Data-Driven Optical Coding Optimization in Computational Imaging

Henry Arguello, PhD **Universidad Industrial de Santander**

Department of Computer Science Bucaramanga, Colombia

www.hdspgroup.com henarfu@uis.edu.co

The plenoptic function¹

 $f(x, y, z, \alpha, \psi, t, \lambda, p)$

describes the behavior of light when it is reflected by an object.

Time t

Imaging Applications

Images acquired with specialized cameras

Depth¹

f(x, y, z)

Light Field²

 $f(x, y, z, \alpha, \psi)$

1. Marquez, et al. (2021). Snapshot compressive spectral depth imaging from coded aberrations. *Optics Express*. 2. Vargas, et al. (2021). Time-Multiplexed Coded Aperture Imaging: Learned Coded Aperture and Pixel Exposures for Compressive Imaging Systems. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*.

3

Imaging Applications

Spectral¹

Polarization²

 $f(x, y, \lambda)$

f(x, y, p)

Imaging Applications

Current 2D sensors acquire the **photon flux of the incoming light**. Therefore, it is necessary **expensive** setup to obtain 3D or higher dimensional signals.

Computational Optical Imaging

Computational Optical Imaging

Some Computational imaging tasks can be achieved thanks to the **Coded Elements**:

Rueda, et al. (2015) DMD-based implementation of patterned optical filter arrays for compressive spectral imaging. JOSA.
 Rueda, et al. (2016) Compressive spectral testbed imaging system based on thin-film color-patterned filter arrays. Appl. Opt.
 Pinilla, et al. (2018) "Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation. Opt. Comm.

Computational Optical Imaging

Some Computational imaging tasks can be achieved thanks to the **Coded Elements**:

Marquez, et al. (2019) Compressive spectral imaging via deformable mirror and colored-mosaic detector. Opt. Exp.
 Bacca, et al. (2018) Single pixel compressive spectral polarization imaging using a movable micro-polarizer array. Rev. Fac. de Ing. Univ. de Ant.

If the coded element is designed, the quality of the reconstruction increases.

HIGH DIMENSIONAL SIGNAL PROCESSING (HDSP) Research Group

Designed Coded Elements

Random pattern produces low reconstruction performance Without data, the design improves random patterns

Without Data

 $\mathcal{R}(\mathbf{H}_{\boldsymbol{\phi}}) = \|\mathbf{H}_{\boldsymbol{\phi}}^{\mathsf{T}}\mathbf{H}_{\boldsymbol{\phi}} - \mathbf{I}_{\mathrm{n}}\|_{2}^{2}$

Data-driven designed pattern provides the **best** reconstruction performance

HIGH DIMENSIONAL SIGNAL PROCESSING (HDSP) Research Group

11

Data-Driven Optical Coding Optimization

- $\mathcal{L}_{task}(\cdot)$ is the **loss-function** of a determined COI task, \mathbf{d}_k is the desired output of the training image \mathbf{f}_k
- $\mathcal{R}(\cdot)$ represents the **physical constraints** in the optical encoder ϕ .
- The **tasks** can be depth, privacy, super resolution, spectral imaging, among as.

Limitations

- Physical constraints reduce the degrees of freedom of the CE
- Fewer encoder layers compared with decoder layers produce gradient vanishing

Coding Element Parameterization

- Instead of learning directly ϕ , the **trainable parameters** are β
- Parameterizations allow reducing the number of trainable parameters and addressing implementation constraints

1. End-to-End Regularization Strategy

$$\{\phi^*, \theta^*\} = \arg\min_{\phi, \theta} \mathbb{E} \left[\mathcal{L}_{task} \left(\mathcal{N}_{\theta} \left(\mathbf{H}_{\phi} \mathbf{f} \right), \mathbf{f} \right) + \rho \mathcal{R}(\phi) \right]$$

Regularization addresses physical constraints for optimizing the Optical Design:

$$\phi^{i+1} = \phi^{i} - \alpha \left(\frac{\partial \mathcal{L}_{task} (\mathcal{N}_{\theta} (\mathbf{H}_{\phi} \mathbf{f}), \mathbf{f})}{\partial \phi} + \rho \frac{\partial \mathcal{R}(\phi)}{\partial \phi} \right)$$

1. Address physical constraints

Real values

Binary values

Physically feasible

1. Regularization to address physical constraints

 \mathbf{f}_k

Iterations

1. Regularization to address physical constraints

 \mathbf{f}_k

Minimum number of shots

Bacca, J., Gelvez-Barrera, T., & Arguello, H. (2021). Deep coded aperture design: An end-to-end approach for computational imaging tasks. IEEE Transactions on Computational Imaging

1. Regularization to address physical constraints

 \mathbf{f}_{k}

HIGH DIMENSIONAL SIGNAL PROCESSING (HDSP) **Research Group**

2. End-to-End Regularization Strategy

$$\{\phi^*, \theta^*\} = \arg\min_{\phi, \theta} \mathbb{E} \left[\mathcal{L}_{task} \left(\mathcal{N}_{\theta} \left(\mathbf{H}_{\phi} \mathbf{f} \right), \mathbf{f} \right) + \rho \mathcal{R}(\phi) + \tau \mathcal{R}(\mathbf{H}_{\phi}) \right]$$

Regularization **improves performance** by inducing properties in the Optical Design:

$$\phi^{i+1} = \phi^{i} - \alpha \left(\frac{\partial \mathcal{L}_{task} \left(\mathcal{N}_{\theta} (\mathbf{H}_{\phi} \mathbf{f}), \mathbf{f} \right)}{\partial \phi} + \rho \frac{\partial \mathcal{R}(\phi)}{\partial \phi} + \tau \frac{\partial \mathcal{R}(\mathbf{H}_{\phi})}{\partial \phi} \right)$$

2. Improve performance

$$\begin{pmatrix} \mathcal{R}(\mathbf{H}_{\phi}) & \mathbf{G}_{\phi} = \mathbf{H}_{\phi}^{\mathsf{T}}\mathbf{H}_{\phi} \\ \mathbf{I} & \|\mathbf{f}_{k} - \mathbf{G}_{\phi}\mathbf{f}_{k}\|_{2}^{2} \\ 2. & \|\mathbf{f}_{k} - (\mathbf{G}_{\phi} + \gamma \mathbf{I})^{-1}\mathbf{G}_{\phi}\mathbf{f}_{k}\|_{2}^{2} \\ 2. & \|\mathbf{f}_{k} - (\mathbf{G}_{\phi} + \gamma \mathbf{I})^{-1}\mathbf{G}_{\phi}\mathbf{f}_{k}\|_{2}^{2} \\ 3. & \sum_{j} \sum_{i} \sum_{i} \left(\frac{\|\mathbf{H}_{\phi}(\mathbf{f}_{i} - \mathbf{f}_{j})\|_{2}}{\|\mathbf{f}_{i} - \mathbf{f}_{i}\|_{2}} - 1 \right)^{2} \\ 4. & D_{KL}(\mathbf{q}_{\phi} (\mathbf{H}_{\phi}\mathbf{f}_{k}|\mathbf{f}_{k}) \| \mathbf{p}(\mathbf{H}_{\phi}\mathbf{f}_{k}) \end{pmatrix}$$
Non-Optimized
$$\begin{array}{c} \mathsf{Non-Optimized} \\ \mathsf{Non-Optimiz$$

HIGH DIMENSIONAL SIGNAL PROCESSING (HDSP) Research Group

Research Group

Distribution regularization

When the prior distribution is Gaussian, *i.e.* $p(\mathbf{H}_{\phi}\mathbf{g}) = \mathcal{N}(\mu, \sigma^2)$ what is the best configuration of μ and σ^2 for a given task?

Recovery Task

More concentrated measurements allows better reconstruction

Classification Task

 0.2^{-1}

0.4

0.6

 σ^2

More separated measurements makes easier the classification

Optimization Algorithms

Differentiable based¹

- Fully- differentiable optimization model for image recovery.
- Jointly optimization of optical parameters and image processing algorithm parameters.

Deep Learning Decoder

Unrolling Optimization based¹

- · Advantages of differentiable-based approach.
- Unrolled network boosts the reconstruction speed by freezing the parameters of iteration².
- Each stage aims to solve an iteration equation, which makes the network explainable³.

1. Monga, V et al. Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing. IEEE Signal Processing Magazine.

Huang, L. et al. Spectral imaging with deep learning. Light: Science & Applications.

Monroy, B. et al. JR2net: A Joint Non-Linear Representation and Recovery Network for Compressive Spectral Imaging. arXiv preprint.

Implementations and Applications

Implementation and Fabrication of Coding Elements

Once the CE is designed, it is fabricated and implemented in real setups.

Applications

Compressive Sensing: Refractive³

Privacy: Scene Captioning²

Compressive Sensing: Diffractive⁴

1. Hinojosa, et al. (2021). Learning Privacy-preserving Optics for Human Pose Estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 2. Arguello, et al. (2021). Shift-variant color-coded diffractive spectral imaging system. Optica.

3. Vargas, et al. (2021). Time-Multiplexed Coded Aperture Imaging: Learned Coded Aperture and Pixel Exposures for Compressive Imaging Systems. In Proceedings of the IEEE/CVF ICCV. 4. Hinojosa, et al. (2021). Learning Privacy-preserving Optics for Human Pose Estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

Privacy-Preserving: Pose Estimation

The goal is to estimate the pose of the people in the scene while maintaining privacy.

Privacy-Preserving: Pose Estimation

The goal is to estimate the pose of the people in the scene while maintaining privacy.

Privacy-Preserving: Scene Captioning

The goal is to preserve privacy while performing the image captioning task.

Privacy-Preserving: Scene Captioning

The goal is to preserve privacy while performing the image captioning task.

Compressive Sensing: Reffractive Imaging

Time Multiplexed Coded Aperture (TMCA)

TMCA improves the **conditioning** of sensing matrices

Vargas, E., Martel, J. N., Wetzstein, G., & Arguello, H. (2021). Time-Multiplexed Coded Aperture Imaging: Learned Coded Aperture and Pixel Exposures for Compressive Imaging Systems. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

Compressive Sensing: Diffractive Imaging

Non-Data Driven Designed

Data Driven

Conclusions

To take away: The optical design can be addressed by parameterization and regularization in an E2E approach.

$$\{\phi^*, \theta^*\} = \arg\min_{\phi, \theta} \mathbb{E} \left[\mathcal{L}_{task} + \rho \mathcal{R}(\phi) + \tau \mathcal{R}(\mathbf{H}_{\phi}) \right]$$

1. Address physical constraints

$$\mathcal{R}(\phi)$$
1. $\frac{1}{n} \sum_{l=1}^{n} (\phi_l)^2 (\phi_l - 1)^2$
2. $\sum_{j=1}^{S} \sqrt{\sum_{l=1}^{n} (\phi_l^j)^2}$
3. $\left(\frac{\sum_{l=1}^{n} \phi_l}{n} - T_r\right)^2$

2. Improve Performance $\mathcal{R}(\mathbf{H}_{\phi}) \qquad \mathbf{G}_{\phi} = \mathbf{H}_{\phi}^{\top}\mathbf{H}_{\phi}$ 1. $\|\mathbf{f}_{k} - \mathbf{G}_{\phi}\mathbf{f}_{k}\|_{2}^{2}$ 2. $\|\mathbf{f}_{k} - (\mathbf{G}_{\phi} + \gamma \mathbf{I})^{-1}\mathbf{G}_{\phi}\mathbf{f}_{k}\|_{2}^{2}$ 3. $\sum_{j}\sum_{i} \left(\frac{\|\mathbf{H}_{\phi}(\mathbf{f}_{i} - \mathbf{f}_{j})\|_{2}}{\|\mathbf{f}_{i} - \mathbf{f}_{j}\|_{2}} - 1\right)^{2}$ 4. $D_{\mathrm{KL}}(\mathbf{q}_{\phi}(\mathbf{H}_{\phi}\mathbf{f}_{k}|\mathbf{f}_{k}) \|\mathbf{p}(\mathbf{H}_{\phi}\mathbf{f}_{k}))$

Sitzmann, et al. (2018). End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Transactions on Graphics (TOG).

Lin, X., et al. (2018). All-optical machine learning using diffractive deep neural networks. Science.

. Shi, J., et al. (2021). Multiple-view D 2 NNs array: realizing robust 3D object recognition. Optics Letters.

2nd International Workshop on Adaptive, Compressive and Computational Imaging

Bucaramanga, Colombia

November 8-10, 2022

For more information, please contact us at the email wacci2022@uis.edu.co

SPONSORED BY

IEEE

Thank you!

www.hdspgroup.com henarfu@uis.edu.co

Please contact me if you want to visit our group!

Professors

Postdocs

Visiting
students

HIGH DIMENSIONAL SIGNAL PROCESSING (HDSP) Research Group