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The plenoptic function1

describes the behavior of light when it
is reflected by an object.

21. Bergen, J. R., & Adelson, E. H. (1991). The plenoptic function and the elements of early vision. Computational models of visual processing.

𝑓(𝑥, 𝑦, 𝑧, 𝛼, 𝜓, 𝑡, 𝜆,𝑝)

Light
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Problem: The main limitation to jointly acquiring several 
dimensions is the 2D intensity sensor



Depth1

1. Marquez, et al. (2021). Snapshot compressive spectral depth imaging from coded aberrations. Optics Express.
2. Vargas, et al. (2021). Time-Multiplexed Coded Aperture Imaging: Learned Coded Aperture and Pixel Exposures for Compressive Imaging Systems. In Proceedings of the IEEE/CVF
International Conference on Computer Vision.

Light Field2

3

Imaging Applications

𝑓(𝑥, 𝑦, 𝑧) 𝑓(𝑥, 𝑦, 𝑧, 𝛼, 𝜓)

Images acquired with

specialized cameras



1. Arguello, et al. (2021). Shift-variant color-coded diffractive spectral imaging system. Optica.
2. Fu, et al. (2015). Compressive spectral polarization imaging by a pixelized polarizer and colored patterned detector. JOSA A.
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Imaging Applications

𝑓(𝑥, 𝑦, 𝜆) 𝑓(𝑥, 𝑦, 𝑝)

Spectral1 Polarization2

Images acquired with

specialized cameras
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Optical System ImageScene

Current 2D sensors acquire the photon flux of the incoming light. Therefore, it is necessary 
expensive setup to obtain 3D or higher dimensional signals.

Imaging Applications
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2D SensorLens𝑓(𝑥, 𝑦, 𝑧, 𝛼, 𝜓, 𝑡, 𝜆, 𝑝) 𝑔 𝑥′, 𝑦′ = න
𝑣

𝑓 ⋅ 𝑑𝑣



Low-cost 
acquisition can be 

done through 
specialized 

cameras and 
recovered through 

computational 
optical algorithms
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Coded Elements

COI
Computational

Optical
Imaging

Computational Optical Imaging
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Optical System 2D ProjectionScene

2D Projection COI Algorithms Recovered

𝑓(𝑥, 𝑦, 𝑧, 𝛼, 𝜓, 𝑡, 𝜆, 𝑝) 𝐻𝜙𝑓 ⋅ 𝑔 𝑥′, 𝑦′

𝑔 𝑥′, 𝑦′ 𝑁 𝑔 መ𝑓 𝑥′, 𝑦′ , ⋯

CE
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Some Computational imaging tasks can be achieved thanks to the Coded Elements:

Computational Optical Imaging

Coded 
Elements

𝜙𝑗

1. Rueda, et al. (2015) DMD-based implementation of patterned optical filter arrays for compressive spectral imaging. JOSA.
2. Rueda, et al. (2016) Compressive spectral testbed imaging system based on thin-film color-patterned filter arrays. Appl. Opt.
3. Pinilla, et al. (2018) "Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation. Opt. Comm.

1,2,3
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Computational Optical Imaging

Some Computational imaging tasks can be achieved thanks to the Coded Elements:

Coded 
Elements

𝜙𝑗

1. Marquez, et al. (2019) Compressive spectral imaging via deformable mirror and colored-mosaic detector. Opt. Exp.
2. Bacca, et al. (2018) Single pixel compressive spectral polarization imaging using a movable micro-polarizer array. Rev. Fac. de Ing. Univ. de Ant.

1,2
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Coded Elements
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Optical System 2D Projection COI Algorithms RecoveredScene

N
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𝑓(𝑥, 𝑦, 𝑧, 𝛼, 𝜓, 𝑡, 𝜆, 𝑝) 𝐻𝜙𝑓 ⋅ 𝑔 𝑥′, 𝑦′ 𝑁 𝑔 መ𝑓 𝑥′, 𝑦′, ⋯

If the coded element is designed, the quality of the reconstruction increases.
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Designed Coded Elements
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Algorithm

ℛ 𝐇𝜙2
𝐟𝐤 = ‖ ฮ𝐟𝐤 −𝐇𝜙2

⊤ 𝐇𝜙2
𝐟𝐤 2

2

Dataset Optical System

ℛ 𝐇𝜙1
= ‖ ฮ𝐇𝜙1

⊤ 𝐇𝜙1
− 𝐈n 2

2

Data Driven

Without data

Optical System Recovery

Depends on data

Depends on its own CE

Recovery

𝐟k 𝜙2

𝜙1

መ𝐟j

መ𝐟j
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ℛ 𝐇𝜙 = ‖ ฮ𝐇𝜙
⊤𝐇𝜙 − 𝐈n

2

2
Without Data

ℛ 𝐇𝜙𝐟k = ‖ ฮ𝐟k −𝐇𝜙
⊤𝐇𝜙𝐟k

2

2
Data-Driven

𝐇𝜙𝑖𝑗
= 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 0,5

Random

Random pattern produces 
low reconstruction 

performance

Without data, the design 
improves random 

patterns 

Data-driven designed pattern 
provides the best 

reconstruction performance

DesignedNon-Designed



Data-Driven Optical 
Coding 
Optimization



𝜙∗, 𝜃∗ = arg min
𝜙,𝜃

E ℒ𝑡𝑎𝑠𝑘 𝒩𝜃 𝐇𝜙𝐟k , 𝐝𝑘 + 𝜌ℛ 𝜙 + 𝜏ℛ 𝐇𝜙𝐟
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End-to-end approach

• ℒ𝑡𝑎𝑠𝑘 ⋅ is the loss-function of a determined COI task, 𝐝k is the desired output of the training image 𝐟k
• ℛ ⋅ represents the physical constraints in the optical encoder𝜙.
• The tasks can be depth, privacy, super resolution, spectral imaging, among as.
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Computational DecoderDataset

𝐟k 𝒩𝜃

Tasks

𝐝k

Optical Encoder

𝐇𝜙𝐟k

ℒ𝑜𝑠𝑠

𝜕ℒ

𝜕𝒩𝜃

𝐠

𝜕ℒ

𝜕𝐇𝜙

The optical system has to be modeled as a layer

➢ Physical constraints reduce the degrees of freedom of the CE
➢ Fewer encoder layers compared with decoder layers produce gradient vanishing

Limitations
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Coding Element Parameterization

𝜙 = 𝟏⊗𝑲ΔQ (Periodicity)

Spatial

Colored coded aperture Diffractive optical element

𝑲ΔQ = 𝐉𝚫𝑄𝑲ΔQ 𝐉𝚫𝑄 (Symmetry)

Spectral

𝑲ΔQ = σ𝑛𝜷𝑛𝒘𝑛

• Instead of learning directly 𝜙, the trainable parameters are 𝜷
• Parameterizations allow reducing the number of trainable parameters and

addressing implementation constraints

𝜙 = σ𝑛𝜷𝑛 𝒁𝑛𝒘1 𝒘2
𝒘3

𝒘4
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𝑲ΔQ

ΔQ



𝜙∗, 𝜃∗ = arg min
𝜙,𝜃

E ℒ𝑡𝑎𝑠𝑘 𝒩𝜃 𝐇𝜙𝐟 , 𝐟 + 𝜌ℛ 𝜙
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1. End-to-End Regularization Strategy
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Regularization addresses physical constraints for optimizing the Optical Design:

ℛ 𝜙

1.
1

n
σ𝑙=1
𝑛 𝜙𝑙

2 𝜙𝑙 − 1 2

2. σ𝑗=1
𝑆 σ𝑙=1

𝑛 𝜙𝑙
𝑗 2

3.
σ𝑙=1
𝑛 𝜙𝑙

𝑛
− 𝑇𝑟

2

1. Address physical constraints
Real values Binary values

Hardly feasible Physically feasible
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1. Regularization to address physical constraints
Computational DecoderDataset

𝐟k 𝒩𝜃
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Recovered

𝐝k

Optical Encoder

𝐇𝜙𝐟k

ℒ𝑜𝑠𝑠

𝜕ℒ

𝜕𝒩𝜃

𝐠

𝜕ℒ

𝜕𝐇𝜙

Binarization
ℛ 𝝓 =

1

𝑛


𝑙=1

𝑛

𝝓𝑙
2 𝝓𝑙 − 1 2

Iterations

𝓛𝒐𝒔𝒔 = 𝓛𝒕𝒂𝒔𝒌 + ℛ(𝝓)

ℛ 𝝓 =
1

𝑛


𝑙=1

𝑛

sin (𝝓𝑙)
2 sin(𝝓𝑙)− 1 2
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Computational DecoderDataset

𝐟k 𝒩𝜃

Bacca, J., Gelvez-Barrera, T., & Arguello, H. (2021). Deep coded aperture design: An end-to-end approach for computational imaging 
tasks. IEEE Transactions on Computational Imaging

Recovered

𝐝k

Optical Encoder

𝐇𝜙𝐟k

ℒ𝑜𝑠𝑠

𝜕ℒ

𝜕𝒩𝜃

𝐠

𝜕ℒ

𝜕𝐇𝜙

Minimum 
number 
of shots

𝓛𝒐𝒔𝒔 = 𝓛𝒕𝒂𝒔𝒌 +ℛ(𝝓)

Iterations

1. Regularization to address physical constraints

𝝓𝟏 𝝓
𝟐
𝝓𝟑

𝝓𝟒
𝝓𝟓
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Computational DecoderDataset

𝐟k 𝒩𝜃
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Recovered

𝐝k

Optical Encoder

𝐇𝜙𝐟k

ℒ𝑜𝑠𝑠

𝜕ℒ

𝜕𝒩𝜃

𝐠

𝜕ℒ

𝜕𝐇𝜙

Transmittance

Iterations

𝓛𝒐𝒔𝒔 = 𝓛𝒕𝒂𝒔𝒌 +ℛ(𝝓)

1. Regularization to address physical constraints



𝜙∗, 𝜃∗ = arg min
𝜙,𝜃

E ℒ𝑡𝑎𝑠𝑘 𝒩𝜃 𝐇𝜙𝐟 , 𝐟 + 𝜌ℛ 𝜙 + 𝜏ℛ 𝐇𝜙
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2. End-to-End Regularization Strategy
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Regularization improves performance by inducing properties in the Optical Design:

ℛ(𝐇𝜙)

𝐇𝜙

1. ‖ ฮ𝐟k − 𝐆ϕ𝐟k 2

2

2. ‖ ቛ𝐟k − 𝐆ϕ + γ𝐈
−𝟏

𝐆ϕ𝐟k
2

2

3. σjσi

𝐇ϕ 𝐟i−𝐟𝐣 2

𝐟i−𝐟𝐣 2

− 1

2

4. DKL qϕ 𝐇ϕ𝐟k 𝐟k p 𝐇ϕ𝐟k

Non-Optimized Optimized

Well conditionedBad conditioned

2. Improve performance

𝐆𝜙 = 𝐇𝜙
⊤𝐇𝜙
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2. Regularization to improve the performance
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Data-driven conditionality ℛ 𝐇𝜙𝐟k = ‖ ฮ𝐟k −𝐇𝜙
𝑻𝐇𝜙𝐟k 2

2

𝒩𝜽(𝐇𝜙𝐟k)𝐆𝜙𝐟k 𝒩𝜽(𝐇𝜙𝐟k)𝐆𝜙𝐟k

Without regularization With regularization

𝒩𝜃 𝐝k

𝜕ℒ

𝜕𝒩𝜃

𝐟𝐟

𝐟k 𝐇𝜙𝐟k 𝐠

𝜕ℒ

𝜕𝐇𝜙

Computational
Decoder

ReconstructionDataset
Optical
Encoder

Measurement
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2. Regularization to improve the performance
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Without regularization With regularization

Inversion regularizer ‖ℛ 𝐇𝜙𝐟k = ‖‖ ቛ𝐟𝑘 − 𝐆𝝓 + 𝛾𝐈
−1

𝐆𝝓𝐟𝑘
2

2

𝒩𝜃 𝐝k

𝜕ℒ

𝜕𝒩𝜃

𝐟𝐟

𝐟k 𝐇𝜙𝐟k 𝐠

𝜕ℒ

𝜕𝐇𝜙

Computational
Decoder

ReconstructionDataset
Optical
Encoder

Measurement

𝒩𝜽(𝐇𝜙𝐟k)𝐆𝜙𝐟k 𝒩𝜽(𝐇𝜙𝐟k)𝐆𝜙𝐟k
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2. Regularization to improve the performance
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Without regularization With regularization

Restricted Isometry Property ℛ 𝐇𝜙𝐟 =

𝑗



𝑖

𝐇𝜙 𝐟𝑖 − 𝐟𝐣 2

𝐟𝑖 − 𝐟𝐣 2

− 1

2

𝒩𝜃 𝐝k

𝜕ℒ

𝜕𝒩𝜃

𝐟𝐟

𝐟k 𝐇𝜙𝐟k 𝐠

𝜕ℒ

𝜕𝐇𝜙

Computational
Decoder

ReconstructionDataset
Optical
Encoder

Measurement

𝒩𝜽(𝐇𝜙𝐟k)𝐆𝜙𝐟k 𝒩𝜽(𝐇𝜙𝐟k)𝐆𝜙𝐟k
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2. Regularization to improve the performance
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Distribution regularization ℛ 𝐇𝜙𝐟 = D𝐾𝐿 𝑞𝜙 𝐇𝜙𝐟 𝐟 𝑝 𝐇𝜙𝐟

𝒩𝜃 𝐝k

𝜕ℒ

𝜕𝒩𝜃

𝐟𝐟

𝐟k 𝐇𝜙𝐟k 𝐠

𝜕ℒ

𝜕𝐇𝜙

Computational
Decoder

ReconstructionDataset
Optical
Encoder

Measurement

Without regularization

𝑞𝜙 𝐇𝜙𝐟𝑘 𝐟𝑘

With regularization

𝑝 𝐇𝜙𝐟𝑘 𝑞𝜙 𝐇𝜙𝐟𝑘 𝐟𝑘
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2. Regularization to improve the performance

HIGH DIMENSIONAL SIGNAL PROCESSING (HDSP)
Research Group

Distribution regularization ℛ 𝐇𝜙𝐟 = D𝐾𝐿 𝑞𝜙 𝐇𝜙𝐟 𝐟 𝑝 𝐇𝜙𝐟

𝒩𝜃 𝐝k

𝜕ℒ

𝜕𝒩𝜃

𝐟𝐟

𝐟k 𝐇𝜙𝐟k 𝐠

𝜕ℒ

𝜕𝐇𝜙

Computational
Decoder

ReconstructionDataset
Optical
Encoder

Measurement

𝑝 𝐇𝜙𝐟

What is the best prior distribution for the
regularization?

Depending on the dataset and the computational
task, it must be chosen the optimal distribution of
the measurements.

This regularization can be 
used in any 

computational task 
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Distribution regularization

Recovery Task

When the prior distribution is Gaussian, i.e. 𝑝 𝐇𝜙𝐠 = 𝒩 𝜇, 𝜎2 what is the best configuration

of 𝜇 and 𝜎2 for a given task?

Classification Task

2. Regularization to improve the performance

More concentrated measurements allows
better reconstruction

More separated measurements makes easier
the classification
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Computational Decoder

1. Sitzmann, V. et al. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Transactions on Graphics
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Computational Decoder

1. Monga, V et al. Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing. IEEE Signal Processing Magazine.
2. Huang, L. et al. Spectral imaging with deep learning. Light: Science & Applications.
3. Monroy, B. et al. JR2net: A Joint Non-Linear Representation and Recovery Network for Compressive Spectral Imaging. arXiv preprint.
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Deep Learning Decoder

Computational Decoder

1. Zhang, T. et al . Hyperspectral image reconstruction using deep external and internal learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

• Non-linear inverse mapping from
measurements to image recovery

• Several architectures for vast
compressive imaging applications.

ResNet

Black-box based1

Decoder
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Deep Learning Decoder

Computational Decoder

                     

                  

 

 

     

     

Autoencoder

1. Zhang, T. et al . Hyperspectral image reconstruction using deep external and internal learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

• Non-linear inverse mapping from
measurements to image recovery

• Several architectures for vast
compressive imaging applications.

Black-box based1

Decoder
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Deep Learning Decoder

Computational Decoder

• Non-linear inverse mapping from
measurements to image recovery

• Several architectures for vast
compressive imaging applications.

1. Zhang, T. et al . Hyperspectral image reconstruction using deep external and internal learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

Transformer

Black-box based1

Decoder



Implementations 
and Applications
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Implementation and Fabrication of Coding Elements
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Once the CE is designed, it is fabricated and implemented in real setups.



Privacy: Pose Estimation1 Privacy: Scene Captioning2

Compressive Sensing: Diffractive4
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Applications

1. Hinojosa, et al. (2021). Learning Privacy-preserving Optics for Human PoseEstimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
2. Arguello, et al. (2021). Shift-variantcolor-coded diffractive spectral imaging system. Optica.
3. Vargas, et al. (2021). Time-Multiplexed Coded ApertureImaging:Learned Coded Apertureand Pixel Exposures for Compressive Imaging Systems.In Proceedings of the IEEE/CVF ICCV.
4. Hinojosa, et al. (2021). Learning Privacy-preserving Optics for Human PoseEstimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

Compressive Sensing: Refractive3



34

Privacy-Preserving: Pose Estimation

Hinojosa, et al. (2021). Learning Privacy-preserving Optics for Human Pose Estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

The goal is to estimate the pose of the people in the scene while maintaining privacy.
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Privacy-Preserving: Pose Estimation

Hinojosa, et al. (2021). Learning Privacy-preserving Optics for Human Pose Estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

The goal is to estimate the pose of the people in the scene while maintaining privacy.
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Privacy-Preserving: Scene Captioning

Arguello et al. (2022) Optics Lens Design for Privacy-Preserving Scene Captioning. Submitted to IEEE International Conference in Image Processing (ICIP).

The goal is to preserve privacy while performing the image captioning task.
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Privacy-Preserving: Scene Captioning

Arguello et al. (2022) Optics Lens Design for Privacy-Preserving Scene Captioning. Submitted to IEEE International Conference in Image Processing (ICIP).

The goal is to preserve privacy while performing the image captioning task.



Vargas, E., Martel, J. N., Wetzstein, G., & Arguello, H. (2021). Time-Multiplexed Coded Aperture Imaging: Learned Coded Aperture and Pixel Exposures for Compressive Imaging Systems. In
Proceedings of the IEEE/CVF International Conference on Computer Vision.

TMCA improves the conditioning of sensing matrices

38

Time Multiplexed Coded Aperture (TMCA)

Traditional TMCAComputational Decoder Optical Encoder

CA only

𝑆ℎ𝑢𝑡𝑡𝑒𝑟 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙𝑥,𝑦 𝑡

Compressive Sensing: Reffractive Imaging

TMCA

MeasurementRecovery



Arguello, H., et al. (2021). Shift-variant color-coded diffractive spectral imaging system. Optica.

Non-Data Driven
Designed

Data Driven 
Optical Design
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Compressive Sensing: Diffractive Imaging



To take away: The optical design can be addressed
by parameterization and regularization in an E2E
approach.
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Conclusions

1. Sitzmann, et al. (2018). End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Transactions on Graphics (TOG).
2. Lin, X., et al. (2018). All-optical machine learning using diffractive deep neural networks. Science.
3. Shi, J., et al. (2021). Multiple-view D 2 NNs array: realizing robust 3D object recognition. Optics Letters.

𝜙∗, 𝜃∗ = arg min
𝜙,𝜃

E ℒ𝑡𝑎𝑠𝑘 + 𝜌ℛ 𝜙 + 𝜏ℛ 𝐇𝜙

ℛ 𝜙

1.
1

n
σ𝑙=1
𝑛 𝜙𝑙

2 𝜙𝑙 − 1 2

2. σ𝑗=1
𝑆 σ𝑙=1

𝑛 𝜙𝑙
𝑗 2

3.
σ𝑙=1
𝑛 𝜙𝑙

𝑛
− 𝑇𝑟

2

ℛ(𝐇𝜙) 𝐆𝜙 = 𝐇𝜙
⊤𝐇𝜙

1. Address physical constraints 2. Improve Performance

1. ‖ ฮ𝐟k − 𝐆ϕ𝐟k 2

2

2. ‖ ቛ𝐟k − 𝐆ϕ + γ𝐈
−𝟏

𝐆ϕ𝐟k
2

2

3. σ𝑗σ𝑖

𝐇ϕ 𝐟𝑖−𝐟𝒋 2

𝐟i−𝐟𝐣 2

− 1

2

4. DKL qϕ 𝐇ϕ𝐟k 𝐟k p 𝐇ϕ𝐟k
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www.hdspgroup.com

Thank you!

henarfu@uis.edu.co

Please contact me if you 
want to visit our group!

PostdocsProfessors Visiting 
students


