PhD Defense - Paulo ESTEVES

High-Sensitivity Adaptive GNSS Acquisition Schemes

Supervisors:

Dr. Mohamed SAHMOUDI Prof. Marie-Laure BOUCHERET

Toulouse, May 27th 2014

PhD Defense Paulo ESTEVES

Presentation Outline

I. Introduction to GNSS and Signal Acquisition

II. Thesis Contributions

- A. Analysis and Compensation of Doppler Effect
- B. Characterization of Differential Detectors
- C. Multi-Constellation Collective Acquisition

III. Conclusions and Future Work

GNSS – Global Navigation Satellite System

Presentation Outline

I. Introduction to GNSS and Signal Acquisition

II. Thesis Contributions

- A. Analysis and Compensation of Doppler Effect
- B. Characterization of Differential Detectors
- C. Multi-Constellation Collective Acquisition
- III. Conclusions and Future Work

GNSS – Global Navigation Satellite System

GNSS Working Principle

Part I: Introduction

The underlying principle of GNSS systems is trilateration:

An unknown position can be inferred from distances to points with known positions

- Satellites position can be established accurately
- User pseudorange to satellites can be estimated
 - User position and clock bias (with respect to GNSS system time) can be determined

Number of unknowns = 4

A minimum of 4 satellites is required to determine user navigation solution

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Intro - 1

- Besides code phase also Doppler offset needs to be estimated
- First phase of (coarse) estimation of both parameters is <u>ACQUISITION</u>

Acquisition Role

Part I: Introduction

Acquisition output example for GPS LI C/A signal:

Outdoor

✓ Line-of-sight visibility

Standard Acquisition

✓ I code period

Comput. Complexity

- ✓ Search Points: IE3
- Number of Operations Required ~ IE5

Acquisition is a combined estimation and detection problem

Why a PhD thesis in acquisition?

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Intro - 3

Acquisition Challenges

Part I: Introduction

Acquisition output example for GPS LI C/A signal:

Outdoor Indoor

✓ Non line-of-sight

Standard Acquisition

✓ I code period

Comput. Complexity

- ✓ Search Points: IE3
- Number of Operations Required ~ IE5

Standard GNSS Acquisition is not capable of satisfying current user expectations!

Acquisition Challenges

Part I: Introduction

Acquisition output example for GPS LI C/A signal:

High-sensitivity acquisition involves a sensitivity vs complexity trade-off

Thesis Objectives

Part I: Introduction

Propose innovative solutions to the current challenges of acquisition

 Current challenges and innovation opportunities: identified through state-ofthe-art review

 Analysis carried always considering the sensitivity vs complexity trade-off of High-Sensitivity GNSS acquisition

Presentation Outline

I. Introduction to GNSS and Signal Acquisition

II. Thesis Contributions

- A. Analysis and Compensation of Doppler Effect
- B. Characterization of Differential Detectors
- C. Multi-Constellation Collective Acquisition
- **III. Conclusions and Future Work**

GNSS – Global Navigation Satellite System

<u>Part IIA:</u> Analysis and Compensation of Doppler Effect in GNSS Acquisition

Contents:

- I. Introduction
- 2. Compensation of Doppler Effect in Low-Dynamics
- 3. Analysis of Doppler Effect in Medium-Dynamics
- 4. Compensation of Doppler Effect in High-Dynamics
- 5. Conclusion

PhD Defense Paulo ESTEVES

<u>Part IIA:</u> Analysis and Compensation of Doppler Effect in GNSS Acquisition

Contents:

- I. Introduction
- 2. Compensation of Doppler Effect in Low-Dynamics
- 3. Analysis of Doppler Effect in Medium-Dynamics
- 4. Compensation of Doppler Effect in High-Dynamics
- 5. Conclusion

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Outline

Introduction

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

- Doppler shift is unavoidable in GNSS given the significant (relative) user-satellite motion
- The Doppler shift experienced by a land-based user is mainly due to 3 sources:
 - I. Satellite Motion
 - 2. User Motion
 - 3. User Receiver Oscillator

High-sensitivity signal processing techniques require long observation times

Doppler variation throughout signal observation time is also important!

PhD Defense Paulo ESTEVES

Introduction

Three Doppler-related scenarios can then be defined:

I. Low-Dynamics

Doppler offset remains approximately **constant** during acquisition time

2. Medium-Dynamics

Doppler offset changes slightly and does not impact the acquisition process

3. High-Dynamics

Doppler offset changes significantly and impacts the acquisition process

✓ Conclusion and Possible scenarios of application

<u>Part IIA:</u> Analysis and Compensation of Doppler Effect in GNSS Acquisition

Contents:

- I. Introduction
- 2. Compensation of Doppler Effect in Low-Dynamics
- 3. Analysis of Doppler Effect in Medium-Dynamics
- 4. Compensation of Doppler Effect in High-Dynamics
- 5. Conclusion

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Outline

Low-Dynamics I. Motivation

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

 Acquisition involves a search over a finite number of candidate frequencies (Doppler offsets) and code phases

Residual code and frequency estimation offsets are inevitable

What is the impact on acquisition of a residual frequency estimation error?

Low-Dynamics I. Motivation

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

Coarse vs Fine Search Grid comparison (worst-case scenario)

- « Low » computational cost
 Potentially « high » frequency-derived losses
- « Fight » computational cost
 « Limited » frequency-derived losses

Low-Dynamics I. Motivation

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

 Most computationally efficient GNSS acquisition methods employ Fast Frequency Transform (FFT) for computation optimization

Objective: Adapt the most computationally efficient methods in order to reduce the maximum frequency attenuation losses!

PhD Defense Paulo ESTEVES

Low-Dynamics 2. Proposed Approach

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

How to counteract the coarse FFT frequency resolution?

Spectral Peak Location algorithms (from Digital Signal Processing literature)

Low-Dynamics 2. Proposed Approach

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

New delta-corrected acquisition methodology

Low-Dynamics 2. Proposed Approach

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

New delta-corrected acquisition methodology

Low-Dynamics 3. Results

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

Analysis of real data collected with test and reference receivers (Ims GPS LI C/A signal)

Doppler offset estimation: <u>simple</u> vs <u>delta-corrected</u> frequency estimator

- Simple FFT Doppler estimation
- Delta-corrected Doppler estimation
- Reference Doppler value

Low-Dynamics

3. Results

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

Analysis of real data collected with test and reference receivers (Ims GPS LI C/A signal)

Satellites Detection: simple vs delta-corrected acquisition scheme

SV PRN	Mean Doppler Offset (Hz)	Mean C/N₀ (dB-Hz)
2	1450	48.I
4	-1570	48.I
5	4480	46.7
7	1930	48.I
8	4080	48.9
10	1550	47.1
13	-1020	48.6
23	-1550	46.4

<u>Part IIA:</u> Analysis and Compensation of Doppler Effect in GNSS Acquisition

Contents:

- I. Introduction
- 2. Compensation of Doppler Effect in Low-Dynamics
- 3. Analysis of Doppler Effect in Medium-Dynamics
- 4. Compensation of Doppler Effect in High-Dynamics
- 5. Conclusion

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Outline

Medium-Dynamics I. Motivation

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

For detection of weak signals (very) long signal observation times are required

Assumption of a constant Doppler offset is no longer valid!

Source	Maximum Expected Variation (Hz/s)
Satellite Motion	± 10
User Motion	± 50
Receiver Oscillator	Variable
Total	± 60 Hz /s

How does a changing Doppler offset impact the acquisition process?

Medium-Dynamics 2. Proposed Approach

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

Chosen model: frequency ramp (linear variation)

 $f_d = f_{d0} + \alpha t$, $\alpha \equiv \text{Doppler change rate (Hz/s)}$

2 different analysis conducted:

I. <u>Detector employing exclusively coherent integration:</u>

2. Detectors employing coherent and postcoherent integration:

$$\begin{array}{c} \text{Correlation} \\ \text{Output} \end{array} \longrightarrow \begin{array}{c} \sum \\ N \text{ Code Periods} \end{array} \longrightarrow \begin{array}{c} \text{Postcoherent} \\ \text{Integration} \end{array} \longrightarrow \begin{array}{c} \text{Detection} \\ \text{Metric} \end{array}$$

Medium-Dynamics

3. Results

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

- I. Detector employing exclusively coherent integration
- Percentage of Doppler bin «swept» by the Doppler frequency during coherent integration Sweep factor (γ)

$$\gamma = \alpha \cdot T_{coh}^2$$

✓ Simulation analysis of effect of γ in coherent integration

Conclusions:

- ✓ For γ < 100% worst-case detection metric attenuation equal to FFT coarse grid loss
- ✓ Coherent integration time adjusted according to expected dynamics (𝔅)

PhD Defense Paulo ESTEVES

<u>Part IIA:</u> Analysis and Compensation of Doppler Effect in GNSS Acquisition

Contents:

- I. Introduction
- 2. Compensation of Doppler Effect in Low-Dynamics
- 3. Analysis of Doppler Effect in Medium-Dynamics
- 4. Compensation of Doppler Effect in High-Dynamics
- 5. Conclusion

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Outline

High-Dynamics 2. Proposed Approach

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

- For Medium-Dynamics: proposed formulas adapt integration times only, implying no design changes
- **For High-Dynamics:** application scenarios and involved dynamics require new design!

Proposed approach: Frequency Offset Correction Loop

PhD Defense Paulo ESTEVES

High-Dynamics **3. Results**

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

Two different frequency compensation approaches analyzed:

- Chirp compensation more efficient than staircase approach
- Chirp-compensated acquisition **limited by** α estimation at low input signal powers

<u>Part IIA:</u> Analysis and Compensation of Doppler Effect in GNSS Acquisition

Contents:

- I. Introduction
- 2. Compensation of Doppler Effect in Low-Dynamics
- 3. Analysis of Doppler Effect in Medium-Dynamics
- 4. Compensation of Doppler Effect in High-Dynamics
- 5. Conclusion

PhD Defense Paulo ESTEVES

Conclusions

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

Three different Doppler scenarios were defined and evaluated:

I. Low-Dynamics

- ✓ Improve sensitivity/complexity trade-off of GNSS Acquisition
- Proposed for mass-market applications

2. Medium-Dynamics

- ✓ Adapt acquisition schemes parameters according to expected level of dynamics
- ✓ Proposed for urban receivers and LEO and GEO satellite receiver

3. High-Dynamics

- ✓ Inclusion of a dynamic Frequency Offset Correction loop for enhanced robustness
- ✓ Proposed for receivers targeting indoor acquisition

Presentation Outline

I. Introduction to GNSS and Signal Acquisition

II. Thesis Contributions

- A. Analysis and Compensation of Doppler Effect
- B. Characterization of Differential Detectors
- C. Multi-Constellation Collective Acquisition
- **III. Conclusions and Future Work**

GNSS – Global Navigation Satellite System

<u>Part IIB:</u> Sensitivity Characterization of Differential GNSS Detectors

Contents:

- I. Introduction
- 2. Sensitivity Characterization of Nonoptimal Detectors
- 3. Noncoherent Differential Detector Sensitivity
- 4. Comparison with Noncoherent Detector
- 5. Conclusion

PhD Defense Paulo ESTEVES

<u>Part IIB:</u> Sensitivity Characterization of Differential GNSS Detectors

Contents:

- I. Introduction
- 2. Sensitivity Characterization of Nonoptimal Detectors
- 3. Noncoherent Differential Detector Sensitivity
- 4. Comparison with Noncoherent Detector
- 5. Conclusion

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Outline

Introduction

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

GNSS signal integration techniques

PhD Defense Paulo ESTEVES
Part IIB: Sensitivity Characterization of Differential GNSS Detectors

Introduction

GNSS signal integration techniques

PhD Defense Paulo ESTEVES

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

GNSS signal integration techniques

* - Complex conjugate

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

GNSS signal integration techniques: coherent and postcoherent

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

Coherent and Postcoherent integration techniques comparison

Given limitations of coherent integration, transition to postcoherent integration is usually required

What is preferable: transition to noncoherent or differential?

PhD Defense Paulo ESTEVES

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

Noncoherent integration

- Most commonly employed approach (standard technique since radar)
- The sensitivity loss of performing
 N noncoherent integrations instead
 of N coherent integrations has
 been expressed as:

$$L_{NCD} = f(N, P_d, P_{fa})$$

- P_d Probability of Detection
- *P_{fa}* Probability of False Alarm

Input Signal-to-Noise Ratio

Objective: Propose a similar formula for most suitable differential detector

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Differential - 4

<u>Part IIB:</u> Sensitivity Characterization of Differential GNSS Detectors

Contents:

- I. Introduction
- 2. Sensitivity Characterization of Nonoptimal Detectors
- 3. Noncoherent Differential Detector Sensitivity
- 4. Comparison with Noncoherent Detector
- 5. Conclusion

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Sensitivity Characterization of Nonoptimal Detectors

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

Optimal Detector: Coherent Integration exclusively

✓ Through its statistical characterization it is possible to express the required input Signal-to-Noise Ratio (SNR) to achieve a given working point (P_d, P_{fa}) :

$$SNR_{in} = f(P_d, P_{fa}, N)$$
$$= SNR_{in,min}$$

 Theoretical minimum SNR required to achieve target working point

Sensitivity Characterization of Nonoptimal Detectors

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

* Nonoptimal Detector: Coherent Integration + Nonoptimal Operation(s)

✓ Given its nonoptimality, the SNR required to achieve the same working point as the optimal detector is higher than $SNR_{in,min}$:

$$SNR_{in,req} (P_d, P_{fa}) > SNR_{in,min} (P_d, P_{fa})$$

 \checkmark The sensitivity loss of the nonoptimal detector can then simply expressed as:

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Differential - 6

<u>Part IIB:</u> Sensitivity Characterization of Differential GNSS Detectors

Contents:

- I. Introduction
- 2. Sensitivity Characterization of Nonoptimal Detectors
- 3. Noncoherent Differential Detector Sensitivity
- 4. Comparison with Noncoherent Detector
- 5. Conclusion

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Noncoherent Differential Detector Sensitivity

Oncoherent Differential Detector (NCDD)

✓ Most appropriate differential detector for GNSS applications

OCDD sensitivity loss: combination of differential and squaring losses!

✓ Squaring loss is known from noncoherent integration

How to find the sensitivity loss of differential integration?

Statistical characterization of differential operation!

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Differential - 7

Noncoherent Differential Detector Sensitivity

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

Sensitivity Loss of Differential Operation

- ✓ Statistical characterization of differential operation:
- Apparently « good » fit between theory and simulation results

Not good enough **to propose a model for the sensitivity loss** given the significantly different profile

Model proposed based on simulation results exclusively

- Simulation Loss
- Proposed Approximation

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Differential - 8

Noncoherent Differential Detector Sensitivity

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

Sensitivity Loss of NCDD Detector

- Mathematical « subtility » to extend proposed model from I to N differential integrations
- Proposed formula includes all targeted parameters:

$$L_{NCDD} = f(N, P_d, P_{fa})$$

$$\approx 1 + \frac{0.2 \cdot (N+1)}{SNR_{diff}} + \frac{0.45 \cdot \sqrt[3]{(N+1)}}{\sqrt[3]{SNR_{diff}}}$$
$$SNR_{diff} = f \left(P_d , P_{fa} \right)$$

 Simulation analyses show very good fit of proposed formula in predicting NCDD sensitivity

Number of Differential Integrations

PhD Defense Paulo ESTEVES

<u>Part IIB:</u> Sensitivity Characterization of Differential GNSS Detectors

Contents:

- I. Introduction
- 2. Sensitivity Characterization of Nonoptimal Detectors
- 3. Noncoherent Differential Detector Sensitivity
- 4. Comparison with Noncoherent Detector
- 5. Conclusion

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Comparison with Noncoherent Detector

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

- The proposed formula allows the objective of comparison of the NCDD with the Noncoherent Detector (NCD)
 - **Example:** Sensitivity loss of NCDD and NCD detectors for (P_d, P_{fa}) = (0.9, 1E-5)
- Examples of application of proposed formula described in the thesis
- Theoretical conclusions validated by acquisition of real GPS data

Number of Integrations

In case of medium- or high-dynamics, NCD shown to be more robust than NCDD

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Differential - 10

<u>Part IIB:</u> Sensitivity Characterization of Differential GNSS Detectors

Contents:

- I. Introduction
- 2. Sensitivity Characterization of Nonoptimal Detectors
- 3. Noncoherent Differential Detector Sensitivity
- 4. Comparison with Noncoherent Detector
- 5. Conclusion

PhD Defense Paulo ESTEVES

Conclusions

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

- Given limitations of coherent integration, transition to postcoherent integration is typical for acquiring weak signals
 - Noncoherent integration standard and well-characterized technique
 - ✓ Differential integration still required full characterization
- Theoretical and simulation results enabled proposal of a formula for the sensitivity characterization of the NCDD detector
- The objective of formal comparison between the NCDD and the NCD detectors can now be conducted

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Differential - 11

Presentation Outline

I. Introduction to GNSS and Signal Acquisition

II. Thesis Contributions

- A. Analysis and Compensation of Doppler Effect
- B. Characterization of Differential Detectors
- C. Multi-Constellation Collective Acquisition
- **III. Conclusions and Future Work**

GNSS – Global Navigation Satellite System

<u>Part IIC:</u> Systematic and Efficient Collective Acquisition of Multi-Constellation GNSS Signals

Contents:

- I. Introduction
- 2. Systematic and Efficient Collective Acquisition
- 3. Hybridization with Sequential Acquisition
- 4. Multi-Constellation Collective Acquisition
- 5. Conclusions

PhD Defense Paulo ESTEVES

<u>Part IIC:</u> Systematic and Efficient Collective Acquisition of Multi-Constellation GNSS Signals

Contents:

- I. Introduction
- 2. Systematic and Efficient Collective Acquisition
- 3. Hybridization with Sequential Acquisition
- 4. Multi-Constellation Collective Acquisition
- 5. Conclusions

PhD Defense Paulo ESTEVES

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

- GNSS signals are usually acquired independently from one another
- New acquisition techniques (combined acquisition) recently developed in which signals are combined to improve overall acquisition sensitivity

New Approach: Collective Detection / Collective Acquisition

Objective: Acquire all visible satellites at the same time (collectively)

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

Collective Detection principle: estimate
 Destition

estimate signal code phases based on candidate position and clock bias

 \checkmark Doppler offset can be removed to a great extent through Assistance information

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

Biggest drawback in Collective Detection

Example search grid found in literature [Axelrad 2011]

Item	Rough (m)	Medium (m)	Fine (m)
North/East	±10.000	±2.000	±900
North/East Step	1.000	100	30
Clock Bias	±150.000	±1.200	±300
Clock Bias Step	1.000	100	30
Number of Points	132.741	42.025	182.329

Search grid impacts not only complexity but also sensitivity!

First Objective: Propose a methodology for the <u>systematic</u> and <u>efficient</u> application of Collective Detection

- ✓ **Systematic** Search steps are determined by a set of input parameters
- ✓ **Efficient** Avoid excessively fine and computationally heavy search grids

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

SECA - 3

<u>Part IIC:</u> Systematic and Efficient Collective Acquisition of Multi-Constellation GNSS Signals

Contents:

- I. Introduction
- 2. Systematic and Efficient Collective Acquisition
- 3. Hybridization with Sequential Acquisition
- 4. Multi-Constellation Collective Acquisition
- 5. Conclusions

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

How to ensure a <u>Systematic</u> and <u>Efficient</u> Collective Detection search process?

PhD Defense Paulo ESTEVES

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

Maximum allowable code phase estimation error, β

Radius search step

Angular search step

Clock bias search step $\delta B = f(\beta, w_{bias})$

 $\delta R = f(\beta, w_{position})$ $\delta\theta = f(\boldsymbol{\beta}, \boldsymbol{w}_{\text{position}})$

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

- The lower the maximum allowable code phase estimation error is...
 - ... the **higher** the number of search points to consider!

- I. Iterative search process
- 2. Code phases considered are a range around the central code phase

First Iteration

 β_0 – initial maximum tolerable code phase estimation error

PhD Defense Paulo ESTEVES

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

- The lower the maximum allowable code phase estimation error is...
 - ... the **higher** the number of search points to consider!

- I. Iterative search process
- 2. Code phases considered are a range around the central code phase

Second Iteration

$$eta_1$$
 = eta_0 / division factor

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

SECA - 6

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

- The lower the maximum allowable code phase estimation error is...
 - ... the **higher** the number of search points to consider!

- I. Iterative search process
- 2. Code phases considered are a range around the central code phase

Third Iteration

$$\beta_2 = \beta_1 / \text{division factor}$$

PhD Defense Paulo ESTEVES

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

- Example of application
 - ✓ 6 nominal power satellites
 - True user position:
 (ΔN, ΔE) = (-4000, 7000)
 - ✓ Radial uncertainty: 10km
 - $\checkmark \beta_0 = 5$ chips, $\beta_i = \beta_{i-1} / 10$
 - ✓ 3 iterations

Iteration	Number of search points	
I	44330	

First Iteration

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

Example of application

- ✓ 6 nominal power satellites
- ✓ True user position:
 (△N, △E) = (-4000, 7000)
- ✓ Radial uncertainty: 10km
- $\checkmark \beta_0 = 5$ chips, $\beta_i = \beta_{i-1} / 10$
- ✓ 3 iterations

Iteration	Number of search points	
I	44330	
2	3500	

Second Iteration

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

Example of application

- ✓ 6 nominal power satellites
- True user position:
 (ΔN, ΔE) = (-4000, 7000)
- ✓ Radial uncertainty: 10km
- $\checkmark \beta_0 = 5$ chips, $\beta_i = \beta_{i-1} / 10$
- ✓ 3 iterations

Iteration	Number of search points		
I	44330		
2	3500		
3	3500		
Total	52030		

Third Iteration

I + orders of magnitude more efficient than fixed step search grids found in literature

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

SECA - 7

<u>Part IIC:</u> Systematic and Efficient Collective Acquisition of Multi-Constellation GNSS Signals

Contents:

- I. Introduction
- 2. Systematic and Efficient Collective Acquisition
- 3. Hybridization with Sequential Acquisition
- 4. Multi-Constellation Collective Acquisition
- 5. Conclusions

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Hybridization with Sequential Acquisition

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

Collective Detection is intended for acquisition of weak signals

In the visible satellite set both strong and weak signals may exist!

How to profit from strong signals presence in Collective Detection?

- I. Reduce search dimensions (in particular clock bias)
- 2. Establish dependency between search dimensions

No strong satellites	I strong satellite	2 strong satellites	
Clock bias (full) Clock bias Azimuth Radius	Clock bias (reduced) Azimuth Radius $f(x)$	Clock bias Azimuth Radius $f(x)$ $f(x)$	

Enhanced sensitivity and complexity (depending on algorithm parameters)

PhD Defense Paulo ESTEVES

<u>Part IIC:</u> Systematic and Efficient Collective Acquisition of Multi-Constellation GNSS Signals

Contents:

- I. Introduction
- 2. Systematic and Efficient Collective Acquisition
- 3. Hybridization with Sequential Acquisition
- 4. Multi-Constellation Collective Acquisition
- 5. Conclusions

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Multi-Constellation Collective Acquisition

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

GNSS systems are not limited to GPS!

How to adapt Collective Detection for multi-constellation GNSS signals?

- Multi-Constellation Collective Detection considerations
 - ✓ Time offset between constellations
 - ✓ Difference in code lengths
 - ✓ Difference in clock bias magnitude

Artist's impression of the Galileo Constellation [European Space Agency website]

Development of proposals to handle these issues in a combined GPS and Galileo context

Preliminary results not very promising but further assessments are required

Multi-Constellation Collective Acquisition

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

Preliminary assessments carried on Indoor data collection

Number of Noncoherent Integrations

- Combined GPS+Galileo (1)
- Combined GPS+Galileo (2)
- > GPS-Only
Part II: Thesis Contributions

<u>Part IIC:</u> Systematic and Efficient Collective Acquisition of Multi-Constellation GNSS Signals

Contents:

- I. Introduction
- 2. Systematic and Efficient Collective Acquisition
- 3. Hybridization with Sequential Acquisition
- 4. Multi-Constellation Collective Acquisition
- 5. Conclusions

PhD Defense Paulo ESTEVES

Outline

Conclusions

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

- Collective Detection is an innovative approach capable of improving GNSS signal acquisition sensitivity
- Biggest drawback in Collective Detection is the computational complexity of approaches found in literature
- A methodology for the Systematic and Efficient application of Collective
 Detection has been proposed
- **Hybridization with sequential acquisition** has also been addressed and shown as capable of **improving sensitivity and complexity** of Collective Detection
- The application of Collective Detection in a multi-constellation GNSS receiver has also been addressed with the acquisition of both real GPS and Galileo signals

ISAE, Toulouse, May 27th 2014

Presentation Outline

I. Introduction to GNSS and Signal Acquisition

II. Thesis Contributions

- A. Analysis and Compensation of Doppler Effect
- B. Characterization of Differential Detectors
- C. Multi-Constellation Collective Acquisition

III. Conclusions and Future Work

GNSS – Global Navigation Satellite System

Conclusions

- **# High-sensitivity GNSS acquisition** is necessary to fulfill current user expectations
- A thorough state-of-the-art review allowed identifying possible axes of research
- In this thesis three different aspects of high-sensitivity GNSS acquisition were considered for improvement:
 - I. Analysis and Compensation of Doppler effect
 - Low, Medium, and High-dynamics
 - 2. Sensitivity Characterization of Differential Detectors
 - 3. Systematic and Efficient multi-constellation Collective Detection
- Solutions were proposed for enhancing the overall acquisition process keeping in mind the key sensitivity-complexity trade-off

ISAE, Toulouse, May 27th 2014

Conclusions

Future Work Recommendations

Doppler

- Dynamic scenarios analysis carried only with linearly changing Doppler and not validated with real data
- More complete research of Doppler change rate estimators is required for high-dynamics scenario

Differential

Analysis carried assumes that data bit effect is aptly mitigated which is not necessarily the case

Collective Detection

- Complementary study required for assessing best parameters for tuning the proposed methodology
- More analysis required to assess true potential of Collective Detection for Indoor scenarios in a multi-constellation receiver context

ISAE, Toulouse, May 27th 2014

Conclusions

Published Works

- **\$ 5 conference articles:**
 - ✓ Sahmoudi, M., Esteves, P. et al. **ION GNSS 2011**
 - ✓ Esteves, P., Sahmoudi, M. et al. **ION GNSS 2012**
 - ✓ Esteves, P., Sahmoudi, M. et al. ENC 2013 Best student presentation award
 - Esteves, P. ION GNSS 2013 Best student paper award
 - ✓ Esteves, P., Sahmoudi, M. et al. SIGNALS 2013
- **#** I journal article (accepted, under second revision):
 - ✓ Esteves, P., Sahmoudi, M. and Boucheret, M.-L. IEEE TAES
- **I magazine article** (to be published in next issue):
 - ✓ Esteves, P., Sahmoudi, M. and Ries, L. Inside GNSS

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014

Conclusions

Thank you!

Questions?

PhD Defense Paulo ESTEVES

ISAE, Toulouse, May 27th 2014