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Abstract

Two parallel Analog-to-Digital Converters (ADC)
are the components of 2-Channel TI-ADC (for
Time-Interleaved ADC). They are addressed at
times nT and nT + T

2 , n ∈ Z (T is the clock pe-
riod). ”Timing skews” are biases of these sampling
times. They vary slowly, and they have to be es-
timated and corrected. In this article, we give a
method of estimation which utilizes results about
Periodic Nonuniform Sampling of order 2.

keywords: 2-Channel TI-ADC, periodic nonuni-
form sampling, sampling formula, timing skew.

1 Introduction

Two-Channel TI-ADC are devices constituted by
two ADC in parallel (ADC1 and ADC2). The
resulting ADC allows better performances than a
unique ADC and at lower price ([1] to [7] ). The
clock of the device addresses each elementary ADC
successively at times nT and

(
nT + T

2

)
, n ∈ Z,

where T is the clock period. Actually, the cir-
cuitry and differences between ADC1 and ADC2

introduce a bias θ − T
2 between sampling times.

θ − T
2 is a ”timing skew”. Other error sources are

more easily addressed (like offsets and gains).
If g (t) is the input of the device, the output is

constituted by sequences

g= {g (nT ) , g (nT + θ) , n ∈ Z} (1)

for undetermined θ and assuming that the quan-
tification rate is small enough and no bias due to
offsets or gains.

In the sampling theory framework, we are in the
situation of a PNS2 (order 2 Periodic Nonuniform

Sampling). This type of plan is well documented
( [8] to [12] ). We know that the function (or the
stationary random process) g (t) can be recovered
provided weak conditions and θ /∈ TZ.

In what follows, we consider a function g (t) , t ∈
R, with a Fourier transform G (f) (the ”spectrum”
of g (t)) such as

g (t) =

∫ 1/T

−1/T

e2iπftG (f) df. (2)

Because the length support of G (f) is at most 2/T,
the sequence g, sampled at the mean rate T/2,
brings enough information to reconstitute g (t) ,
provided weak properties about G (f) . The simple
formula hereafter gives the solution (see Appendix
1):

g (t) = −A0 (t)
sinπ (t− θ) /T

sinπθ/T
+Aθ (t)

sinπt/T

sinπθ/T
(3)

Ax (t) =
∑
n∈Z

(−1)
n

sin cπ

(
t− x
T
− n

)
g (nT + x)

(4)
where sincx = (sinx) /x. Consequently, when the
timing skew θ is known with enough accuracy,
(3) and (4) permit an errorless reconstruction g (t)
whatever t or only the sequence

g′ = {g (nT/2) , n ∈ Z}

which is the expected output of the device. In this
case, the problem is to find a good estimation of the
parameter θ. This parameter can show slow varia-
tions with time, for instance due to temperature
variations, which implies a constant monitoring of
the estimation of θ.
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Figure 1: Reconstruction of three mixed pure tones.

It is admitted that the infinite sum (4) does not
converge very quickly. Nevertheless, good results
are obtained with a few number of terms. In figure
1, T = 1, θ = 0.58 and g (t) is the sum of three
pure tones at 0.152, 0.336, 0.843. We see that the
approximation of (3) is good above M =8 terms
(4 for each sum), but surprisingly acceptable for
M = 2 (the periodical bounces are due to changes
of data which are taken into account).

Formula (3) provides a erroneous result when the
timing skew θ− T

2 between ADC1 and ADC2 is not
accurately measured. In the following section, we
propose a new method of estimation based on a
good use of (3).

2 Timing skew estimation

Let assume that we know an approximate value θ̃
of θ. We define g̃ (t) from g (t) by

g̃ (t) = −A0 (t)
sinπ

(
t− θ̃

)
/T

sinπθ̃/T
+ Ãθ (t)

sinπt/T

sinπθ̃/T
(5)

Ãθ (t) =
∑
n∈Z

(−1)
n

sin cπ

(
t− θ̃
T
− n

)
g (nT + θ) .

(6)
g (nT + θ) is the output of ADC2, at a time nT +θ
which is not wellknown. The sequence of data g
of (1) allows to calculate Ãθ (t) (an approximation
depending on the number of used terms in infinite

frequency amplitude phase

f ∈
(
0, 1

T

) sinπ
(
fδθ+ θ̃

T

)
sin πθ̃

T

− δθ2
1
T − f

− sin(πfδθ)

sin πθ̃
T

fδθ+ θ̃
T

2( 1
T −f)

Table 1: Amplitude and phase of c̃os2πft

sums). For g (t) = cos 2πft, f ∈
(
0, 1

T

)
, formula

(11) in appendix 2 is available. It means that an

erroneous value θ̃ of θ entered in formula (3) splits
a spectral line at f ∈ (0, 1/T ) into two lines, one
at f and the second one at 1

T − f, which remains
in
(
0, 1

T

)
.

Table 2 below gives the amplitudes and the
phases of c̃os2πft as functions of f, θ, θ̃, δθ = θ − θ
(f and θ̃ are given but θ is unknown):

In a real two-channel TI-ADC, parameters θ and
θ̃ are close to T/2. Therefore, we see the appearance
of a parasite line at

(
1
T − f

)
with amplitude close

to πfδθ. In the same time, the main line amplitude
remains around 1. To find a good value of θ, it
suffices to vary θ̃ in computations of (5) and (6) up
to the cancelation of the parasite line.

At first sight, it is beneficial to take f close to
1/T for increasing πf |δθ| . But to take 1

T − f close
to 0 makes harder the estimation of the amplitude
of the parasite line. To overcome this difficulty, it
seems reasonable to work with several spectral lines
which generate so much parasite lines in

(
0, 1

T

)
.

Figure 2 illustrates the situation of figure 1: the
input g (t) is a well determined mixing of three pure
tones at frequencies 0.152, 0.336, 0.843 (the curve

in bold C). Formula (5) is used from θ̃ = 0.50
using data g (n+ θ) delivered by the device with
unknown θ. We see that resulting curves Cθ̃ ap-

proach C when we increase θ̃ up to a neighbour-
hood of 0.58. Consequently, the true value θ =0.58
can be well approximated. In parallel, Table 2
shows the decrease of parasite lines amplitude at
1−f = 0.157, 0.664, 0.848 (from unit amplitudes of

input lines). Good values of θ̃ minimize the ampli-
tude of these lines.
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Figure 2: Reconstruction of three mixed pure tones
with different values of θ̃.

1 − f

θ̃
0.50 0.54 0.575 0.58 0.585 0.6

0.157 210 110 14 0 14 53
0.664 80 40 5 0 5 21
0.848 40 19 2 0 2 10

Table 2: parasite lines amplitude ×103

3 The two-band case

A 2-TI-ADC can work in a two-band context. If
(2) is generalized in

g (t) =

∫
∆k

e2iπftG (f) df (7)

∆k =

(
−k − 1

T
,
−k
T

)
∪
(
k

T
,
k + 1

T

)
, k ∈ N

then (5) becomes

g̃ (t) = −A0 (t)
sinπα

(
t− θ̃

)
/T

sinπθ̃/T
+Ãθ (t)

sinπαt/T

sinπθ̃/T
(8)

with α = 2k+ 1. Formula (6) is unchanged, g (t) is

recovered without error from (8) when θ̃ = θ. In-

tuitively, for a same accuracy, δ = θ − θ̃ has to de-
crease with 1/k. Figure 3 illustrates this property:
when k = 2, for frequencies 2.152, 2.336, 2.843,

Figure 3: Reconstruction of three mixed pure tones
with different values of θ̃ in two bands.

θ = 0.58, T = 1, and for the same θ̃, the gap be-
tween the curves have increased. A good estimation
of θ is achieved when the curves Cθ and Cθ̃ of g (t)
and g̃ (t) are confused.

4 Conclusion

A PNSN (order N Periodic Nonuniform Sampling
of ) is a sampling plan based on a sampling sequence
t of shape

t = {nT + tk, n ∈ Z, k = 1, 2, .., N} .

This kind of sampling was studied by J. L. Yen
[7] for functions in baseband like (2) (the ”Recur-
rent Nonuniform Sampling”, third example in the
Yen’s paper). Besides, a N−Channel TI-ADC is
constituted by N elementary ADC in parallel with
regular spaces. It corresponds to a PNSN where
(ideally)

tk = kT/N, k = 1, 2, .., N.

Gaps from these tk are the ”timing skews”. They
happen most of the time because of differences be-
tween elementary ADC and because the circuitry.
They may vary in time, and their estimation is the
main problem of TI-ADC.

In this paper, we remain in the case N = 2, which
is sufficient and is easily generalized for any N .
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We propose estimations of timing skews θ− 1/T
based on properties of PNS2. Being chosen some
g (t) as input of a 2-Channel TI-ADC, the output
is the set g defined by (1) . Though θ is not well-
known (and may be varying slowly), the g (nT + θ)
are available (they constitute the half-part of the
output). Formulas (5) and (6) provide a estimation

g̃ (t) of g (t) which confuses with g (t) when θ̃ = θ.
Consequently, a routine starting for a near enough
value θ̃ of θ will converge to a good estimation of
θ.

When this estimation is done, formulas (3) and
(4) allow an errorless reconstruction of any func-
tion (or random process) g (t) with spectra like (2)
at any time t and wathever the parameter θ (ideally
equal to T/2 for a 2-Channel TI-ADC). In partic-
ular, good values are obtained at times nT/2.

Figures illustrate the proposal, g (t) being a mix-
ing of 3 pure tones and T = 1, θ = 0.58. Figure 1
shows that computations are cheap because few el-
ements are used. Figure 2 gives g (t) (in bold) and

computations of (5) , (6) with θ̃ = 0.5, 0.58, 0.7. g̃ (t)

approaches g (t) when θ̃ approaches θ = 0.58. Fig-
ure 3 is for pure tones shifted in bands (−2,−1) ∪
(1, 2) (the two-band case).

Finally, this paper proposes an estimation
method which uses a test function g (t) as input.
The output g is entered in formulae (5) , (6) which

provide g̃ (t) for values θ̃ around 0.5, the value
linked to the ideal 2-Channel TI-ADC. We obtain
θ when g̃ (t) and g (t) coincide.

When N > 2, each timing skew can be estimated,
using both ADC. More general formulas are avail-
able for reconstruction [8], [13], [14].

5 Appendices

5.1 Appendix 1

The classical sampling formula in its simplest form
is

e2iπft =∑
n∈Z

sin cπ

(
t

T
− n

)
e2iπfnT , f ∈

(
−1

2T
,

1

2T

)
whatever t ∈ R. We change f in f + 1

2T , f − 1
2T

and t in t− x to obtain, (whatever t, x):

αn (t, x) =

{
e2iπft+iπ(t−x)/T , f ∈

(−1
T , 0

)
e2iπft−iπ(t−x)/T , f ∈

(
0, 1

T

)

for αn (t, x) =
∑
n∈Z

(−1)
n

sin cπ

(
t− x
T
− n

)
e2iπf(nT+x).

(9)
These formulas are brought in

g− (t) =

∫ 0

−1/T

e2iπftG (f) df

g+ (t) =

∫ 1/T

0

e2iπftG (f) df.

which leads to

g− (t) =

e−iπ(t−x)/T
∑
n∈Z

(−1)
n

sin cπ

(
t− x
T
− n

)
g− (nT + x)

g+ (t) =

eiπ(t−x)/T
∑
n∈Z

(−1)
n

sin cπ

(
t− x
T
− n

)
g+ (nT + x) .

We deduce the set of equations (for any x)

g+ (t) e−iπ(t−x)/T + g− (t) eiπ(t−x)/T = Ax (t)

Ax (t) =
∑
n∈Z

(−1)
n

sin cπ

(
t− x
T
− n

)
g (nT + x) .

Provided that x /∈ TZ, we obtain

g (t) = −A0 (t)
sinπ (t− x) /T

sinπx/T
+Ax (t)

sinπt/T

sinπx/T
.

(10)

5.2 Appendix 2

For g (t) = e2iπft, we have, from (6) and (9)

Ãθ (t) =

{
e2iπ(f+ 1

2T )(t−θ̃), f ∈
(−1
T , 0

)
e2iπ(f− 1

2T )(t−θ̃), f ∈
(
0, 1

T

)
Held in (5) , we obtain, when f ∈

(
0, 1

T

)
c̃os2πft = − cos

(
2πft− πt

T

)
sin

π(t−θ̃)
T

sin πθ̃
T

+ cos

(
2πfθ + 2π

(
f − 1

2T

)(
t− θ̃

)) sin πt
T

sin πθ̃
T

.
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Few trinometrical manipulations lead to (δθ = θ −
θ̃)

c̃os2πft =
sin
(
π
(
fδθ + θ̃

T

))
sin πθ̃

T

cos (2πft+ πfδθ)

− sinπfδθ

sin πθ̃
T

cos

(
2πt

(
1

T
− f

)
− π

(
fδθ +

θ̃

T

))
.

(11)
Figure 1 illustrates this result. Any frequency line
at f ∈

(
0, 1

T

)
suffers a change of amplitude and

phase, and a displacement with changes towards
the point

(
1
T − f

)
.
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