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ABSTRACT
Texture analysis can be embedded in the mathematical frame-

work of multifractal (MF) analysis, enabling the study of the fluctu-
ations in regularity of image intensity and providing practical tools
for their assessment, wavelet leaders. A statistical model for lead-
ers was proposed permitting Bayesian estimation of MF parameters
for images yielding improved estimation quality over linear regres-
sion based estimation. This present work proposes an extension of
this Bayesian model for patch-wise MF analysis of images. Classi-
cal MF analysis assumes space homogeneity of the MF properties
whereas here we assume MF properties may change between texture
elements and we do not know where the changes are located. This
paper proposes a joint Bayesian model for patches formulated using
spatially smoothing gamma Markov Random Field priors to coun-
terbalance the increased statistical variability of estimates caused by
small patch sizes. Numerical simulations based on synthetic multi-
fractal images demonstrate that the proposed algorithm outperforms
previous formulations and standard estimators.

Index Terms— Multifractal Analysis, Wavelet Leaders, Bayesian
Estimation, Texture Analysis, Gamma Markov Random Field

1. INTRODUCTION

Context. Texture analysis is an important field in image process-
ing conducted using various paradigms [1]. Among them, the math-
ematical framework of multifractal analysis has recently proven to
be particularly relevant, cf., e.g., [2, 3] and references therein. Mul-
tifractal analysis describes the image texture in terms of the spatial
fluctuations of the degree of smoothness of the image intensity at
each point. More precisely, the texture of an image X is quantified
by means of the multifractal spectrum D(h), which is defined as
the Hausdorff dimension of the sets of points that possess the same
pointwise Hölder regularity h, cf., e.g., [4–7].

Multifractal models are specific instances of scale invariant
models and can be practically assessed by studying, over a range
of scales 2j , the power law behaviors of the sample moments of
suitably designed multiresolution quantities TX(j,k) of X (i.e.,
quantities that depend jointly on scale 2j and spatial position k)

S(q, j) ,
1

nj

∑
k

|TX(j,k)|q ' (2j)ζ(q), j1 ≤ j ≤ j2 (1)

where nj = card(TX(j, ·)) is the number of TX(j,k) at scale j.
The multiresolution quantities used in this work are the wavelet lead-
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ers l(j,k) (defined in Section 2), which can be shown to be specifi-
cally appropriate for multifractal analysis purposes [2, 5].

The scaling exponents ζ(q) characterizing the power law behav-
ior in (1) are intimately tied to the multifractal spectrum of the image
by a Legendre transform, D(h) ≤ L(h) , infq∈R[2 + qh − ζ(q)],
and this link enables the practical assessment of multifractal models.
Specifically, it permits discrimination between the two most impor-
tant classes of models: Self-similar models [8], which translate into
a strictly linear behavior of ζ(q) in the neighborhood of q = 0; Mul-
tifractal multiplicative cascade (MMC) based processes [9] which
yield a strictly concave function ζ(q). This difference can be quanti-
fied by considering the coefficients of a polynomial development of
ζ(q) at the origin, ζ(q) =

∑
m≥1 cmq

m/m! [2, 10, 11]. In particu-
lar, it can be shown that the second coefficient c2, called the multi-
fractality parameter, is identically zero for self-similar processes but
strictly negative for MMC [5, 11]. It therefore enables us to decide
which model is better adapted to data in applications, which renders
its estimation a central element in multifractal analysis. The reader
is referred to, e.g., [4–7], for further details on multifractal analysis.
Estimation of c2 for image patches. The multifractality param-
eter c2 can be shown to be directly linked to the variance of the
logarithm of the multiresolution quantities [10]

C2(j) , Var [ln l(j,k)] = c02 + c2 ln 2j . (2)

This leads to the definition of the standard estimation procedure for
c2 as a linear regression of the sample variance V̂ar [·] of the log-
leaders with respect to scale j

ĉ2 =
1

ln 2

j2∑
j=j1

wj V̂ar [ln l(j, ·)] (3)

where wj are appropriate regression weights [2, 12, 13]. While the
simplicity of (3) is attractive, the estimator is known to yield poor
performance (large variance) even for moderate image size, which
strongly limits its relevance for the analysis of image patches.

An attempt to improve estimation performance was described in
[14], which introduced an estimator based on the generalized method
of moments. However, this estimator relies on fully parametric mod-
els that are too restrictive for real-world images. More recently,
Bayesian estimators of c2 have been investigated for images of rel-
atively small sizes [3, 15]. At the core of this approach is a generic
semi-parametric model for the statistics of the log-leaders whose
variance-covariance structure is controlled by c2. This model leads
to a likelihood that can be efficiently evaluated with a closed-form
Whittle approximation. The Bayesian inference was achieved by a
Markov chain Monte Carlo (MCMC) algorithm with a Metropolis-
Hastings within Gibbs (MHG) sampler. In [16], an alternative data-
augmented formulation for the Bayesian model was proposed which



complies with the use of conjugate priors, hence yielding a more effi-
cient algorithm. While the method significantly improves estimation
performance over (3), the variance of estimates for image patches is
still too large for practical applications.
Goals and contributions. The goal of this paper is to devise a
Bayesian procedure for the joint estimation of c2 for image patches
which further improves the estimation performance of the Bayesian
estimator introduced in [16] by exploiting the spatial dependence be-
tween patches through appropriate priors, while inheriting the favor-
able computational cost of [16]. Starting from the statistical model
for a single image introduced in [3, 15, 16] (recalled in Section 2),
the proposed procedure relies on the following original key ingredi-
ents (detailed in Section 3). First, the joint likelihood of all image
patches is expressed as the product of the augmented likelihood of
each individual patch given by [16]. Then, a hidden gamma Markov
random field (GMRF) [17] with four-fold spatial neighborhood is
assigned as a joint prior for the multifractality parameters of the im-
age patches. It relies on the use of a set of auxiliary variables that
model positive dependence between the parameters of neighboring
image patches. The GMRF prior and data augmentation scheme are
designed in such a way that the conditional distributions of the re-
sulting joint posterior can be sampled directly (and thus efficiently),
without the need of Metropolis-Hastings steps. The computation of
the Bayesian estimator associated with the proposed model is per-
formed by means of an MCMC algorithm, which samples an appro-
priate target distribution resulting from the data augmentation pro-
cedure to then approximate Bayesian estimators of the variables of
interest.
The performance of the joint estimation procedure of parameters c2
associated with image patches is studied in Section 4 by numeri-
cal simulations conducted with synthetic multifractal images. These
images have prescribed piece-wise homogeneous multifractal prop-
erties yielding a controlled ground truth. The proposed method sig-
nificantly outperforms the linear regression (3), reducing root mean
squared error (RMSE) values by one order of magnitude, as well as
the Bayesian estimators in [3, 15, 16]. It enables, for the first time,
the reliable assessment of small local changes in c2 between image
patches.

2. STATISTICAL MODEL FOR LOG-LEADERS

2.1. Time-domain statistical model

Wavelet leaders. 2D wavelets are commonly defined as tensorial
products of the scaling function φ(x) and mother wavelet ψ(x) of
a 1D multiresolution analysis, ψ(0)(x) = φ(x1)φ(x2), ψ(1)(x) =

ψ(x1)φ(x2), ψ(2)(x) = φ(x1)ψ(x2), ψ(3)(x) = ψ(x1)ψ(x2) [18,
19]. When ψ is suitably chosen, the dilated and translated templates
denoted ψ(m)

j,k (x) = 2−j/2ψ(m)(2−jx − k) ψ(m), where a = 2j

and x = 2jk, k = (k1, k2), form a basis of L2(R2). The L1

normalized discrete wavelet transform coefficients of an image X
are defined as d(m)

X (j, k) = 〈X, 2−j/2ψ
(m)
j,k 〉, m = 0, . . . , 3 [18].

Let λj,k denote the dyadic cube of side length 2j centred at k2j

and 3λj,k =
⋃
n1,n2={−1,0,1}λj,k1+n1,k2+n2 the union with its eight

neighbors. The wavelet leaders are defined as the supremum of the
wavelet coefficients within 3λj,k over all finer scales [2, 5], i.e.,

l(j,k) , sup
m∈(1,2,3),λ′⊂3λj,k

|d(m)
X (λ′)|. (4)

Statistical model. We denote by `j the vector of all log-leaders
`(j, ·) , ln l(j, ·) at scale j after mean subtraction (the mean does

not convey any information on c2). It has recently been shown
that for MMC based processes, the statistics of `j can be well ap-
proximated by a multivariate Gaussian distribution whose covari-
ance Cj(k,∆k) , Cov[`(j,k), `(j,k + ∆k)] is modeled by a ra-
dial symmetric function parametrized only by θ = (c2, c

0
2)

Cj(k,∆k) ≈ %j(||∆k||;θ) ,

{
%0
j (||∆k||;θ) ||∆k|| ≤ 3

%1
j (||∆k||;θ) 3 < ||∆k||

(5)

where || · || is the Euclidian norm, %0
j (r;θ) , aj ln(1 + r) + c02 +

c2 ln 2j with aj , (%1
j (3;θ) − c02 − c2 ln 2j)/ln 4, %1

j (r;θ) ,
c2 ln(4r/

√
nj)I[0,√nj/4](r), IA is the indicator function of the set

A, cf., [3]. Under these assumptions, the likelihood of `j is given by

p(`j |θ) ∝ |Σj,θ|−
1
2 exp

(
− 1

2
`Tj Σ−1

j,θ`j
)

(6)

where the covariance matrix Σj,θ is defined by %j(||∆k||;θ), | · | is
denoting the determinant and T the transpose operator.
Whittle approximation. The evaluation of the above likelihood
is problematic even for small images since it requires computing the
matrix inverse Σ−1

j,θ . Thus, it has been proposed in [3,15] to approx-
imate (6) with the asymptotic Whittle likelihood [20–24]

pW (`j |θ)=exp

(
−
∑

m∈Jj

lnφj(m;θ) +
y∗j (m)yj(m)

φj(m;θ)

)
. (7)

Here, m are the indices of the frequencies ωm = 2πm/
√
nj of

the discrete Fourier transform for one Fourier half-plane1 Jj , yj ,
F(`j) where the operator F(·) computes and vectorizes the discrete
Fourier transform coefficients contained in Jj and ∗ stands for com-
plex conjugation. The function φj(m;θ) corresponds to the dis-
cretized parametric spectral density associated with the model (5)
and has a closed-form parametric expression given by φj(m;θ) =
c2fj(m)+c02gj(m), where fj and gj do not depend on θ and can be
precomputed and stored in two vectors denoted as fj,(fj(m))m∈Jj

and gj,(gj(m))m∈Jj
, see [15] for details. Furthermore, indepen-

dence is assumed between different scales j, which leads to the fol-
lowing Whittle likelihood for all log-leaders ` , [`Tj1 , . . . , `

T
j2 ]T

pW (`|θ) =

j2∏
j=j1

pW (`j |θ). (8)

2.2. Data augmented statistical model in the Fourier domain

The parameters θ are encoded implicitly in Σ−1
j,θ , and their condi-

tional distributions are thus not standard. Sampling the posterior
distribution with an MCMC method would thus require accept/reject
procedures, such as MHG moves [3]. To obtain a more efficient al-
gorithm, (8) can be interpreted as a statistical model for the Fourier
coefficients yj [16]. More precisely, (8) can be rewritten as

pW (`|θ) =|Γθ|−1 exp
(
−yHΓ−1

θ y
)
, (9)

y , [yTj1 , ...,y
T
j2

]T , yj = F(`j)

where H is the conjugate transpose operator and theNY ×NY diag-
onal covariance matrix Γθ , with NY , card(y), is given by Γθ ,

1Note that due to properties of Fourier transform of real functions, only
half of the frequency plane needs to be considered in (7).



c2F + c02G with F , diag (f), G , diag (g), f , [fTj1 , ..., f
T
j2 ]T

and g , [gTj1 , ...,g
T
j2 ]T . Assuming that Γθ is positive definite, (9)

amounts to modeling the Fourier coefficients y by a random vector
with a centered circular-symmetric complex Gaussian distribution
CN (0,Γθ) [25], hence to the use of the likelihood

p(y|θ) = |Γθ|−1 exp
(
−yHΓ−1

θ y
)
. (10)

Reparametrization. The matrix Γθ is positive definite as long as
the parameters θ=(c2, c

0
2) belong to the admissible set

A = {θ ∈ R−? ×R+
? |c2f(k)+c02g(k) > 0, k = 1, . . . , NY }. (11)

It can be shown that ∀k, c02g(k) > 0 (while ∃k|f(k) < 0) [15]
and hence that (11) can be transformed into independent positiv-
ity constraints after reparametrization by the mapping θ 7→ v ,
(−c2, c02/γ + c2), where γ = supk f(k)/g(k) [16]. This map de-
fines a one-to-one transformation from θ ∈ A to v ∈ R+2

? and (10)
can be expressed with v as

p(y|v) ∝|Γv|−1 exp
(
−yHΓ−1

v y
)

(12)

Γv = v1F̃ + v2G̃, F̃ = −F +Gγ, G̃ = Gγ.

where the diagonal matrices F̃ , G̃ and Γv , for v ∈ R+2
? , are by

construction positive definite.
Data augmentation. The likelihood (12) is finally extended using
the model y|µ, v2 ∼ CN (µ, v2G̃), µ|v1 ∼ CN (0, v1F̃ ), where µ
is an NY × 1 vector of additional latent variables [16]. This model
is associated with the extended likelihood

p(y,µ|v) ∝ v2
−NY exp

(
− 1

v2
(y − µ)HG̃

−1
(y − µ)

)
× v1

−NY exp
(
− 1

v1
µH F̃

−1
µ
)

(13)

from which (12) can be recovered by marginalization with respect to
µ. One easily verifies that (13) leads to standard conditional distri-
butions when inverse-gamma (IG) priors are used for vi ∈ R+

? .

3. BAYESIAN ESTIMATION FOR IMAGE PATCHES

Based on the likelihood (13) for one single image (or patch), we now
formulate our joint Bayesian model for image patches.

3.1. Likelihood

Denote as {Xk} a partition of the image X into non-overlapping
patches Xk of size N × N , and as yk, µk and vk the Fourier
coefficients, latent variables and parameter vector associated with
patch Xk. Let furthermore denote Y , {yk}, M , {µk}, and
V , {V 1,V 2} with V i , {vi,k}, i = 1, 2. With the assumptions
of Section 2, the joint likelihood of Y can be written

p(Y ,M |V ) ∝
∏
k

p(yk,µk|vk). (14)

3.2. Gamma Markov random field prior

Inverse-gamma distributions IG(αi,k, βi,k) are conjugate priors
for the parameters vi,k in (14), where i = 1, 2. We propose
here to specify (αi,k, βi,k) such that the resulting prior for V i

is a hidden GMRF [17], which relies on the use of a set of

positive auxiliary variables Z = {Z1,Z2}, Zi = {zi,k}, to
induce positive dependence between the neighbooring elements
of V i [17] and hence spatial regularization. More precisely,
each vi,k is connected to the four auxiliary variables zi,k′ > 0,
k′ ∈ Vv(k) , {(k1, k2), (k1+1, k2), (k1, k2+1), (k1+1, k2+1)}
(and thus, each zi,k to vi,k′ , k′ ∈ Vz(k) = {(k1 − 1, k2 −
1), (k1, k2 − 1), (k1 − 1, k2), (k1, k2)}), via edges weighted by ai,
which act as a regularization parameters controlling the amount of
spatial smoothness. This GMRF prior for (V i,Zi) can be shown to
be associated with the density [17]

p(V i,Zi|ai) = C(ai)
−1
∏

k
e−(4ai+1) log vi,k e(4ai−1) log zi,k

× e
− ai

vi,k

∑
k′∈Vv(k) zi,k′ (15)

where C(ai) is an (intractable) normalization constant.
Posterior. Assuming prior independence between (V 1,Z1) and
(V 2,M ,Z2), Bayes’ theorem yields the joint posterior distribution
associated with the proposed model

p(V ,Z,M |Y , a1, a2) ∝ p(Y |V 2,M) p(M |V 1)

× p(V 1,Z1|a1) p(V 2,Z2|a2) (16)

where ai, i = 1, 2, are fixed hyperparameters.

3.3. Bayesian estimators

Since we are interested in the parameters V i only, we consider
the marginal posterior mean estimator for V i, denoted MMSE
(minimum mean square error estimator) and defined as V MMSE

i ,
E[V i|Y , ai], where the expectation is taken with respect to the
marginal posterior density p(V i|Y , ai). Note that the direct compu-
tation ofV MMSE

i is not tractable as it requires integrating the full pos-
terior (16) over all other unknown variables. By considering a Gibbs
sampler (GS) drawing samples ({V (k)

i },M
(k), {Zi(k)})Nmc

k=1

asymptotically distributed according to (16), we can however ap-
proximate V MMSE

i using the samples V (k)
i [26] as

V MMSE
i ≈ (Nmc −Nbi)−1

∑Nmc

k=Nbi

V
(k)
i (17)

where Nbi is the length of the burn-in period.

3.4. Gibbs sampler

The GS consists of successively generating samples from the con-
ditional distributions associated with the target distribution, here the
posterior [26]. The conditionals for (16) can be easily calculated

µk|Y ,V∼CN
(
v1,kF̃Γ−1

vkyk,
(

(v1,kF̃ )−1+(v2,kG̃)−1
)−1
)

(18a)

v1,k|M ,Z1∼IG
(
NY+α1,k, ||µk||F̃−1+β1,k

)
(18b)

v2,k|Y ,M ,Z2∼IG
(
NY+α2,k,||yk−µk||G̃−1+β2,k

)
(18c)

zi,k|V i∼G(α̃i,k, β̃i,k) (18d)

where ||x||Π,xHΠx, αi,k= α̃i,k=4ai, βi,k=ai
∑
k′∈Vv(k) zi,k′

and β̃i,k = (ai
∑
k′∈Vz(k) v

−1
i,k′)

−1. Note that all conditionals
(18a–18d) are standard laws that can be sampled efficiently, without
Metropolis-Hastings acceptance-reject steps.

Finally, note that it is easy to show that assuming independence
between parameters vi,k, that have inverse-gamma priors IG(ci, di)
instead of (15), leads to a Bayesian model that can be sampled using
GS steps defined in (18a–18c) with parameters αi,k = ci and βi,k =
di. This model is equivalent to the one studied in [16].



Fig. 1. Mask of piecewise constant values of c2 ∈ {−0.02,−0.04}
(middle); one realization of MRW with the values of c2 displayed in
the middle figure (right).

4. NUMERICAL EXPERIMENTS

The proposed Bayesian estimator for the multifractality parameters
associated with image patches (with spatial GMRF prior, denoted
GMRF) was applied to independent realizations of 2D multifrac-
tal random walks (MRWs) of size 2048 × 2048, with two distinct
zones of homogeneous multifractality. MRWs are MMC processes
that have multifractal properties similar to those of Mandelbrot’s log-
normal cascades, with scaling exponents ζ(q) = (H − c2)q + c2q

2

(cf., [27] for details). A typical realization is plotted in Fig. 1 (right)
together with the zones of constant multifractality parameter used
here (a polygon with c2 = −0.04 and a background with c2 =
−0.02). This piece-wise constant spatial evolution of c2 is cho-
sen here as a limit case test for GMRF (which is actually designed
for smooth evolutions). We use non-overlapping patches of size
N×N = 64×64 and compare the proposed estimator with its coun-
terpart with IG prior of [16] (denoted IG) and the standard linear re-
gression based estimator (using (3) with weights wj as in [2, 12, 13]
and denoted as LF). The regularization parameters of GMRF have
been fixed to ai = 10 using cross-validation (note that results have
been found to be robust with respect to the precise choice of ai).
Illustration for a single realization. Fig. 2 (top row) shows patch-
wise estimates of c2 obtained with LF, IG and GMRF (from left to
right). Clearly, LF fails to reveal the two zones with distinct val-
ues of c2 in the image. The Bayesian estimator IG improves the
estimation quality significantly as compared to LF and enables the
visual identification of the polygon. Yet, estimates obtained with IG
still display strong variability. In contrast, the proposed Bayesian
estimator with GMRF prior yields excellent estimates that closely
reproduce the prescribed zones with constant c2. A more quanti-
tative analysis is proposed in Fig. 2 (bottom row), which shows
the results of a classification of the patch-wise estimates of c2, ob-
tained by histogram thresholding using the k-means algorithm with
2 classes. Classification performance is quantified as the percentage
of correctly classified pixels in the image and is stated in color in the
figure. The results further confirm the above conclusions: LF yields
classification performance that is not better than that of random clas-
sification; IG enables approximately three quarters of the pixels to be
correctly classified; GMRF yields excellent classification results and
95% correctly classified pixels.
Estimation performance. The estimation performance is as-
sessed through the bias, the standard deviation (STD) and the root
mean squared error (RMSE) of the different estimators computed
for 100 independent realizations and defined by b = Ê[ĉ2] − c2,
s = (V̂ar[ĉ2])

1
2 and rms =

√
b2 + s2, respectively. Moreover, we

compute the average of correctly classified pixels (denoted ccp)

Fig. 2. Patch-wise estimation of c2 for a single realization of MRW
(top; the ground truth and data are plotted in Fig. 1); k-means clas-
sification of the estimates (bottom).

for k-means classification of patch-wise estimates as described in
the previous paragraph. Results are summarized in Table 1 and
strengthen the above conclusions. While the Bayesian estimator IG
improves STD and RMSE values by a factor of 3−4 as compared
to LF as reported in [16], the proposed Bayesian estimator GMRF
further and significantly improves STD and RMSE values to only
1/10th of those of LF. The excellent performance of GMRF is also
reflected by the classification results: GMRF yields by far the best
ccp equal to 94.6%. Finally, note that these performance improve-
ments are achieved at only ≈ 5 times the computational time of
LF.

|b| s rms ccp
LF 0.0055 0.0406 0.0413 54.2
IG 0.0018 0.0123 0.0125 76.5

GMRF 0.0027 0.0032 0.0044 94.6

Table 1. Estimation performance for 100 independent realizations.

5. CONCLUSIONS AND FUTURE PERSPECTIVES

This work investigated a Bayesian model that enables the joint esti-
mation of the multifractality parameters c2 of image patches. This
relied on the use of a recently proposed data augmented Whittle
likelihood for log-leaders and on a suitable GMRF joint prior for
the multifractality parameters. This prior efficiently counteracts the
large statistical variability of estimates when using small patch sizes
for the local assessment of c2. The parameters of this model can
be efficiently estimated using an MCMC algorithm. The proposed
procedure yields excellent estimation performance, enabling for the
first time the reliable assessment of small differences in c2 between
image patches. Future work will include incorporation of the regu-
larization hyperparameters ai in the Bayesian model, including the
possibility to let ai take different values for different patches, as well
as application to remote sensing images.
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