High-Sensitivity Adaptive GNSS Acquisition Schemes

Supervisors:
Dr. Mohamed SAHMOUDI
Prof. Marie-Laure BOUCHERET

Toulouse, May 27th 2014
I. Introduction to GNSS and Signal Acquisition

II. Thesis Contributions
 A. Analysis and Compensation of Doppler Effect
 B. Characterization of Differential Detectors
 C. Multi-Constellation Collective Acquisition

III. Conclusions and Future Work

GNSS – Global Navigation Satellite System
Presentation Outline

I. Introduction to GNSS and Signal Acquisition

II. Thesis Contributions
 A. Analysis and Compensation of Doppler Effect
 B. Characterization of Differential Detectors
 C. Multi-Constellation Collective Acquisition

III. Conclusions and Future Work

GNSS – Global Navigation Satellite System
The underlying principle of GNSS systems is *trilateration*:

An unknown position can be inferred from distances to points with known positions

- Satellites position can be established accurately
- User pseudorange to satellites can be estimated
- User position and clock bias (with respect to GNSS system time) can be determined

Number of unknowns = 4 ➔ A *minimum of 4 satellites* is required to determine user *navigation solution*
Part I: Introduction

Goal: Trilateration

Requires Distance

GNSS Time

\[
\text{Distance} = \frac{\text{Time}}{\text{Speed-of-Light}}
\]

How to estimate the signals time of travel accurately? **Correlation!**

- Besides *code phase* also *Doppler offset* needs to be estimated
- First phase of (coarse) estimation of both parameters is **ACQUISITION**
Part I: Introduction

Acquisition Role

- Acquisition output example for GPS L1 C/A signal:

 Outdoor
 ✓ Line-of-sight visibility

 Standard Acquisition
 ✓ 1 code period

 Comput. Complexity
 ✓ Search Points: 1E3
 ✓ Number of Operations Required ~ 1E5

Acquisition is a combined estimation and detection problem

Why a PhD thesis in acquisition?
Acquisition Challenges

Part I: Introduction

- Acquisition output example for **GPS L1 C/A** signal:

Outdoor **Indoor**
- Non line-of-sight

Standard Acquisition
- 1 code period

Comput. Complexity
- Search Points: 1×10^3
- Number of Operations Required ~ 1×10^5

Standard GNSS Acquisition is not capable of satisfying current user expectations!
Acquisition Challenges

Part I: Introduction

Acquisition output example for GPS L1 C/A signal:

Outdoor vs Indoor
- Non line-of-sight

Standard Acquisition vs High-Sensitivity Acquisition
- 100 code periods

Comput. Complexity
- Search Points: 1×10^5
- Number of Operations Required ~ 1×10^9

10,000 times higher than standard acquisition!

High-sensitivity acquisition involves a sensitivity vs complexity trade-off
Thesis Objectives

- Propose innovative solutions to the current challenges of acquisition
 - Current challenges and innovation opportunities: identified through state-of-the-art review

 - Analysis carried always considering the sensitivity vs complexity trade-off of High-Sensitivity GNSS acquisition
I. Introduction to GNSS and Signal Acquisition

II. Thesis Contributions
 A. Analysis and Compensation of Doppler Effect
 B. Characterization of Differential Detectors
 C. Multi-Constellation Collective Acquisition

III. Conclusions and Future Work

GNSS – Global Navigation Satellite System
Part II: Thesis Contributions

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

Contents:

1. Introduction
2. Compensation of Doppler Effect in Low-Dynamics
3. Analysis of Doppler Effect in Medium-Dynamics
4. Compensation of Doppler Effect in High-Dynamics
5. Conclusion
Part II: Thesis Contributions

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

Contents:

1. Introduction
2. Compensation of Doppler Effect in Low-Dynamics
3. Analysis of Doppler Effect in Medium-Dynamics
4. Compensation of Doppler Effect in High-Dynamics
5. Conclusion
Doppler shift is unavoidable in GNSS given the significant (relative) user-satellite motion.

The Doppler shift experienced by a land-based user is mainly due to 3 sources:

1. **Satellite Motion**
2. **User Motion**
3. **User Receiver Oscillator**

High-sensitivity signal processing techniques require *long observation times*

Doppler *variation* throughout signal observation time is also important!
Introduction

Three Doppler-related scenarios can then be defined:

1. **Low-Dynamics**
 Doppler offset remains approximately *constant* during acquisition time

2. **Medium-Dynamics**
 Doppler offset *changes slightly* and does not impact the acquisition process

3. **High-Dynamics**
 Doppler offset *changes significantly* and impacts the acquisition process

✓ Conclusion and Possible scenarios of application
Part II: Thesis Contributions

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

Contents:

1. Introduction
2. Compensation of Doppler Effect in Low-Dynamics
3. Analysis of Doppler Effect in Medium-Dynamics
4. Compensation of Doppler Effect in High-Dynamics
5. Conclusion
I. Motivation

 Acquisition involves a search over a finite number of candidate frequencies (Doppler offsets) and code phases.

 Residual code and frequency estimation offsets are inevitable.

 What is the impact on acquisition of a residual frequency estimation error?
Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

Coarse vs Fine Search Grid comparison (worst-case scenario)

- **Coarse Acquisition Grid**
 - « Low » computational cost
 - Potentially « high » frequency-derived losses

- **Fine Acquisition Grid**
 - « High » computational cost
 - « Limited » frequency-derived losses
Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

I. Motivation

- Most computationally efficient GNSS acquisition methods employ Fast Frequency Transform (FFT) for computation optimization.

FFT imposes coarse frequency grid

Objective: Adapt the most computationally efficient methods in order to reduce the maximum frequency attenuation losses!
Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

Low-Dynamics

2. Proposed Approach

- How to counteract the coarse FFT frequency resolution?

Spectral Peak Location algorithms (from Digital Signal Processing literature)

\[\delta = f(\text{correlation outputs}) \]

\[f_{\text{delta corrected}} = f_{\text{simple}} + \delta \]

Interpolate the FFT outputs to calculate \(\delta \)

FFT output profile known (sinc function)
2. Proposed Approach

- New *delta-corrected* acquisition methodology

Flowchart

- Input Signal
 - Perform Acquisition
 - Detection?
 - Yes: Refine frequency estimation
 - Use fine frequency in acquisition
 - Detection? (Output)
 - Yes: Tracking or Navigation Module
 - No: Refine frequency estimation (Input)
 - No: Refine frequency estimation (Input)
 - Delta (Spectral Peak Location) algorithm
 - Candidate code phase: most likely code phase

Low-Dynamics

Notes

- 2. Proposed Approach
- New *delta-corrected* acquisition methodology
- Flowchart
Low-Dynamics

2. Proposed Approach

- New **delta-corrected** acquisition methodology

![Graph showing detection threshold and metric for delta-corrected acquisition.](image)
3. Results

- Analysis of real data collected with test and reference receivers (1ms GPS L1 C/A signal)

Doppler offset estimation: simple vs *delta-corrected* frequency estimator

- Simple FFT Doppler estimation
- Delta-corrected Doppler estimation
- Reference Doppler value
3. Results

- Analysis of real data collected with test and reference receivers (1ms GPS L1 C/A signal)

Satellites Detection: simple vs delta-corrected acquisition scheme

Results

<table>
<thead>
<tr>
<th>SV PRN</th>
<th>Mean Doppler Offset (Hz)</th>
<th>Mean C/N₀ (dB-Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1450</td>
<td>48.1</td>
</tr>
<tr>
<td>4</td>
<td>-1570</td>
<td>48.1</td>
</tr>
<tr>
<td>5</td>
<td>4480</td>
<td>46.7</td>
</tr>
<tr>
<td>7</td>
<td>1930</td>
<td>48.1</td>
</tr>
<tr>
<td>8</td>
<td>4080</td>
<td>48.9</td>
</tr>
<tr>
<td>10</td>
<td>1550</td>
<td>47.1</td>
</tr>
<tr>
<td>13</td>
<td>-1020</td>
<td>48.6</td>
</tr>
<tr>
<td>23</td>
<td>-1550</td>
<td>46.4</td>
</tr>
</tbody>
</table>
Part II: Thesis Contributions

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

Contents:

1. Introduction
2. Compensation of Doppler Effect in Low-Dynamics
3. Analysis of Doppler Effect in Medium-Dynamics
4. Compensation of Doppler Effect in High-Dynamics
5. Conclusion
Medium-Dynamics

1. Motivation

For detection of weak signals (very) long signal observation times are required

Assumption of a constant Doppler offset is no longer valid!

\[f_{\text{received}} = f(t) \]

<table>
<thead>
<tr>
<th>Source</th>
<th>Maximum Expected Variation (Hz/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite Motion</td>
<td>± 10</td>
</tr>
<tr>
<td>User Motion</td>
<td>± 50</td>
</tr>
<tr>
<td>Receiver Oscillator</td>
<td>Variable</td>
</tr>
<tr>
<td>Total</td>
<td>± 60 Hz/s</td>
</tr>
</tbody>
</table>

How does a changing Doppler offset impact the acquisition process?
2. Proposed Approach

Chosen model: frequency ramp (linear variation)

\[f_d = f_{d0} + \alpha t, \quad \alpha \equiv \text{Doppler change rate (Hz/s)} \]

- **2 different analysis conducted:**
 1. **Detector employing exclusively coherent integration:**

 ![Diagram of coherent integration process]

 Correlation Output \(\sum_{N \text{ Code Periods}} \) \(\rightarrow \) Phase Removal \(\rightarrow \) Detection Metric

 2. **Detectors employing coherent and postcoherent integration:**

 ![Diagram of coherent and postcoherent integration process]

 Correlation Output \(\sum_{N \text{ Code Periods}} \) \(\rightarrow \) Postcoherent Integration \(\rightarrow \) Detection Metric
3. Results

1. Detector employing exclusively coherent integration

- Percentage of Doppler bin «swept» by the Doppler frequency during coherent integration - **Sweep factor** (γ)

$$\gamma = \alpha \cdot T_{coh}^2$$

- Simulation analysis of effect of γ in coherent integration

Conclusions:

- For $\gamma < 100\%$ worst-case detection metric attenuation equal to FFT coarse grid loss
- Coherent integration time adjusted according to expected dynamics (α)
Part II: Thesis Contributions

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

Contents:

1. Introduction
2. Compensation of Doppler Effect in Low-Dynamics
3. Analysis of Doppler Effect in Medium-Dynamics
4. Compensation of Doppler Effect in High-Dynamics
5. Conclusion
Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

2. Proposed Approach

- **For Medium-Dynamics:** proposed formulas adapt integration times only, implying no design changes.

- **For High-Dynamics:** application scenarios and involved dynamics require new design!

Proposed approach: Frequency Offset Correction Loop
3. Results

- Two different frequency compensation approaches analyzed:
 - Staircase compensation
 - Chirp compensation

Chirp compensation **more efficient** than staircase approach

Chirp-compensated acquisition **limited by \(\alpha \) estimation** at low input signal powers
Part II: Thesis Contributions

Part IIA: Analysis and Compensation of Doppler Effect in GNSS Acquisition

Contents:

1. Introduction
2. Compensation of Doppler Effect in Low-Dynamics
3. Analysis of Doppler Effect in Medium-Dynamics
4. Compensation of Doppler Effect in High-Dynamics
5. Conclusion
Three different Doppler scenarios were defined and evaluated:

1. **Low-Dynamics**
 - Improve sensitivity/complexity trade-off of GNSS Acquisition
 - Proposed for mass-market applications

2. **Medium-Dynamics**
 - Adapt acquisition schemes parameters according to expected level of dynamics
 - Proposed for urban receivers and LEO and GEO satellite receiver

3. **High-Dynamics**
 - Inclusion of a dynamic Frequency Offset Correction loop for enhanced robustness
 - Proposed for receivers targeting indoor acquisition
I. Introduction to GNSS and Signal Acquisition

II. Thesis Contributions
 A. Analysis and Compensation of Doppler Effect
 B. Characterization of Differential Detectors
 C. Multi-Constellation Collective Acquisition

III. Conclusions and Future Work

GNSS – Global Navigation Satellite System
Part II: Thesis Contributions

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

Contents:

1. Introduction
2. Sensitivity Characterization of Nonoptimal Detectors
3. Noncoherent Differential Detector Sensitivity
4. Comparison with Noncoherent Detector
5. Conclusion
Part II: Thesis Contributions

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

Contents:

1. Introduction
2. Sensitivity Characterization of Nonoptimal Detectors
3. Noncoherent Differential Detector Sensitivity
4. Comparison with Noncoherent Detector
5. Conclusion
Introduction

GNSS signal integration techniques

- Code Period 1
- Code Period 2
- Code Period 3

Correlation Outputs

Coherent Integration

Coherent Integration Output

1. Coherent Integration

Introduction

GNSS signal integration techniques

1. **Coherent Integration**

2. **Noncoherent Integration**
Part IIB: Sensitivity Characterization of Differential GNSS Detectors

Introduction

- GNSS signal integration techniques

Correlation Outputs

1. **Coherent Integration**
2. **Noncoherent Integration**
3. **Differential Integration**

Differential Operation

\[S_2 S_1^* \]

Differential Integration

\[S_3 S_2^* \]

* - Complex conjugate
GNSS signal integration techniques: coherent and postcoherent

1. Coherent Integration
2. Noncoherent Integration
3. Differential Integration

Postcoherent Integration

Correlation Outputs

Code Period 1 \(S_1 \)
Code Period 2 \(S_2 \)
Code Period 3 \(S_3 \)
Coherent and Postcoherent integration techniques comparison

<table>
<thead>
<tr>
<th></th>
<th>Coherent</th>
<th>Postcoherent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity Improvement</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Robustness to Signal Phase (Doppler and data bit)</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Impact on Computational Complexity</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Given limitations of coherent integration, transition to postcoherent integration is usually required.

What is preferable: transition to noncoherent or differential?
Introduction

Noncoherent integration

- Most commonly employed approach (standard technique since radar)
- The *sensitivity loss* of performing \(N \) noncoherent integrations instead of \(N \) coherent integrations has been expressed as:

\[
L_{NCD} = f(N, P_d, P_{fa})
\]

- \(P_d \) – Probability of Detection
- \(P_{fa} \) – Probability of False Alarm

Objective: Propose a similar formula for most suitable differential detector
Part II: Thesis Contributions

Part II B: Sensitivity Characterization of Differential GNSS Detectors

Contents:

1. Introduction
2. Sensitivity Characterization of Nonoptimal Detectors
3. Noncoherent Differential Detector Sensitivity
4. Comparison with Noncoherent Detector
5. Conclusion
Sensitivity Characterization of Nonoptimal Detectors

Optimal Detector: Coherent Integration exclusively

Through its statistical characterization it is possible to express the required input Signal-to-Noise Ratio (SNR) to achieve a given working point \((P_d, P_{fa})\):

\[
SNR_{in} = f(P_d, P_{fa}, N) = SNR_{in, min}
\]

Theoretical minimum SNR required to achieve target working point.
Nonoptimal Detector: Coherent Integration + Nonoptimal Operation(s)

Given its nonoptimality, the SNR required to achieve the same working point as the optimal detector is higher than $SNR_{in,min}$:

$$SNR_{in,req} (P_d, P_{fa}) > SNR_{in,min} (P_d, P_{fa})$$

The sensitivity loss of the nonoptimal detector can then simply expressed as:

$$L_{detector} = \frac{SNR_{in,req} (P_d, P_{fa})}{SNR_{in,min} (P_d, P_{fa})}$$

From statistical characterization of nonoptimal detector!

From statistical characterization of optimal detector
Part II: Thesis Contributions

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

Contents:

1. Introduction
2. Sensitivity Characterization of Nonoptimal Detectors
3. Noncoherent Differential Detector Sensitivity
4. Comparison with Noncoherent Detector
5. Conclusion
Noncoherent Differential Detector Sensitivity

Noncoherent Differential Detector (NCDD)
- Most appropriate differential detector for GNSS applications

NCDD sensitivity loss: combination of differential and squaring losses!
- Squaring loss is known from noncoherent integration

How to find the sensitivity loss of differential integration?
- Statistical characterization of differential operation!

Part IIB: Sensitivity Characterization of Differential GNSS Detectors
Noncoherent Differential Detector Sensitivity

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

- Sensitivity Loss of Differential Operation
 - Statistical characterization of differential operation:
 - Apparently « good » fit between theory and simulation results
 - Not good enough to propose a model for the sensitivity loss given the significantly different profile
 - Model proposed based on simulation results exclusively

- Fixed Probability of False Alarm
 - Gaussian Approx. Loss
 - Simulation Loss
 - Polynomial Approximation

 - Theoretical Loss
 - Simulation Loss
 - Proposed Approximation
Noncoherent Differential Detector Sensitivity

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

- **Sensitivity Loss of NCDD Detector**

 - Mathematical « subtility » to extend proposed model from \(I \) to \(N \) differential integrations

 - Proposed formula includes all targeted parameters:
 \[
 L_{NCDD} = f(N, P_d, P_{fa})
 \]
 \[
 \approx 1 + \frac{0.2 \cdot (N + 1)}{SNR_{diff}} + \frac{0.45 \cdot \sqrt[3]{(N + 1)}}{\sqrt[3]{SNR_{diff}}}
 \]
 \[
 SNR_{diff} = f(P_d, P_{fa})
 \]

 - Simulation analyses show **very good fit** of proposed formula in predicting NCDD sensitivity

![Graph showing sensitivity loss with number of differential integrations]
Part II: Thesis Contributions

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

Contents:

1. Introduction
2. Sensitivity Characterization of Nonoptimal Detectors
3. Noncoherent Differential Detector Sensitivity
4. Comparison with Noncoherent Detector
5. Conclusion
The proposed formula allows the objective of comparison of the NCDD with the Noncoherent Detector (NCD)

Example: Sensitivity loss of NCDD and NCD detectors for \((P_d, P_{fa}) = (0.9, 1E-5)\)

- Examples of application of proposed formula described in the thesis
- Theoretical conclusions validated by acquisition of real GPS data
- In case of medium- or high-dynamics, NCD shown to be more robust than NCDD
Part II: Thesis Contributions

Part IIB: Sensitivity Characterization of Differential GNSS Detectors

Contents:

1. Introduction
2. Sensitivity Characterization of Nonoptimal Detectors
3. Noncoherent Differential Detector Sensitivity
4. Comparison with Noncoherent Detector
5. Conclusion
Given **limitations of coherent integration**, transition to **postcoherent integration** is typical for acquiring weak signals

- **Noncoherent integration** - standard and well-characterized technique
- **Differential integration** - still required full characterization

Theoretical and simulation results enabled proposal of a formula for the **sensitivity characterization of the NCDD detector**

The objective of formal comparison between the **NCDD** and the **NCD detectors** can now be conducted
I. Introduction to GNSS and Signal Acquisition

II. Thesis Contributions
 A. Analysis and Compensation of Doppler Effect
 B. Characterization of Differential Detectors
 C. Multi-Constellation Collective Acquisition

III. Conclusions and Future Work

GNSS – Global Navigation Satellite System
Part II: Thesis Contributions

Part IIC: Systematic and Efficient Collective Acquisition of Multi-Constellation GNSS Signals

Contents:

1. Introduction
2. Systematic and Efficient Collective Acquisition
3. Hybridization with Sequential Acquisition
4. Multi-Constellation Collective Acquisition
5. Conclusions
Part II: Thesis Contributions

Part IIC: Systematic and Efficient Collective Acquisition of Multi-Constellation GNSS Signals

Contents:

1. Introduction
2. Systematic and Efficient Collective Acquisition
3. Hybridization with Sequential Acquisition
4. Multi-Constellation Collective Acquisition
5. Conclusions
GNSS signals are usually acquired independently from one another.

New acquisition techniques (**combined acquisition**) recently developed in which signals are **combined to improve overall acquisition sensitivity**.

New Approach: Collective Detection / Collective Acquisition

| Individual satellites (2D) code phase and Doppler search | User (4D) position and clock bias domain |

Objective: Acquire all visible satellites at the same time (collectively)
Introduction

- **Collective Detection principle:** estimate signal code phases based on candidate position and clock bias

- Doppler offset can be removed to a great extent through Assistance information

\[SV \text{ code phase} = f(\text{position, bias}) \]
Introduction

- Biggest drawback in Collective Detection → **Complexity**

Example search grid found in literature [Axelrad 2011]

<table>
<thead>
<tr>
<th>Item</th>
<th>Rough (m)</th>
<th>Medium (m)</th>
<th>Fine (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North/East</td>
<td>±10.000</td>
<td>±2.000</td>
<td>±900</td>
</tr>
<tr>
<td>North/East Step</td>
<td>1.000</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>Clock Bias</td>
<td>±150.000</td>
<td>±1.200</td>
<td>±300</td>
</tr>
<tr>
<td>Clock Bias Step</td>
<td>1.000</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>Number of Points</td>
<td>132.741</td>
<td>42.025</td>
<td>182.329</td>
</tr>
</tbody>
</table>

- Search grid impacts not only **complexity** but also **sensitivity**!

First Objective: Propose a methodology for the **systematic and efficient application of Collective Detection**

- **Systematic** – Search steps are determined by a set of input parameters
- **Efficient** – Avoid excessively fine and computationally heavy search grids
Part II: Thesis Contributions

Part IIC: Systematic and Efficient Collective Acquisition of Multi-Constellation GNSS Signals

Contents:

1. Introduction
2. Systematic and Efficient Collective Acquisition
3. Hybridization with Sequential Acquisition
4. Multi-Constellation Collective Acquisition
5. Conclusions
Systematic and Efficient Collective Acquisition

How to ensure a Systematic and Efficient Collective Detection search process?

Satellite code phase is function of:
1. User position
2. User clock bias

Satellite code phase search resolution is function of:
1. User position search resolution
2. User clock bias search resolution

The inverse is also applicable!

Maximum allowable code phase estimation error

Position search step
Clock bias search step
Proposed Approach: redefinition of horizontal search from North-East to Rho-Theta coordinates

Maximum allowable code phase estimation error, β

Radius search step $\delta R = f(\beta, w_{position})$

Angular search step $\delta \theta = f(\beta, w_{position})$

Clock bias search step $\delta B = f(\beta, w_{bias})$

More intuitive
Simplifies mathematics involved
The lower the maximum allowable code phase estimation error is…

… the higher the number of search points to consider!

1. Iterative search process
2. Code phases considered are a range around the central code phase

First Iteration

β_0 – initial maximum tolerable code phase estimation error

Candidate code phase

Total Uncertainty: 2046 code phases
The **lower** the maximum allowable code phase estimation error is…

… the **higher** the number of search points to consider!

1. Iterative search process
2. Code phases considered are a range around the central code phase

Second Iteration

\[\beta_1 = \beta_0 / \text{division factor} \]
Systematic and Efficient Collective Acquisition

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

- The **lower** the maximum allowable code phase estimation error is…

 … the **higher** the number of search points to consider!

1. Iterative search process
2. Code phases considered are a range around the central code phase

Third Iteration

\[\beta_2 = \beta_1 / \text{division factor} \]

![Graph showing Code phases](image)

Candidate code phase

Total Uncertainty: 40 code phases

400 380 420

\[\beta_2 \]

\[x \times 10^{-9} \]
Example of application

- 6 nominal power satellites
- True user position: \((\Delta N, \Delta E) = (-4000, 7000)\)
- Radial uncertainty: 10 km
- \(\beta_0 = 5\) chips, \(\beta_i = \beta_{i-1} / 10\)
- 3 iterations

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Number of search points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44330</td>
</tr>
</tbody>
</table>
Example of application

- 6 nominal power satellites
- True user position: $(\Delta N, \Delta E) = (-4000, 7000)$
- Radial uncertainty: 10km
- $\beta_0 = 5$ chips, $\beta_i = \beta_{i-1} / 10$
- 3 iterations

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Number of search points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44330</td>
</tr>
<tr>
<td>2</td>
<td>3500</td>
</tr>
</tbody>
</table>
Example of application

- 6 nominal power satellites
- True user position: $\left(\Delta N, \Delta E\right) = (-4000, 7000)$
- Radial uncertainty: 10km
- $\beta_0 = 5$ chips, $\beta_i = \beta_{i-1} / 10$
- 3 iterations

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Number of search points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44330</td>
</tr>
<tr>
<td>2</td>
<td>3500</td>
</tr>
<tr>
<td>3</td>
<td>3500</td>
</tr>
<tr>
<td>Total</td>
<td>52030</td>
</tr>
</tbody>
</table>

1+ orders of magnitude more efficient than fixed step search grids found in literature
Part II: Thesis Contributions

Part IIC: Systematic and Efficient Collective Acquisition of Multi-Constellation GNSS Signals

Contents:

1. Introduction
2. Systematic and Efficient Collective Acquisition
3. Hybridization with Sequential Acquisition
4. Multi-Constellation Collective Acquisition
5. Conclusions
Hybridization with Sequential Acquisition

Part IIC: Systematic and Efficient Collective Acquisition of Multi-GNSS

Collective Detection is intended for acquisition of weak signals

> In the visible satellite set both strong and weak signals may exist!

How to profit from strong signals presence in Collective Detection?

1. **Reduce search dimensions** (in particular clock bias)
2. **Establish dependency between search dimensions**

<table>
<thead>
<tr>
<th>No strong satellites</th>
<th>1 strong satellite</th>
<th>2 strong satellites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock bias (full)</td>
<td>Clock bias (reduced)</td>
<td>Clock bias</td>
</tr>
<tr>
<td>Azimuth</td>
<td>Azimuth</td>
<td>Azimuth</td>
</tr>
<tr>
<td>Radius</td>
<td>Radius</td>
<td>Radius</td>
</tr>
<tr>
<td></td>
<td>f(x)</td>
<td>f(x)</td>
</tr>
</tbody>
</table>

Enhanced sensitivity and complexity (depending on algorithm parameters)
Part II: Thesis Contributions

Part IIC: Systematic and Efficient Collective Acquisition of Multi-Constellation GNSS Signals

Contents:

1. Introduction
2. Systematic and Efficient Collective Acquisition
3. Hybridization with Sequential Acquisition
4. Multi-Constellation Collective Acquisition
5. Conclusions
Multi-Constellation Collective Acquisition

- GNSS systems are not limited to GPS!

How to adapt Collective Detection for multi-constellation GNSS signals?

- Multi-Constellation Collective Detection considerations
 - Time offset between constellations
 - Difference in code lengths
 - Difference in clock bias magnitude

- Development of proposals to handle these issues in a combined GPS and Galileo context

- Preliminary results *not very promising* but further assessments are required
Preliminary assessments carried on Indoor data collection

- Combined GPS+Galileo (1)
- Combined GPS+Galileo (2)
- GPS-Only
Part II: Thesis Contributions

Part IIC: Systematic and Efficient Collective Acquisition of Multi-Constellation GNSS Signals

Contents:

1. Introduction
2. Systematic and Efficient Collective Acquisition
3. Hybridization with Sequential Acquisition
4. Multi-Constellation Collective Acquisition
5. Conclusions
Conclusions

- Collective Detection is an innovative approach capable of improving GNSS signal acquisition sensitivity

- **Biggest drawback** in Collective Detection is the **computational complexity** of approaches found in literature

- A methodology for the **Systematic and Efficient** application of Collective Detection has been proposed

- **Hybridization with sequential acquisition** has also been addressed and shown as capable of **improving sensitivity and complexity** of Collective Detection

- The application of Collective Detection in a **multi-constellation GNSS receiver** has also been addressed with the acquisition of both real **GPS** and **Galileo** signals
I. Introduction to GNSS and Signal Acquisition

II. Thesis Contributions
 A. Analysis and Compensation of Doppler Effect
 B. Characterization of Differential Detectors
 C. Multi-Constellation Collective Acquisition

III. Conclusions and Future Work

GNSS – Global Navigation Satellite System
Conclusions

- **High-sensitivity GNSS acquisition** is necessary to fulfill current user expectations.
- A thorough **state-of-the-art review** allowed identifying possible axes of research.
- In this thesis **three different aspects** of high-sensitivity GNSS acquisition were considered for improvement:
 1. **Analysis and Compensation of Doppler effect**
 - Low, Medium, and High-dynamics
 2. **Sensitivity Characterization of Differential Detectors**
 3. **Systematic and Efficient multi-constellation Collective Detection**
- Solutions were proposed for enhancing the overall acquisition process keeping in mind the key **sensitivity-complexity trade-off**.
Future Work Recommendations

Doppler
- Dynamic scenarios analysis carried only with linearly changing Doppler and not validated with real data
- More complete research of Doppler change rate estimators is required for high-dynamics scenario

Differential
- Analysis carried assumes that data bit effect is aptly mitigated which is not necessarily the case

Collective Detection
- Complementary study required for assessing best parameters for tuning the proposed methodology
- More analysis required to assess true potential of Collective Detection for Indoor scenarios in a multi-constellation receiver context
Published Works

5 conference articles:

✓ Sahmoudi, M., Esteves, P. et al. – ION GNSS 2011
✓ Esteves, P., Sahmoudi, M. et al. – ENC 2013 Best student presentation award
✓ Esteves, P. – ION GNSS 2013 Best student paper award
✓ Esteves, P., Sahmoudi, M. et al. – SIGNALS 2013

1 journal article (accepted, under second revision):

1 magazine article (to be published in next issue):

Thank you!

Questions?