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ABSTRACT
A fusion method was recently proposed for ultrasound

and magnetic resonance images for endometriosis diagnosis.
This method combined the advantages of each modality, i.e.,
the good contrast and signal to noise ratio of the MR im-
age and the good spatial resolution of the US image. The
method was based on an inverse problem, performing a super-
resolution of the MR image and a denoising of the US image.
A polynomial function was introduced to model the relation-
ships between the gray levels of the MR and US images. This
paper studies the potential interest of replacing this polyno-
mial function by a non-parametric transformation built using
the theory of reproducing kernel Hilbert spaces. Simulations
conducted on a phantom and synthetic data allow the perfor-
mance of the resulting fusion method to be appreciated.

Index Terms— Image fusion, MRI, ultrasound imaging,
endometriosis, kernel methods, PALM.

1. INTRODUCTION

Endometriosis is a painful female disorder that takes its name
from endometrium, the tissue that normally lines the uterus
or the womb. It occurs when this tissue grows outside of
the uterus, and becomes trapped since it cannot exit the
body. It can affect the ovaries, the fallopian tubes, and other
pelvic organs. More that ten percent of women are affected
by endometriosis, and thus suffer severe symptoms such as
painful periods and sexual intercourse, higher risk of infertil-
ity, and ovarian cancers. There is an average of 7 years for
endometriosis to be diagnosed, which gives the endometrium
tissue time to spread and impact several organs. Depending
on the disease stage, laparoscopic surgery reveals to be the
unique effective pain-relief [1].
Besides being used for diagnosis, ultrasound (US) and mag-
netic resonance imaging (MRI) are used to identify the en-
dometrial implant and its depth of infiltration in organs before
surgery. MR and US images are two different imaging modal-
ities that differ by the technologies behind them and there-
fore offer several advantages and limitations. US imaging is
a modality with a high spatial resolution that provides fine in-
ternal details of a structure. However, this modality has some

limitations including a limited field of view and low signal to
noise ratio. On the other hand, MRI offers a wide field of view
of patient anatomy with a good signal to noise ratio but with
a relatively low spatial resolution. Hence, precise anatomic
landmarks at the millimetric scale may be under-evaluated
when using this modality alone. In order to combine their
complementary properties, MRI and US are classically used
separately for clinical analysis and medical intervention.

Image fusion refers to assembling all the important informa-
tion from multiple images and including them in fewer im-
ages, e.g., in a single image. The purpose of image fusion
is to build an enhanced image that is informative, compre-
hensible and accurate for the desired application. Image fu-
sion is common in medical imaging and generally allows bet-
ter decisions in clinical studies. Medical images that can
be fused efficiently include MR and single-photon emission
computed tomography (SPECT) images [2], MRI and com-
puted tomography (CT) [3], or positron emission tomography
(PET) and CT [4]. A US-MR image fusion algorithm was re-
cently proposed to create a hybrid image (referred to as MAR-
IUS image, for MAgnetic Resonance Imaging & UltraSound)
gathering the advantages of both modalities in the context of
endometriosis diagnosis [5]. The MARIUS image resulting
from this algorithm was shown to have a spatial resolution
comparable to the US image and an SNR and contrast close
to the MR image. Note that this algorithm requires registered
2D US and 3D MR images, which can be performed using the
method studied in [6].

The idea developed in [5] was to build two observation mod-
els associated with US and MR images to exploit the comple-
mentarity of both images in terms of resolution and contrast.
A linear model formed by blurring and downsampling oper-
ators was proposed for the MR image, motivated by its good
performance for super-resolution [7–9]. A denoising model
was considered for the US image in order to mitigate the ef-
fect of speckle noise [10, 11]. Since US and MR modalities
are different by their nature and content, there is no simple
correspondence between the gray levels of these images. Mo-
tivated by [12], a polynomial transformation was used in [5]
to link the intensities of these modalities. The objective of this
paper is to study the relevance of replacing this polynomial



by a non-parametric transformation defined using the theory
of reproducing kernels. These methods have been used suc-
cessfully in the context of point cloud registration [13], image
denoising [14], super-resolution [15] and segmentation [16].
This paper studies their interest for image fusion by incor-
porating them into the fusion model of [5] and estimating
the MARIUS image using a proximal alternating linearized
minimization (PALM) algorithm [17]. The proposed fusion
method is evaluated on an experimental phantom and realistic
data generated from an in vivo MRI volume, with a specific
attention to endometriosis treatment.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly summarizes the fusion algorithm presented in
[5] using a polynomial function. The proposed fusion algo-
rithm based on a non parametric transformation between US
and MR images is studied in Section 3. Experiments are pre-
sented and discussed in Section 4. Conclusions and perspec-
tives are finally reported in Section 5.

2. FUSION USING A POLYNOMIAL FUNCTION

The following observation models were considered in [5]:
ymri = SCxmri + nm,

yus = xus + nu,
(1)

where xmri ∈ RN is the non-observable high-resolution vec-
torized MR image, ymri ∈ RM is the low-resolution observed
MR image, nm ∈ RN is an independent identically dis-
tributed (i.i.d.) additive white Gaussian noise with variance
σ2
m, C ∈ RN×N is a matrix with block circulant with cir-

culant blocks modelling the blurring effect of the MRI point
spread function (PSF) with circulant boundary conditions,
S ∈ RM×N (with N = d2m) is a decimation operator with
a decimation factor d. On the other hand, yus ∈ RN is the
vectorized observed B-mode US image, xus ∈ RN is the vec-
torized speckle noise-free US image and nu ∈ RN is an i.i.d.
log-Rayleigh noise sequence with localization parameter γ.
A polynomial was used in [5] to link xus and xmri:

xus = f
(
xmri,∇xH

mriu
)
, (2)

where f : RN ×RN → RN is an unknown polynomial func-
tion of the image xmri, its gradient, and the US scan direction
u. This function will be denoted as ϕ (x,u) = f

(
x,∇xHu

)
for brevity. This leads to the following optimization problem:

x̂ = argmin
x

1

2
∥ymri − SCx∥2︸ ︷︷ ︸

MRI data fidelity

+ τ1∥∇x∥2 + τ3∥∇ϕ(x,u)∥2︸ ︷︷ ︸
regularization

+ τ2

N∑
i=1

{exp [yus,i − ϕi(x,u)]− γ exp [yus,i − ϕi(x,u)]}︸ ︷︷ ︸
US data fidelity

that can be solved using the proximal alternating linearized
minimization (PALM) [5].

3. FUSION USING REPRODUCING KERNELS

This section defines a new function f to link US and MR
images based on reproducing kernels. Kernel methods have
become universal since they are capable of approaching com-
plex non linear relationships between signal and images.
They need to define an appropriate kernel function between
the signals or images of interest such as the Gaussian kernel
with parameter β defined as:

K(x,y) = exp
(
−β∥x− y∥2

)
, (3)

where ∥.∥ is an appropriate norm. In this paper, as in [14],
x and y are patches of size n × n centered around pixels
of the US and MR images. The idea is that each pixel of
a patch in the noise-free US image is a linear combination
of the kernel applied to the pixels of the corresponding MR
image patch. Since a given pixel of the US image belongs to
several patches, the final value of the pixel intensity of the US
image is the average of the intensities resulting from different
patches, i.e.,

xus,i =
1

ni

∑
p∈Ji

 n2∑
k=1

cp,kK(xmri,i,xmri,hk(p))

 , (4)

where xus,i is the ith US pixel (belonging to different patches
of size n2), Ji is the set of indices of the patches containing
the pixel i, ni ≤ n2 is the cardinality of Ji (each patch is
identified by the index of its central pixel) and hk(p) is the
index of the kth pixel of Patch #p. To estimate the coefficient
vector cp = (cp,1, ..., cp,n2)T of Patch #p, we assume that the
transformation (4) is also valid for the observed MR and US
images and consider the least squares (LS) estimator1:

min
cp

n2∑
i=1

yus,i −
n2∑
k=1

cp,kK(ymri,i,ymri,hk(p))

2

, (5)

that can be written in matrix form as:

min
cp

||Acp − pus||2, (6)

where Ai,j = K(pmrii ,pmrij ), pus and pmri are patches ex-
tracted from yus and ymri. The solution of (6) is ĉp = A†pus,
where A† = (ATA)−1AT is the pseudo-inverse of A.

3.1. PALM Algorithm

This section studies a PALM algorithm allowing (1) to be
solved, when the US and MR images are linked by (4). We

1Another strategy would be to plug the relation (4) into the observation
models (1) and to estimate jointly the unknown image xmri and the coefficient
vector cp using a modified PALM algorithm.



introduce the following functions:

l(x) =
1

2
||ymri − SCx||2 + τ1||∇x||2

g(v) = τ2

N∑
i=1

[exp(yus,i − vi)− γ(yus,i − vi)] + τ3||∇v||2

H(x,v) = τ4

N∑
i=1

vi −
1

ni

∑
p∈Ji

 n2∑
k=1

cp,kK(xi,xhk(p))


which differ from [5] only by the definition of H , which in-
volves kernel functions instead of polynomials. Note that l
and g include data fidelity terms associated with the MR and
US images and that H is used to enforce the relationship be-
tween the US and MR images based on kernels (defined in
(4)). Using these definitions, the PALM algorithm reduces to
alternate between updates of and x and v as explained below.

3.1.1. Update x

The first step of PALM algorithm reduces to

xk+1 =proxlLk+1

(
xk − 1

Lk+1
∇xH(xk,vk)

)
,

=argminx

{
1

2
||SCx− ym||2 + τ1||∇x||2

+
Lk+1

2

∥∥∥∥x−
(
xk − 1

Lk+1
∇xH(xk,vk)

)∥∥∥∥2
}
,

with Lk+1 the Lipschitz constant at iteration k + 1 given in
[5]. This minimization problem admits an analytical solution,
which can be computed efficiently in the Fourier domain. The
update of x at iteration k + 1 is obtained as follows:

xk+1 =

[
CHSHSC + 2

(
τ1D +

Lk+1

2
IN

)]−1

R, (7)

with D = DH
h Dh +DH

v Dv and

R = CHSHymri + 2Lk+1

[
xk − 1

Lk+1

2βτ4
n

×
∑
p∈J

n2∑
k=1

cp,k(x
k − xhk(p))K(xk,xhk(p))

 ,

where Dh and Dv are the horizontal and vertical finite dif-
ference operators, n = (n1, ..., nN )T and J = (J1, ..., JN )T

gathers all the patches. The direct computation of (7) requires
the inversion of a high-dimensional matrix, which can be han-
dled using a diagonalization in the Fourier domain [5].

3.1.2. Update v

The vector v is updated by computing the proximal PALM
operator by gradient descent, given that the function to be

minimized here is differentiable and convex, i.e.,

vk+1 = argminv τ2
∑
i

[exp(yus,i − vi)− γ(yus,i − vi)]+

τ3||∇v||2 + dk
2

∥∥∥∥v −
(
vk − 1

dk
∇vH(xk+1,vk)

)∥∥∥∥2 ,
(8)

with dk = Lv(x
k) = 2τ4 the Lipschitz constant of ∇vH .

3.1.3. Proposed fusion algorithm

Algorithm 1 summarizes the different steps of the proposed
fusion algorithm using reproducing kernels:

Input : ym, yu, S, C, τ , γ, β
Estimate the coefficients of the kernel as ĉp = A†pus;
while stopping criterion is not satisfied do

Step 1 : Compute Lk+1 as in [5] and update x
using (7);

Step 2 : Set dk = 2τ4 and update v using (8);
end
Output: Fused image x

Algorithm 1: Proposed Kernel-based Fusion Algorithm.

4. EXPERIMENTS

4.1. Synthetic data from real MR acquisition

The proposed MRI/US fusion algorithm was first validated
on synthetic data. The simulations presented hereafter have
been obtained using a real high resolution MR image that has
been degraded to generate an image close to that obtained for
endometriosis surgery. The 3D high resolution MR volume
corresponds to a real pelvic MRI capturing the uterus, blad-
der and endometriosis lesions. A blurred and noisy 3D MRI is
then generated from this high-resolution MR volume. More
precisely, the HR volume was blurred using a 2D Gaussian
filter of standard deviation σ2 = 4, and then was contami-
nated by an additive white Gaussian noise (SNR = 21.5 dB),
yielding the MR image displayed in Fig. 1(a). A kernel trans-
formation as defined in (4) was used to generate the clean US
image from the corresponding clean high-resolution MR im-
age. Then, log-Rayleigh additive noise was added, yielding
the image displayed in Fig. 1(b) (SNR= 11.5 dB).

The performance of the fusion method was evaluated
qualitatively through visual inspection of the final image,
and quantitatively using the contrast-to-noise ratio (CNR).
For two patches extracted from two different structures
(uterus and bladder in this case), the CNR is defined as
CNR =

|µi−µj |√
σ2
i+σ2

j

, where µi, µj , σ
2
i , σ

2
j are the means and

standard deviations of two blocks of pixels.
The MARIUS image obtained using the proposed algorithm
is displayed in Fig. 1(c). This image provides a good com-
promise between the US and MR data. Specifically, the fused



(a) (b) (c)

Fig. 1: (a) MR image, (b) US image, (c) MARIUS image.

image is less affected by US speckle and MRI blur, provides
well-defined contours and good contrast compared to the na-
tive MR and US images. The CNR values for the MR and the
US images are 39.52 dB and 27.15 dB, whereas the MARIUS
images obtained using polynomial and kernel transformations
have CNRs equal to 34.96 dB and 38.65 dB. These results
show the interest of replacing the polynomial by a kernel.

4.2. Phantom data

This section evaluates the proposed fusion algorithm on ex-
perimental phantom data. The phantom was made of a beaf
steak on top of which was stuck a polyvinyl alcohol (PVA)
phantom using cyanoacrylate instant glue. It was designed
to mimic uterus and endometrium responses to MR and US
imaging. More details about the experimental model design
and image acquisition can be found in [18]. The sizes of the
acquired images are (600×600) for the US, and (320×320×
90) for the MRI volume. The field of view of the MR image
is wider than the one of the US image. Therefore, the MR
volume was manually cropped to (100× 100× 90) to ensure
similar fields of view for the two modalities. Bicubic inter-
polation of the MR image was finally performed to ensure the
same pixel size in MR and US images. Note that the proposed
fusion method requires registered images obtained using the
algorithm of [6] and shown in Figs. 2(a,b).

(a) (b) (c)

Fig. 2: (a) US image, (b) MR image, (c) MARIUS image.

The proposed fusion algorithm was applied to the US and
MR images with the following parameters: β = 10−5, τ1 =
10−5, τ2 = 0.5, τ3 = 0.01 and τ4 = 10−5, which were de-
termined by cross validation. The first result is that the fused
image shown in Fig. 2(c) has a good spatial resolution sim-

ilar to the US image, and a contrast equivalent to the MRI.
In particular, the different structures of interest are much bet-
ter highlighted: (i) the glue between the steak and the PVA
phantom, mimicking the depth of penetration, not visible on
MRI because of the lack of resolution, appears clearly on the
US and MARIUS images; (ii) the steak and the PVA are well
contrasted on the MR and MARIUS images, which is not the
case in the US image.
Fig. 3 shows image profiles extracted from the US, MR and
MARIUS images using a kernel transformation (proposed
method) and a polynomial [5]. The interest of fusing MR and
US images is clear, with more pronounced edges with the
proposed kernel method. Quantitivative results are provided
in Tab. 1, which reports the CNR values between the PVA
phantom and the beef steak for the different images.

Fig. 3: Normalized pixel intensities of US, MRI, and MAR-
IUS images using polynomial and kernel functions.

MRI US Fused kernel Fused poly
CNR 54.21 dB 32.37 dB 52.23 dB 43.17 dB

Table 1: CNR values for the US, MR and MARIUS images.

5. CONCLUSION

This paper studied a new fusion method based on reproducing
kernels for MR and US images. The fused MARIUS image
obtained with this method brings together the advantages of
both modalities: resolution and contrast. However, the MAR-
IUS image is more contrasted when using a kernel transfor-
mation instead of a polynomial. This improved contrast is
clearly interesting for the detection and treatment of lesions
related to endometriosis. Another significant advantage in
favour of the kernel transformation is that it is not directly
related to the direction of propagation of the scan US (vector
u in [5]), which is not easy to obtain in practical applications.
The price to pay with the proposed approach is its compu-
tational complexity. Indeed, unlike the polynomial approach
which requires only about ten coefficients to be estimated up-
stream, the kernel transformation may need some hundreds
of thousands of parameters to be estimated depending on the
image and patch sizes. Future work will be devoted to includ-
ing the MARIUS image into an augmented reality system for
endometriosis surgery.
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