)
k

)

.

(30)δ
(t)
k =

∣

∣

∣
xk − α(t)µk(η

(t))

∣

∣

∣
,

(31)β
(t)
k = arg

(

xk − α(t)µk(η
(t))

)

,

(32)κ
(t)
k =

√

√

√

√

(

2A(t)δ
(t)
k

σ 2(t)

)2

+
(

κ(t)
)2 +

4A(t)δ
(t)
k κ(t)

σ 2(t)
cos

(

β
(t)
k − γ (t)

)

,

(33)

γ
(t)
k = atan2

(

2A(t)δ
(t)
k

σ 2(t)
sin

(

β
(t)
k

)

+ κ(t) sin
(

γ (t)
)

,
2A(t)δ

(t)
k

σ 2(t)
cos

(

β
(t)
k

)

+ κ(t) cos
(

γ (t)
)

)

.

(34)

Eθk |x,ε(t),ϕ(t) [cos (θk − ψ)] = Eθk |x,ε(t),ϕ(t)

[

cos
(

θk − γ
(t)
k + γ

(t)
k − ψ

)]

= Eθk |x,ε(t),ϕ(t)

[

cos
(

θk − γ
(t)
k

)]

cos
(

γ
(t)
k − ψ

)

− Eθk |x,ε(t),ϕ(t)

[

sin
(

θk − γ
(t)
k

)]

sin
(

γ
(t)
k − ψ

)

.



Page 9 of 24Lesouple and Ortega ﻿EURASIP Journal on Advances in Signal Processing         (2024) 2024:32 	

Since θk |x, ε(t),ϕ(t) follows a Von Mises distribution with parameters κ(t)k  and γ (t)
k  , we 

have [18]

and thus

Therefore,

with

and

Finally, we can define

yielding in (38) to

(35)

Eθk |x,ε(t),ϕ(t)

[

cos
(

θk − γ
(t)
k

)]

=
B1

(

κ
(t)
k

)

B0

(

κ
(t)
k

) , Eθk |x,ε(t),ϕ(t)

[

sin
(

θk − γ
(t)
k

)]

= 0

(36)Eθ |x,ε(t) [cos (θi − ψ)] =
B1

(

κ
(t)
i

)

B0

(

κ
(t)
i

) cos
(

γ
(t)
k − ψ

)

.

(37)

Q(ε,ϕ|ε(t),ϕ(t)) = K ′ − N log σ 2 − N logB0(κ)−
1

σ 2
�x − αµ(η)�2 −

NA2

σ 2

+
N
∑

k=1

2A

σ 2
δk

B1

(

κ
(t)
k

)

B0

(

κ
(t)
k

) cos
(

γ
(t)
k − βk

)

+
N
∑

k=1

κ
B1

(

κ
(t)
k

)

B0

(

κ
(t)
k

) cos
(

γ
(t)
k − γ

)

= K ′ + Q(ε|ε(t),ϕ(t))+ Q(ϕ|ε(t),ϕ(t)),

(38)

Q(ε|ε(t),ϕ(t)) = −N log σ 2 −
�x − αµ(η)�2

σ 2
− NA2

σ 2

+
N
∑

k=1

2A

σ 2
δk

B1

(

κ
(t)
k

)

B0

(

κ
(t)
k

) cos
(

γ
(t)
k − βk

)

(39)Q(ϕ|ε(t),ϕ(t)) = −N logB0(κ)+
N
∑

k=1

κ
B1

(

κ
(t)
k

)

B0

(

κ
(t)
k

) cos
(

γ
(t)
k − γ

)

.

(40)w
(t)
k =

B1

(

κ
(t)
k

)

B0

(

κ
(t)
k

) , at =
[

w
(t)
1 ejγ

(t)
1 . . . w

(t)
N ejγ

(t)
N

]T
,
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and (39) to

4.2 � M‑step

The second step of the EM algorithm is to maximize  (37) w.r.t. ε and ϕ . Note that this 
equation is the sum of two independent terms in ε and ϕ , so the optimization can be done 
independently.

4.2.1 � Optimization with respect to σ 2

Differentiating (41) w.r.t. σ 2 yields the update equation

4.2.2 � Optimization with respect to ρ,ϕ, η

The second term in function (41) is independent of ρ,ϕ and η , and then, we can recast the 
equation as

where K ′′ represents the terms independent of ρ,ϕ and η . Let us denote S = span(B) , with 
B a matrix, which is the linear span of the set of its column vectors. �B = B(BH

B)−1
B
H 

and �⊥
B
= I −�B are the orthogonal projectors over S and S⊥ , respectively. Then,

and

(41)

Q(ε|ε(t),ϕ(t)) = −N log σ 2 −
1

σ 2
�x − αµ(η)�2 −

NA2

σ 2

+ 2A

σ 2
Re

{

(

x − ρejϕµ(η)
)H

at

}

= −N log σ 2 +
A2

σ 2

(

N
∑

k=1

(

w
(t)
k

)2
− N

)

−
1

σ 2

∥

∥

∥x − ρejϕµ(η)− Aat

∥

∥

∥

2

(42)Q(ϕ|ε(t),ϕ(t)) = −N logB0(κ)+ κ

N
∑

k=1

w
(t)
k cos

(

γ
(t)
k − γ

)

.

(43)

(

σ 2
)(t+1)

=
1

N

∥

∥

∥
x − ρ(t+1)ejϕ

(t+1)
µ(η(t+1))− A(t+1)

at

∥

∥

∥

2

+ (A(t+1))2

(

1−
1

N

n
∑

k=1

(

w
(t)
k

)2
)

.

Q(ε|ε(t),ϕ(t)) = − 1

σ 2

∥

∥

∥x − ρejϕµ(η)− Aat

∥

∥

∥

2
+ K ′′

(44)�µ(η) = µ(η)
(

µ(η)Hµ(η)
)−1

µ(η)H ,

(45)�⊥
µ(η) = IN −�µ(η),
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Note that maximizing the previous expression wrt. ρ,ϕ yields to the following update 
equations:

Moreover, 
∥

∥

∥�⊥
µ(η)(x − Aat)

∥

∥

∥

2
= �x − Aat�2 −

∥

∥�µ(η)(x − Aat)
∥

∥

2 , where the Pythago-

ra’s theorem has been applied. Then, maximizing Q(ε|ε(t),ϕ(t)) w.r.t. η yields to the fol-
lowing update equation

4.3 � M‑step: optimization with respect to A

To carry out the optimization, we first remind that the objective function  (41) can be 
expressed as:

where K ′′′ represents the terms independent of A. Differentiating this expression w.r.t. A 
yields to

We can note that

can be injected in (51) to give the update equation

Note that (53) can be injected into (49) to provide the update equation

(46)

∥

∥

∥x − ρejϕµ(η)− Aat

∥

∥

∥

2
=

∥

∥

∥
�µ(η)(x − Aat)− ρejϕµ(η)

∥

∥

∥

2
+

∥

∥

∥
�⊥

µ(η)(x − Aat)
∥

∥

∥

2

=

∥

∥

∥

∥

∥

µ(η)

[

µ(η)H (x − Aat)

µ(η)Hµ(η)
− ρejϕ

]∥

∥

∥

∥

∥

2

+
∥

∥

∥�
⊥
µ(η)(x − Aat)

∥

∥

∥

2
.

(47)ρ(t+1) =

∣

∣

∣

∣

∣

µ
(

η(t+1)
)H(

x − A(t+1)at

)

µ
(

η(t+1)
)H

µ
(

η(t+1)
)

∣

∣

∣

∣

∣

,

(48)ϕ(t+1) = arg

(

µ
(

η(t+1)
)H(

x − A(t+1)at

)

µ
(

η(t+1)
)H

µ
(

η(t+1)
)

)

.

(49)η(t+1) = arg max
η

∥

∥

∥�µ(η)

(

x − A(t+1)
at

)∥

∥

∥

2
.

(50)Q(ε|ε(t),ϕ(t)) = K ′′′ −
NA2

σ 2
+

2A

σ 2
Re

{

(

x − ρejϕµ(η)
)H

at

}

,

(51)A(t+1) = 1

N
Re

{

a
H
t

(

x − ρ(t+1)ejϕ
(t+1)

µ
(

η(t+1)
))}

.

(52)ρ(t+1)ejϕ
(t+1) =

(

µ
(

η(t+1)
)H(

x − A(t+1)at

)

µ
(

η(t+1)
)H

µ
(

η(t+1)
)

)

(53)A(t+1) =
Re

{

a
H
t �

⊥
µ(η(t+1))

x

}

N − Re
{

a
H
t �µ(η(t+1))at

} .
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4.4 � M‑step: optimization with respect to κ and γ

In the case where the hyperparameters are to be estimated jointly with the model param-
eters, we can update their values maximizing Q(ϕ|ε(t),ϕ(t)) , previously defined in (42). 
Let us denote

Then, Ct = Rt cos
(

γ t

)

 and St = Rt sin
(

γ t

)

. Moreover,

yielding

From the previous equation, we can recognize the loglikelihood of a von Mises distribu-
tion as in [18, (5.3.1)], which leads the update equations

where the function A(κ) = B1(κ)/B0(κ) has no closed form, but can be approximated 
using an iterative algorithm [24].

4.5 � Implemented algorithm

For t = 0 , i.e., for initialization, we might compute 
{

(

η(0)
)T

, ρ(0),φ(0),
(

σ 2
)(0)

}

 thanks 

to the standard MLE [11]. In other words,

(54)η(t+1) = arg max
η

�

�

�

�

�

�

�µ(η)



x −
Re

�

a
H
t �

⊥
µ(η)x

�

N − Re
�

a
H
t �µ(η)at

�at





�

�

�

�

�

�

2

.

(55)Ct =
1

N

N
∑

k=1

w
(t)
k cos

(

γ
(t)
k

)

,

(56)St =
1

N

N
∑

k=1

w
(t)
k sin

(

γ
(t)
k

)

,

(57)Rt =
√

C
2
t + S

2
t ,

(58)γ t = atan2
(

St ,Ct

)

.

(59)

N
∑

k=1

w
(t)
k cos

(

γ
(t)
k − γ

)

=
N
∑

k=1

w
(t)
k cos

(

γ
(t)
k

)

cos (γ )−
N
∑

k=1

w
(t)
k sin

(

γ
(t)
k

)

sin (γ )

= NCt cos (γ )− NSt sin (γ ) = NRt cos
(

γ − γ t

)

,

(60)Q(ϕ|ε(t),ϕ(t)) = −N logB0(κ)+ κNRt cos
(

γ t − γ
)

.

(61)γ (t+1) = γ t

(62)κ(t+1) = A−1(Rt)
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Once the interference is detected, due to the fact that the interference is much more 
powerful than the GNSS signal masked in the noise, we keep the MLE estimators for 
η(1), ρ(1)ϕ(1) and (σ 2)(1) , and we initialize the interference power as

If we do not know the parameters for the prior distribution, we can set γ (1) = 0 and 
κ(1) = 0 . Those values indicate that the prior distribution is uniform. Then, we compute 
the Von Mises parameters, γ (t)

k  and κ(t)k  , and trigonometric moments w(t)
k  and at , using 

Eqs. (32), (33), and (40), respectively. Finally, we update the parameters of interest in the 
order η,A, ρ,ϕ and σ 2 with Eqs. (43), (47), (48), (53), and (54), respectively. Note that 
Eqs. (54) and (63) do not have closed-form expressions. However, a grid search approach 
can be used to maximize the corresponding functions. Also, a little simplification can be 
made to optimize (49), using (54) where A(t+1) is replaced by A(t) to update η . With this 
approach, the same function can be used to solve both (54) and (63).

4.6 � Simplification of the algorithm based on an uniform prior

The algorithm presented in this article is a generalization of the algorithm presented 
in [20]. In that article, the prior distribution is considered to be a uniform distribu-
tion, i.e. κ(t) = 0 and γ (t) can be undefined. Therefore, as demonstrated in “Appendix 
2”, κ(t)k = 2a

σ 2 δ
(t)
k  and γ (t)

k = β
(t)
k  and M-step presented in Sect. 4.4 are not required. Once 

these simplifications have been made, the algorithm presented in [20] is the same as the 
one proposed in Sect. 4.5.

5 � Experiments
In order to evaluate the performance of the algorithms presented in Sects. 4.5 and 4.6, 
we consider two possible scenarios.

•	 Scenario 1:

Let us consider the case where a GPS L1 C/A signal [1] is attacked by a jammer that is 
generating a linear frequency modulation (LFM) signal [25], which is defined as

(63)η(0) = arg max
η

∥

∥�µ(η)x
∥

∥

2

(64)ρ(0) =

∣

∣

∣

∣

∣

µ
(

η(0)
)H

x

µ
(

η(0)
)H

µ
(

η(0)
)

∣

∣

∣

∣

∣

(65)ϕ(0) = arg

{

µ
(

η(0)
)H

x

µ
(

η(0)
)H

µ
(

η(0)
)

}

(66)(σ 2)(0) = 1

N

∥

∥

∥x − ρ(0)ejϕ
(0)
µ
(

η(0)
)∥

∥

∥

2
.

(67)A(1) = 1

N

√

xHx.
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where βc is the chirp rate and A is the amplitude. For this particular scenario, we set 
the waveform period as T = N · Ts , i.e., equal to the integration time. The instantane-
ous frequency is f (t) = 1

2π
d
dt

(

πβct
2
)

= βct , and therefore, the waveform bandwidth is 
Bc = βcT  . We consider the case where, after the Hilbert filter, the chirp is located at the 
baseband frequency, i.e., the central frequency of the chirp is fi = 0 . Then, the waveform 
can be rewritten as:

We set the chirp bandwidth Bc = 1 MHz, with initial phase φ = 0 , amplitude A = 40 . 
In Fig. 1, we illustrate the power spectral density (PSD) of the linear chirp considered in 
scenario 1. We would also like to point out that the phase distribution for this case is a 
uniform distribution.

•	 Scenario 2:

We consider a GPS L1 C/A signal attacked by a jammer generating a nonlinear frequency 
modulation [26], which is defined as

where ϕ(βc; t) is a nonlinear function with βc a parameter that controls the bandwidth 
of the chirp. For this particular scenario, we set ϕ(βc;T ; t) = sin

(

π
T πβct

)

 . Note that 
the chirp is located at the baseband frequency, i.e., the central frequency of the chirp 
is fi = 0 . For this scenario, we set βc = 51 , T = 1 ms (which it is the duration of the 

(68)I(t) = �T (t)× ejπβct
2+jφ , �T (t) =

{

A for 0 ≤ t < T
0 otherwise

(69)I(t) = �T (t)× ejπβc(t−T/2)2+jφ .

(70)I(t) = �T (t)× ejπϕ(βc;t)+jφ , �T (t) =
{

A for 0 ≤ t < T
0 otherwise
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Fig. 1  PSD of centered linear chirp signal of bandwidth Bc = 1 MHz and amplitude A = 40 . The sampling 
frequency is set to Fs = 4 MHz
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GPS L1 C/A signal PRN), initial phase φ = 0 , amplitude A = 40 . In Fig. 2, we illustrate 
the power spectral density (PSD) of the nonlinear chirp. For this particular scenario 
and because the phase is characterized by a nonlinear periodic function, we can verify 
that the phase distribution is not uniform. In Fig. 3, we observe the phase histogram. As 
can be seen, the probability density function of the chirp distribution can be well repre-
sented from a VM distribution.
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Fig. 2  PSD of centered nonlinear chirp signal of bandwidth Bc = 0.16 MHz and amplitude A = 40 . The 
sampling frequency is set to Fs = 4 MHz

Fig. 3  Histogram of θk from a nonlinear chirp signal of bandwidth Bc = 0.16 MHz and amplitude A = 40 . The 
sampling frequency is set to Fs = 4 MHz
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The root-mean-squared error (RMSE) for the parameters of interest ηT is displayed 
in Figs. 4 and 5 for scenario 1 and in Figs. 6 and 7 for scenario 2. These figures depict 
how the RMSE varies with respect to the signal-to-noise ratio (SNR) at the output of 
the matched filter, labeled as SNROUT . The evaluation is conducted under the following 
conditions: a GNSS receiver with a sampling frequency of Fs = 4 MHz and integration 
times of T = 1 ms.

The EM algorithm incorporates a stopping criterion that assesses the change in noise 
variance at each iteration. The maximum iteration limit is set to 15, and 1000 Monte 
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Scenario 1

Fig. 4  RMSE for time-delay estimation of the GPS L1 C/A signal received along with a centered LFM chirp 
signal of bandwidth Bc = 1 MHz and amplitude A = 40 . The sampling frequency is set to Fs = 4 MHz
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Fig. 5  RMSE for Doppler estimation of the GPS L1 C/A signal received along with a centered LFM chirp signal 
of bandwidth Bc = 1 MHz and amplitude A = 40 . The sampling frequency is set to Fs = 4 MHz
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Carlo runs are performed. The results presented in the figures illustrate four different 
types of curves:

•	 the 
√
CRB (as referred to in [11]), which signifies the asymptotic estimation perfor-

mance of the parameters in the absence of interference
•	 the 

√

MCRB+ Bias2 , representing the asymptotic estimation performance of the 
parameters when the receiver is unaware of the presence of interference (as discussed 
in [13, 27]). This includes the root MSE of the misspecified maximum likelihood esti-
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Fig. 6  RMSE for time-delay estimation of the GPS L1 C/A signal received along with a centered nonlinear 
chirp signal with βc = 51 , T = 1 ms and amplitude A = 40 . The sampling frequency is set to Fs = 4 MHz
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Fig. 7  RMSE for Doppler estimation of the GPS L1 C/A signal received along with a centered nonlinear chirp 
signal with βc = 51 , T = 1 ms and amplitude A = 40 . The sampling frequency is set to Fs = 4 MHz
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mator, as mentioned in [12]. Please note that these metrics quantify the root MSE 
under the assumption that the receiver does not account for any interference, i.e., 
the receiver assumes a misspecified model with probability distribution that devi-
ates from the true model. The bias is determined by minimizing the Kullback–Leibler 
divergence between the probability distributions of the true model and the assumed 
model (i.e., the misspecified model)

•	 the 
√
MoCRB derived in Sect.  3 provides a looser bound of the problem of inter-

est. Note that for the evaluated scenarios, the 
√
MoCRB yields to the 

√
CRB . This is 

consistent if one evaluates numerically the MoFIM matrix introduced in (21) since 
the order of magnitude of the values within the vector FM

(

A,
[

ηT , ρ,φ
])T is much 

smaller than the orders of magnitude of the values in the matrix F (ηT , ρ,φ)
•	 the root MSE ( 

√
MSE ) generated by the proposed EM algorithm in Sect. 4.5 and the 

simplified algorithm proposed in Sect. 4.6. It is important to note that the proposed 
EM algorithms seem to be unbiased and capable of correcting interference-induced 
effects. However, even if the performance of the algorithms seems to be similar, we 
can observe slight performance differences in time-delay estimation depending on 
the scenario evaluated. Particularly for the first scenario, the algorithm consider-
ing the uniform distribution seems to perform slightly better asymptotically. This is 
mainly due to the fact that the distribution of θk in the case of LFM interference is 
uniform. Note that the asymptotic performance is enhanced by the fact to estimate 
a reduced set of parameters. In the second scenario, we can observe that the perfor-
mance of the algorithm that considers a prior VM distribution converges around 1 
dB earlier. This is because the algorithm jointly estimates the parameters of inter-
est together with the parameters of the a priori distribution, which makes it pos-
sible to get rid of the interference at lower SNROUT . However, note that asymptotic 
performance improvement gained by introducing prior phase information is offset 
by the need to jointly estimate another parameter. Therefore, the only improvement 
achieved is in convergence. We would also like to point out that once both algo-
rithms have converged to the asymptotic regime (small RMSE), the number of itera-
tions for the convergence of the algorithm is surprisingly the same. Our conclusion is 
that if one of the two algorithms were to be implemented, the complexity in this case 
suggests using the uniform method.

Finally, it is evident from the results that the error introduced by the EM algorithms is 
nearly identical to that of the maximum likelihood estimator (MLE) in scenarios without 
interference. These findings serve to validate and demonstrate the excellent performance 
of the proposed algorithm.

6 � Conclusion
Numerous studies have established that interferences can significantly affect the per-
formance of GNSS receivers. In this article, we introduce an EM algorithm designed to 
address one of the most prominent interference types, known as CM. This algorithm ena-
bles the simultaneous estimation of the parameters of interest of the received signal and 
the characterization of the CM of the interference signal. We demonstrate the estimation 
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effectiveness of this EM algorithm by evaluating its RMSE for time-delay and Doppler 
parameters. The evaluation encompasses scenarios involving chirp interference jamming 
and a GPS L1 C/A signal. The results clearly illustrate the strong performance of the pro-
posed algorithm. Finally, we would like to point out that numerous array processing solu-
tions leverage Riemannian optimization to mitigate interference while adhering to constant 
modulus constraints [28, 29]. These methods could represent a promising advancement in 
the search for low-complexity interference mitigation algorithms for GNSS.

Appendix 1: MoFIM derivation for bandlimited signals
In this appendix, we focus on the derivation of the MoFIM. In order to do that, we need 
to derive a closed-form expression of the elements within the vector FM

(

A,
[

ηT , ρ,φ
])

 . 
For the element FM(A, ρ) , it is required to compute:

and applying the Nyquist–Shannon theorem for bandlimited signals, we have

where

and

Thus, the closed-form expression of the element yields to

Similarly, to compute the element FM(A,φ) , it is required to compute:

(71)

Eθ

[

ejφ Ĩ
H
(θ)µ(η)

]

=
B1(κ)

B0(κ)

N2
∑

k=N1

s(kTs − τ )ej(φ−γ−2π fcb(kTs−τ))

⇒ Re
{

Eθ

[

ejφ Ĩ
H
(θ)µ(η)

]}

=
B1(κ)

B0(κ)

N2
∑

k=N1

Re
{

s(kTs − τ )ej(φ−γ−2π fcb(kTs−τ))
}

(72)

lim
(N1,N2)→(−∞,+∞)

N2
�

k=N1

Re
�

s(kTs − τ )ej(φ−γ−2π fcb(kTs−τ))
�

= Fs Re

�� +∞

−∞
s(t − τ )ej(φ−γ−2π fcb(t−τ))dt

�

= Fs Re

�

ej(φ−γ )

� +∞

−∞
s(t)e−j2π fcbtdt

�

= Fs Re
�

ej(φ−γ )S(fcb)
�

= Re







ej(φ−γ )

N2
�

k=N1

s(kTs)e
−j2π fcbkTs







= Re
�

s
T
eφ−γ (fcb)

�

(73)S(f ) = Ts

N2
∑

k=N1

s(kTs)e
−j2π fkTs , ∀f ∈

[

−
Fs

2
,
Fs

2

]

(74)s =
[

. . . , s(kTs), . . .
]T

, k = N1, . . . ,N2,

(75)eφ−γ (f ) =
[

. . . , ej(φ−γ−2π fkTs), . . .
]T

, k = N1, . . . ,N2.

(76)FM(A, ρ) =
2

σ 2

B1(κ)

B0(κ)
Re

{

s
T
eφ−γ (fcb)

}

.
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Then, it is simple to check that closed form yields to

Now, we compute the elements within the vector FM

(

A, ηT
)

 . Then, we need to compute

where s(1) = ds(t)
dt  . Then,

and

Applying the Nyquist–Shannon theorem for bandlimited signals, we have

where

(77)

Eθ

[

jρejφ Ĩ
H
(θ)µ(η)

]

= jρ
B1(κ)
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On the other hand, following the derivation in (73)

and

The last element to compute is

Again, we apply the Nyquist–Shannon theorem for bandlimited signals

where

and D = diag(N1, . . . ,N2) . Then,
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and

Therefore,

The MFIM is then

Appendix 2: Computation of the conditional distribution θ |x, ε(t),ϕ(t)

Applying Bayes’ theorem, the following equivalence is obtained

Let us expand the quadratic term as:

where ĨH Ĩ = N  . Hence, following the same procedure as in (26)
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Solving the following equation system

for κk and γk leads

Introducing the above equations in (97) leads to

which provides the conditional distributions

Note that when a uniform prior is used ( κ = 0 ) we have κk = 2a
σ 2 δk and γk = βk , which 

are exactly the results obtained in [20].
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