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ABSTRACT

Nonlinear regression models play a crucial role in signal processing
and multi-sensor applications. Traditionally, performance bounds
for these models assume independent Gaussian observations. In
practice, the Gaussian assumption fails in multi-sensor systems if
some proportion of sensors are corrupted by non-Gaussian noise
and outliers. In this context, we extend the Misspecified Cramér-
Rao Bound (MCRB) framework to the contaminated Gaussian noise
model, where observations are generated from a mixture of nom-
inal Gaussian noise and occasional outliers. Building on previous
work with Complex Elliptically Symmetric noise models, we derive
analytical MCRB expressions under the mismatched Gaussian as-
sumption and study the asymptotic behavior of the corresponding
Misspecified Maximum Likelihood Estimator (MMLE). To demon-
strate practical relevance, we apply the theory to joint time-delay
and Doppler estimation in GPS signals under contamination. Nu-
merical simulations confirm that the MMLE root mean squared error
converges to the theoretical MCRB, which aligns with the classical
Gaussian CRB.

Index Terms— Cramér-Rao bound, time-delay and Doppler es-
timation, band-limited signals.

1. INTRODUCTION

Nonlinear regression models are ubiquitous in signal processing
and multi-sensor applications, ranging from remote sensing to radar
and navigation [1–10]. Traditionally, the derivation of performance
bounds and estimators in such models relies on the assumption that
the observed data are independent and identically distributed (i.i.d.)
and follow a Gaussian distribution [11–13]. While analytically con-
venient, this assumption often fails to capture the complexity of real-
world scenarios, where the data may exhibit non-Gaussian character-
istics such as heavy tails or contamination by outliers.

Recently, the Misspecified Cramér-Rao Bound (MCRB) [14,15]
has emerged as a powerful tool to assess the performance of estima-
tors derived under mismatched statistical assumptions. In particular,
when the true data-generating process deviates from the assumed
Gaussian model, the MCRB provides a meaningful lower bound on
the Mean Squared Error (MSE) of the Misspecified Maximum Like-
lihood Estimator (MMLE). The MMLE is the estimator that maxi-
mizes the likelihood of a model that is not the true signal model. This
paper builds upon previous work on the MCRB for nonlinear regres-
sion by extending the analysis of one of the most important non-
Gaussian noise models: the contaminated Gaussian noise, where the
observations arise from a mixture of nominal Gaussian noise and
occasional outliers. While our earlier study focused on noise with
Complex Elliptically Symmetric (CES) distributions [16], this study
explores a more specific contamination model to assess its impact on
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estimation bounds and validate the robustness of the MCRB under
realistic noise conditions.

Contributions of this work include: derivation of the correspond-
ing MCRB expressions under the mismatched Gaussian assumption
and analysis of the associated MMLE. We show the impact that
contamination has on the estimation performance by assessing the
asymptotic properties of the MMLE in these non-ideal conditions.
The verified closed-form MCRB then allows us to more simply un-
derstand the losses in the presence of contamination without needing
to run extensive computational simulations. To illustrate the practi-
cal implications of our findings, we apply the developed theory to
the problem of time-delay and Doppler shift estimation in Global
Navigation Satellite Systems (GNSS), a representative multi-sensor
application where robustness to non-Gaussian noise is critical.

2. SIGNAL MODEL

2.1. True signal model

Consider a complex-valued vector x = (x1, ..., xK)⊤ ∈ CK

defined by the following data generating process:

x = f(θ̄) + n, (1)

where n = (n1, ..., nK)⊤ ∈ CK is a zero-mean complex-valued
noise vector whose K entries are assumed to be independent and
identically distributed (i.i.d.), xk = fk(θ̄) + nk, k = 1, ...,K,
θ̄ ∈ Θ ⊂ Rp indicates the real-valued true parameter vector, Θ is a
compact subset of Rp. The functions fk : Θ → C, k ∈ Z are sup-
posed to be known continuous and differentiable functions defined
on Θ. The noise vector n has independent components distributed
according to a bimodal Gaussian mixture distribution modeling the
potential presence of outliers. This model has been used for outliers
in several references including [17–19]. It is defined by the propor-
tion of contaminated data ϵ̄ and the variance scaling factor κ̄ such
that nk ∼ (1 − ϵ̄)CN (0, σ̄2

n) + ϵ̄CN (0, κ̄σ̄2
n), where CN (0, σ̄2

n)
denotes the complex Gaussian distribution with mean 0 and variance
σ̄2
n. The distribution of the noise vector in (1) yields:

pζ̄(x, ζ̄) = (1− ϵ̄)CN (f(θ̄), σ̄2
nIn) + ϵ̄CN (f(θ̄), κ̄σ̄2

nIn), (2)

which depends on the parameter vector ζ̄⊤
=
(
κ̄, ϵ̄, σ̄2

n, θ̄
⊤
)

.

2.2. Misspecified Gaussian i.i.d. signal model

To estimate the parameter vector θ̄, practitioners often assume a
simplified statistical model instead of the true data-generating pro-
cess in (1). This model misspecification is mainly due to: (i) the
unknown and hard-to-characterize noise structure; and (ii) the need



for tractable and efficient estimation algorithms [14]. A common as-
sumption is that the noise vector n ∼ CN (0, σ2

nIK), leading to the
following probability density function (pdf) for x in (1):

fφ(x;σ
2
n,θ) = (πσ2

n)
−N exp

(
−||x− f(θ)||2

σ2
n

)
, (3)

with φ⊤ = (σ2
n,θ

⊤). The key question addressed next is: can we
derive a lower bound on the MSE of any unbiased (or consistent)
estimator of θ̄ under the misspecified Gaussian i.i.d. model, when
the true signal is defined in (1)? To answer this question, we evaluate
the MCRB [14, 15, 20] for θ̄ under the assumed model in (3), while
the true process follows (1).

3. THE PSEUDO-TRUE PARAMETER VECTOR

The pseudo-true parameter vector φ0 is the element that mini-
mizes the Kullback-Leibler Divergence (KLD) between the true pdf
and any element fφ of the misspecified model [14,15,21]. The KLD
is defined as:

D(pζ̄ ||fφ) = Epζ̄

[
ln

(
pζ̄(x; ζ̄)

fφ(x;φ)

)]
,x ∼ pζ̄ , (4)

where Epζ̄
[·] is the expectation with respect to (w.r.t.) the true model

pdf. Consequently:

φ0 = argmin
φ

{
D(pζ̄ ||fφ)

}
= argmin

φ

{
Epζ̄

[− ln fφ(x;φ)]
}
.

(5)
From (3), it follows directly that:

φ0 = argmin
φ

{
Epζ̄

[
1

σ2
n

[
∥x− f(θ)∥2

]]
+N ln(σ2

n)

}
(6)

Following [16], we first minimize (6) w.r.t θ:

θ0 = argmin
θ

{
Epζ̄

[
∥x− f(θ)∥2

]}
= argmin

θ

{
||f(θ̄)− f(θ)||2

}
.

(7)
leading to θ0 = θ̄. By using (7), the minimization of (6) with θ0 =
θ̄ w.r.t. σ2

n yields:

σ2
0 = argmin

σ2
n

{
Epζ̄

[
− ln fφ(x;σ

2
n, θ̄)

]}
. (8)

Straightforward computations lead to:

Epζ̄

[
∂

∂σ2
n

ln fφ(x;σ
2
n,θ)

∣∣∣∣
σ2
n=σ2

0

]
(9)

= Epζ̄

[
− N

σ2
n

+
1

σ4
n

∥x− f(θ)∥2
∣∣∣∣
σ2
n=σ2

0

]

= −N

σ2
0

+
Nσ̄2

n(1 + (κ̄− 1)ϵ̄)

σ4
0

. (10)

Setting this derivative to 0 allows the following result to be obtained:

σ2
0 = σ̄2

n(1 + (κ̄− 1)ϵ̄).

4. DERIVATION OF MCRB(φ0)

The aim of this section is to provide the closed form expression
of the MCRB for the estimation of φ̄ = (σ̄2

n, θ̄
T
) under the misspec-

ified scenario discussed in Section 2.2. Following [21], [14, Theo. 1]
and [15, Theo. 4.1] and exploiting the pseudo-true parameter vector
derived in the previous section, the MCRB for the parameter vector
φ at point φ0 is given by:

MCRB(φ0) = A(φ0)
−1B(φ0)A(φ0)

−1, (11)

where:

[A(φ0)]i,j ≜
[
Epζ̄

[
∇φ∇⊤

φ ln fφ(x;φ0)
]]

i,j

= Epζ̄

[
∂2

∂i∂j
ln fφ(x;φ)

∣∣∣∣
φ=φ0

]
, (12)

[B(φ0)]i,j ≜
[
Epζ̄

[
∇φ ln fφ(x;φ0)∇

⊤
φ ln fφ(x;φ0)

]]
i,j

= Epζ̄

[
∂

∂i
ln fφ(x;φ)

∣∣∣∣
φ=φ0

∂

∂j
ln fφ(x;φ)

∣∣∣∣
φ=φ0

]
.

(13)

Using the derivations summarized in Appendix A, the matrices
A(φ0) and B(φ0) can be expressed as:

A(φ0) =

(
−N/σ4

0 01×4

04×1 − 2
σ2
0

∑K
k=1 Re

{
∇θ f̄k∇H

θ f̄k
} ) (14)

B(φ0) =

 Epζ̄
[(nHn)2]−σ4

0N
2

σ8
0

01×4

04×1
2
σ2
0

∑K
k=1 Re

{
∇θ f̄k∇H

θ f̄k
}
 .

(15)
hence

MCRB(φ0) = A(φ0)
−1B(φ0)A(φ0)

−1 (16)

=

 Epζ̄
[(nHn)2]−σ4

0N
2

N2 01×4

04×1
σ2
0
2

(∑K
k=1 Re

{
∇θ f̄k∇H

θ f̄k
})−1

 .

Several key points should be highlighted. From (16), we can see
that the term related to the parameters of interest, MCRB(θ0) =
MCRB(θ̄), depends on the true noise distribution, characterized
by ϵ and κ, i.e., on the contaminated model. This phenomenon dif-
fers from previously studied cases. For instance, when the true noise
distribution is a CES distribution, the MCRB does not depend on the
true distribution [22]. For the model studied in this work, one has:

MCRB−1(θ̄) =
2

σ̄2
n(1 + (κ̄− 1)ϵ̄)

K∑
k=1

Re
{
∇θ f̄k∇H

θ f̄k
}
.

(17)
Note that the MCRB equals the Gaussian CRB [11, 22], but with
scaling of the variance by (1+(κ̄−1)ϵ̄). Consequently, it simplifies
to the Gaussian CRB when the contamination is absent, i.e., when
κ = 1 or ϵ = 0 [11]. Finally, since the pseudo-true parameters of
interest coincide with the true ones, we can explicitly confirm that
the MMLE is asymptotically unbiased, as is also shown for CES-
type noise models [22].



5. APPLICATION TO TIME-DELAY AND DOPPLER
ESTIMATION

A band-limited signal a(t) with bandwidth B is transmitted with
a carrier frequency fc from a transmitter T at position P T (t) to a
receiver R at position PR(t). The distance travelled by the trans-
mitted signal is cτ0(t) = P TR = ∥P T (t − τ0(t)) − PR(t)∥≈
(P T −PR)+vt, where v is the relative velocity between the trans-
mitter and the receiver and c is the speed of light. The received dis-
crete signal at the output of the Hilbert filter is built from K samples
at the sampling period Ts = 1/Fs = 1/B [13, 23]:

x = ᾱµ(η̄) + n = ρ̄ejΦ̄µ(η̄) + n, (18)

with ᾱ = ρ̄ejΦ̄ a complex gain, µ(η̄) = (µ1(η̄), ..., µK(η̄))⊤

with µk(η̄) = a(kTs − τ̄)e−j2πfc b̄(kTs−τ̄) for k = 1, ...,K, η̄ =

(τ̄ , b̄)⊤ = ((P T − PR)/c, v/c)
⊤ and n = (n(Ts), ..., n(KTs))

⊤

is the noise vector with pdf defined in (2). The parameter b̄ is re-
lated to the Doppler frequency Fd = b̄fc. On the other hand, the
misspecified signal model assumes white Gaussian noise as defined
in Section 2.2. Following the results in Section 3 the pseudo-true
parameters are φ⊤

0 =
[
σ2
0 , ρ0,Φ0, τ0, b0

]
=
[
σ2
0 , ρ̄, Φ̄,τ̄ , b̄

]
.

5.1. MCRB for the contaminated model

Section 4 showed that the MCRB for the parameters of interest
is equivalent to the Gaussian CRB up to a scaling factor σ̄2

n(1 +
(κ̄ − 1)ϵ̄). Under these assumptions, an analytical expression can
be derived thanks to recent work in [13] and the assumption of a
bandlimited signal a(t). More precisely, one obtains:

MCRB−1(θ̄) =
2Fs

σ̄2
n(1 + (κ̄− 1)ϵ̄)

Re
{
QWQH

}
, (19)

W =

w1 w∗
2 w∗

3

w2 W2,2 w∗
4

w3 w4 W3,3

 , Q =


ejΦ̄ 0 0
jᾱ 0 0

jᾱωcb̄ 0 −ᾱ
0 −jᾱωc 0

,

where the elements of W are functions of the baseband signal
a = (a(Ts), ..., a(KTs))

⊤:

w1 =
1

Fs
aHa, w2 =

1

F 2
s

aHDa, w3 = aHΛa, (20)

w4 =
1

Fs
aHDΛa, W2,2 =

1

F 3
s

aHD2a, W3,3 = Fsa
HVa,

with K ×K matrices D = diag(1, · · · ,K), Λ, and V defined as:

(Λ)n,n′ =

∣∣∣∣∣ n′ ̸= n : (−1)|n−n′|
n−n′

n′ = n : 0
, (21a)

(V)n,n′ =

∣∣∣∣∣ n′ ̸= n : (−1)|n−n′| 2
(n−n′)2

n′ = n : π2

3

. (21b)

Using the above expressions, the MCRB can be computed for other
signals under a chosen contamination model. This is useful for ex-
panding this contribution to other practical applications of contami-
nation in multi-sensor systems.

5.2. Validation

To validate the theoretical expressions shown in the previous sec-
tions, we adopt the MMLE formulation from [24] for joint time-
delay and Doppler estimation:1

η̂ = argmax
η

∥∥Πµ(η)x
∥∥2 , (22)

We consider a scenario where a GPS L1 C/A signal [10] is re-
ceived by a GNSS receiver that assumes an additive noise with a
zero-mean Gaussian distribution. The true signal model is such that
the noise has a complex contaminated distribution with parameters
(κ̄, ϵ̄) = (20, 0.1) (scenario #1), (κ̄, ϵ̄) = (30, 0.05) (scenario #2),
and (κ̄, ϵ̄) = (30, 0.3) (scenario #3). The signal-to-noise ratio at the
output of the matched filter denoted as SNROUT is defined as:

SNRout =
|ᾱ|2aHa

σ̄2
n(1 + (κ̄− 1)ϵ̄)

. (23)

Note that this expression reduces to the standard SNRout when there
is no contamination, i.e., when κ = 1 or ϵ = 0 [13]. Fig.1 shows
the root mean square error (RMSE) as a function of SNROUT for the
MMLEs of (a) time-delay and (b) Doppler using a GNSS receiver
with a sampling frequency of Fs = 4MHz and an integration time
of 1 ms. The integration time refers to the duration of the GNSS
signal that is observed. The RMSE is also shown as a function of the
integration time for (c) time-delay and (d) Doppler when the SNR at
the input of the receiver is fixed to SNRIN = |ᾱ|2/σ̄2

n = −5 dB. The
results are averaged over 1000 Monte Carlo iterations. The RMSE
for time-delay estimation approaches the predicted asymptotic per-
formance, validating the proposed theoretical analysis. The RMSE
of the Doppler MMLE also confirms the expected asymptotic perfor-
mance in the same region as the time-delay MMLE. Since SNROUT

is inversely proportional to σ̄2
n(1+(κ̄−1)ϵ̄) while the MCRB is di-

rectly proportional to the same term, there is no change in the bound
for different values of ϵ̄ and κ̄ in (a) and (b). However, the estima-
tion performance for a signal with a fixed SNR on arrival is shown to
deteriorate with increased contamination parameters in (c) and (d).
This means that in operating scenarios where the noise at the input
can be sufficiently filtered, e.g., SNROUT = 15 dB, the MCRB is
achieved and is the same regardless of the values of ϵ̄ and κ̄. Note
that the higher the contamination level, the longer the signal must be
to reach this minimum convergence threshold.

6. CONCLUSION

This work extended the misspecified Cramér-Rao Bound (MCRB)
to contaminated Gaussian noise with outliers, modeled as a mixture
of two Gaussian distributions with different variances. Analytical
MCRB expressions and the asymptotic behavior of the correspond-
ing MMLE were derived under a mismatched Gaussian assumption.
An application to GPS time-delay and Doppler estimation showed
that the MMLE error converges to the MCRB, which equals the
classical Gaussian CRB with variance scaled by a function of the
mixture probability and the ratio of inlier and outlier variances. This
confirms the MCRB usefulness for evaluating estimators under re-
alistic contaminated Gaussian noise assumptions. With the general
form of the MCRB derived in this article, users interested in other
multi-sensor applications that suffer from contaminated noise can
easily determine their best possible estimation performance if they
choose to keep a Gaussian assumption.

1If S = span (a) denotes the linear span of the set of the column vectors
of a matrix a, the orthogonal projector over S is Πa = a

(
aHa

)
aH .
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Fig. 1: MCRB and RMSE of the MMLEs of (a) time-delay and
(b) Doppler for different SNR and fixed integration time of 1 ms,
and for different integration times with a fixed SNRIN = −5 dB (c)
time-delay and (d) Doppler.

A. DERIVATION OF MATRICES A(φ0) AND B(φ0)

A.1. Terms related to σ2
n

Following the same step as in [16], we have:

∇σ2
n
∇⊤

σ2
n
ln fφ(x;φ0) =

N

σ4
0

− 2tr(nnH)

σ6
0

, (24)

where the equality between θ0 and θ̄ has been exploited. By com-
puting the expectation w.r.t. the true data distribution pζ̄ , computa-
tions similar to those used to obtain (9) lead to:

Epζ̄

[
∇σ2

n
∇⊤

σ2
n
ln fφ(x;φ0)

]
= − N

(σ̄2
n(1 + (κ̄− 1)ϵ̄))2

, (25)

where the linearity of the expectation and trace operators has been
used to invert their order. Similar operations yield:

Epζ̄

[(
∇σ2

n
ln fφ(x;φ0)

)2]
= Epζ̄

[(
−N

σ2
0

+
nHn

σ4
0

)2
]

(26)

=
N2

σ4
0

− 2Ntr (Σ)

σ6
0

+
Epζ̄

[
(nHn)2

]
σ8
0

=
Epζ̄

[
(nHn)2

]
− σ4

0N
2

σ8
0

.

Using the linearity of the expectation and the independence of the
noise samples nj and ni for j ̸= i, one obtains:

Epζ̄

[
(nHn)2

]
= Epζ̄

[
N∑

j=1

|nj |2
N∑
i=1

|ni|2
]

(27)

=

N∑
i=1

Epζ̄

[
|ni|4

]
+

N∑
i=1

Epζ̄

[
|ni|2

]∑
j ̸=i

Epζ̄

[
|nj |2

]
=

N∑
i=1

(1− ε̄)Eg1

[
|ni|4

]
+ ε̄Eg2

[
|ni|4

]
+ (1− ε̄)N(N − 1)σ̄4

n + ε̄N(N − 1)κ̄2σ̄4
n,

where Eg1 [|ni|4] is the 4th order central moment of the Gaus-
sian distribution with non-contaminated noise variance σ̄2, and
Eg2 [|ni|4] is the 4th order moment of the Gaussian distribution with
contaminated variance κ̄σ̄2. As a result, (26) simplifies to:

Epζ̄

[(
∇σ2

n
ln fφ(x;φ0)

)2]
(28)

=
−N2ε̄2(κ̄− 1)2 + ε̄(κ̄− 1) ((2N + 1)κ̄+ 2N − 1) + 2N

(1 + ε̄(κ̄− 1))4σ̄4
n

.

A.2. Terms related to θ

Following [16], one obtains:

∇θ ln fφ(x;φ0) =
2

σ2
0

K∑
k=1

Re
{
n∗
k∇θ f̄k

}
, (29)

where the notation ∇θfk(θ̄) = ∇θ f̄k has been used for brevity.
Again, the equality between θ0 and θ̄ leads to:

∇θ∇⊤
θ ln fφ(x;φ0) =

2

σ2
0

K∑
k=1

Re
{(

xk − fk(θ̄)
) [

∇θ∇⊤
θ f̄k

]∗}
− 2

σ2
0

K∑
k=1

Re
{
∇θ f̄k∇H

θ f̄k
}
. (30)

The matrix A(θ0) ≜ Epζ̄

[
∇θ∇⊤

θ ln fφ(x;φ0)
]

is expressed as:

A(θ0) = − 2

σ2
0

K∑
k=1

Re
{
∇θ f̄k∇H

θ f̄k
}
, (31)

since Epζ̄

[
xk − fk(θ̄)

]
= Epζ̄

[nk] = 0,∀k. Note that (31) is
related to the Fisher information matrix (FIM) of the well specified
Gaussian case [11]. The values of the matrix B(θ0) can be evaluated
as follows:

B(θ0) ≜ Epζ̄

[
∇θ ln fθ(x;φ0)∇

⊤
θ ln fθ(x;φ0)

]
=

4

σ4
0

K∑
k=1

K∑
j=1

Epζ̄

[
Re
{
n∗
k∇θ f̄k

}
Re
{
n∗
j∇T

θ f̄j
}]

=
2

σ4
0

K∑
k=1

Epζ̄

[
|nk|2

]
Re
{
∇θ f̄k∇H

θ f̄k
}

=
2

σ2
0

K∑
k=1

Re
{
∇θ f̄k∇H

θ f̄k
}
, (32)

with Epζ̄

[
|nk|2

]
= σ2

0 and using the fact that the true noise is i.i.d.,
i.e., Epζ̄

[n∗
knj ] = 0 for j ̸= k.

A.3. Cross-terms

Using the fact that the noise is zero-mean, a direct evaluation of the
derivatives related to the cross terms yields:

Epζ̄

[
∇θ∇σ2

n
ln fφ(x;φ0)

]⊤
= 01×4, (33)

Epζ̄

[
∇σ2

n
∇⊤

θ ln fφ(x;φ0)
]
= 01×4, (34)

Epζ̄

[
∇σ2

n
ln fφ(x;φ0)∇

⊤
θ ln fφ(x;φ0)

]
= 01×4, (35)

Epζ̄

[
∇σ2

n
ln fφ(x;φ0)∇θ ln fφ(x;φ0)

]T
= 01×4. (36)
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